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Major evolutionary transitions can be triggered by behavioural novelty, and
are often associated with ‘adaptive suites’, which involve shifts in multiple
co-adapted traits subject to complex interactions. Heliconius butterflies
represent one such example, actively feeding on pollen, a behaviour
unique among butterflies. Pollen feeding permits a prolonged reproductive
lifespan, and co-occurs with a constellation of behavioural, neuroanatomical,
life history, morphological and physiological traits that are absent in closely
related, non-pollen-feeding genera. As a highly tractable system, supported
by considerable ecological and genomic data, Heliconius are an excellent
model for investigating how behavioural innovation can trigger a cascade
of adaptive shifts in multiple diverse, but interrelated, traits. Here, we syn-
thesize current knowledge of pollen feeding in Heliconius, and explore
potential interactions between associated, putatively adaptive, traits.
Currently, no physiological, morphological or molecular innovation has
been explicitly linked to the origin of pollen feeding, and several hypo-
thesized links between different aspects of Heliconius biology remain
poorly tested. However, resolving these uncertainties will contribute to
our understanding of how behavioural innovations evolve and subsequently
alter the evolutionary trajectories of diverse traits impacting resource
acquisition, life history, senescence and cognition.
1. Introduction: behaviour and the evolution of adaptive suites
Major evolutionary transitions can be triggered by behavioural novelty [1] and
are often associated with ‘adaptive suites’ that incorporate multiple co-adapted
traits [2]. These transitions involve complex interactions, including mutual
dependency between traits [2]. In these circumstances, disentangling the
causal relationships between behavioural and morphological traits involved
in major transitions is challenging.

The butterfly genus Heliconius (Nymphalidae: Heliconiinae) presents an
excellent system for investigating how adaptive suites evolve. Uniquely
among butterflies, Heliconius supplement their nectar diet by actively collecting
and feeding on pollen [3]. Heliconius gather pollen by probing flowers and
collecting it as a lumped mass on the proboscis (figure 1a). The pollen load is
mixed with saliva and externally digested to release amino acids that are
drawn up the proboscis [3]. Pollen is collected primarily from a limited
number of plant species [8], and Heliconius from at least the melpomene clade
(figure 1g) show a particular preference for certain pollen-rich cucurbitaceous
vines [8–10], with which they are hypothesized to have coevolved [11,12].

This dietary innovation provides adults with a consistent supply of amino
acids, permitting a prolonged reproductive lifespan [13], and co-occurs with
behavioural, neuroanatomical, life history, physiological and morphological
changes that are absent in closely related, non-pollen-feeding Heliconiini [14]
(figure 2). Among these putative adaptations, apparent specializations in foraging
behaviour have received particular attention. Heliconius establish ‘traplines’, fora-
ging routes along which specific plants are regularly visited, suggesting a
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Figure 1. Evolution of pollen feeding. (a) A captive H. hecale with pollen load (white) affixed to its proboscis. (b) Elongated sensory bristles on the proboscis of
H. melpomene. (c) A three-dimensional reconstruction of a H. hecale brain showing the mushroom bodies (red) and rest of the brain (grey) from the posterior (top)
and anterior (bottom) view. Scale bars, 500 µm in (b) and (c). (d–g) How phylogenetic hypotheses for Heliconiini have changed through time, and how that affects
predicted gains (red circle/square) and loss (black circle) of pollen feeding. Pollen feeding lineages are shown in red, dotted lines indicate branches with higher
uncertainty. Note the changing position of the Neruda clade, a group of four non-pollen feeding species. (d ) Adapted from [4] and based on morphological data.
(e–g) Adapted from [5–7] and based on molecular data. (Online version in colour.)
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Figure 2. Hypothesized transition for a butterfly from nectarivory to trapline pollen feeding, showing plausible intermediary stages and possible key adaptations.
(Online version in colour.)
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sophisticated capacity for spatial navigation, probably using
learnt visual landmarks [11,15,16].

Pollen feeding evolved relatively recently, with Heliconius
and its sister genus Eueides diverging approximately 18 Ma
[5]. The close phylogenetic relatedness and ecological simi-
larity with other Heliconiini therefore provides a potentially
powerful framework for conducting comparative analyses.
However, the suite of traits associated with pollen feeding is
widely assumed to have evolved only once [6] (figure 1d–g),
presenting difficulties in separating evolutionary cause and
effect. As such, many hypothesized links between different
aspects of Heliconius biology are poorly tested. Moreover, no
physiological, morphological or molecular traits have been
specifically linked to the origin of pollen feeding in this
genus. Nevertheless, as a major system for studying the
genomic bases of adaptation [14], considerable genomic
resources have been developed for Heliconius [17]. Together
with recently developed genetic techniques and comparative
methods [18–20], this provides a clear route towards
understanding the evolution of this behavioural innovation.
This review synthesizes current knowledge of pollen feed-
ing in Heliconius, highlighting gaps in our understanding of
several putatively linked traits, and their interactions, which
are probably key to the origin of pollen feeding. We identify
key areas of investigation that can contribute to central ques-
tions in evolutionary biology including: (i) how dietary
shifts can alter energic constraints, re-shaping life history
and reproductive trade-offs; (ii) how evolutionary innovations
co-opt ancestral molecular and morphological traits; and
(iii) how brains accommodate cognitive enhancements.
2. Pollen-feeding in Heliconius butterflies: an
energetic payload

Populations are often under energetic constraint, resulting
in investment trade-offs between competing tissues, traits, or
strategies [21]. Shifts in diet quality have dramatic effects on
evolutionary trajectories by increasing individual energy
budgets. For example, dietary innovations have been linked to
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larger body sizes in carnivores [22], brain expansion in primates
[23] and increased fecundity in butterflies [24]. However, com-
parative life-history studies often compare phylogenetically
and ecologically diverse species, leading to difficulties in deter-
mining the precise role of dietary shifts in macro-evolutionary
dynamics (see [25]).

Like most holometabolous insects, Lepidoptera experi-
ence a profound shift in nutrient intake between the larval
and adult stages. Lepidopteran larvae are generally herbivor-
ous, whereas adults of most species feed predominantly on
nectar, which is carbohydrate-rich, but protein-poor [26,27].
Consequently, reproductive output is largely constrained by
protein acquired during the larval stage [24,26]. While some
Lepidoptera also exploit alternative nutrient sources includ-
ing mud, fruit, dung and carrion [27], pollen feeding in
Heliconius is perhaps the clearest example of a change in
adult diet being linked to major shifts in life history. Pollen
feeding provides Heliconius with a consistent source of essen-
tial amino acids during the adult stage [3]. Compared to other
Heliconiini, Heliconius exhibit a pronounced delay in female
reproductive senescence [13]. Heliconius females generally
collect more pollen than males [9,28], incorporating pollen-
derived amino acids into eggs [29], and suffer a marked
decline in fecundity when deprived of pollen [13]. This
reflects a potential physiological convergence with honey-
bees, where colonies cease brood rearing when denied
access to pollen [30].

Heliconius butterflies have dramatically extended life-
spans, living for up to six months in the wild, without
diapause [3,15], compared to a maximum of four to six
weeks in Dryas iulia, a non-pollen-feeding Heliconiini [13].
However, the causal relationship between pollen feeding
and longevity is not well quantified. One study reports that
pollen-deprived Heliconius charithonia are shorter-lived [13],
but this difference was not tested statistically. In adult honey-
bees, pollen feeding is associated with increased longevity
[31], providing reason to expect a similar effect in Heliconius.

The energetic payload provided by pollen feeding has
clearly had a major impact on reproductive output in Helico-
nius. This provides several opportunities for investigating the
effects of foraging innovations on life histories, for example:
(i) how do novel diets alter energetic trade-offs between life
stages? (ii) what physiological mechanisms control the shift-
ing balance of these trade-offs and the use of new
resources? and (iii) what physiological mechanisms underpin
increased longevity?
3. Origins of a novel trait
The processes and underlying conditions that give rise to
evolutionary novelties are incompletely understood [32].
Although evolutionary novelties can arise from the emergence
of new ecological opportunities [33], this is not always the
case [34]. Importantly, evolutionary trajectories appear
constrainedbypre-existingvariation [35,36], suggesting contin-
gency plays a substantial role in the emergence of novel traits.
For example, complex behaviours can be achieved through
the integration of simpler, pre-existing behavioural modules
[37]. However, the relative importance of behaviour, mor-
phology and physiology as the ultimate drivers of novelty is
debated [32]. Understanding fitness benefits during
intermediate stages, and the timing of trait acquisition, is there-
fore key to disentangling the origins of an innovation.

(a) Reconstructing evolutionary shifts in pollen feeding
Except for the four species of the ‘Neruda’ clade (figure 1e–g),
all Heliconius species feed on pollen and appear to possess the
complete suite of associated traits, presenting a challenge to
reconstructing the origin of pollen feeding. As the only non-
pollen-feeding Heliconius, the four Neruda species may offer
the possibility of decoupling pollen feeding and its associated
adaptations, helping to resolve the timing of these shifts, and
the relationships between traits. Regrettably, such analyses
are currently limited by the scarcity of data on Neruda biology
and lingering uncertainty regarding their phylogenetic pos-
ition. Long considered a separate genus [4] (figure 1d), recent
molecular phylogenies have positioned Neruda within
Heliconius [5–7] (figure 1e–g). Hence, whether pollen feeding
evolved once in Heliconius and was secondarily lost in the
Neruda, or evolved multiple times within Heliconius, with
Neruda retaining the ancestral state, is unclear, with these
two scenarios being equally parsimonious (figure 1g) [5]. In
addition, given evidence of widespread introgression through-
out the evolution of the genus [17], which could mislead the
species tree, it also remains possible that the Neruda are, after
all, a sister clade to Heliconius, as suggested by morphological
data (figure 1d). Nevertheless, the absence of pollen feeding
in otherHeliconiini suggests that a single gainwithinHeliconius
is likely, with or without a loss in the Neruda. However,
discordance between any single Heliconiini species tree and
underlying gene trees may present persistent difficulties in
resolving this question [38].

More broadly, the scarcity of pollen feeding across
the approximately 180 000 described species of Lepidoptera
marks Heliconius as particularly peculiar. Although wild-
caught butterflies from several genera have been reported as
having pollen affixed to their proboscis [39], active pollen
feeding is unknown in other Lepidoptera, with only a few
exceptions, all of which are separated from Heliconius by
large phylogenetic distances. Two families of basal moths,
Heterobathmiidae and Micropterigidae, feed on pollen as
adults [40]. These groups, however, lack a proboscis and use
plesiomorphic mandibles to collect and crush pollen [40].
Two species of Gelechiidae moths are the only other
proboscis-bearing Lepidoptera reported to feed on pollen,
purportedly by dissolving the pollen wall with an unidentified
salivary agent [41]. However, the ecology and life history of
these species, and the prevalence of pollen feeding across
Gelechiidae, are poorly understood, making it difficult to
assess the feasibility of comparative analyseswithin this group.

(b) Fitness during evolutionary transitions: effects of
adult amino acid intake

The presence of amino acids in nectar [42], often derived from
contaminating pollen grains [43], suggests that pollen feeding
may have originated with the incidental intake of amino acids
while nectar feeding. This may have selected for an increased
sensitivity to amino acids, and a preference for pollen-rich
plants (figure 2). The importance of nectar-derived amino
acids to adult butterflies is supported by comparisons show-
ing that plants pollinated by butterfly species tend to have
higher amino acid concentrations in their nectar [42].
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Additionally, several butterfly species show a preference for
nectars containing amino acids [44,45]. However, the benefits
derived from amino acids in the adult diet vary widely
between Lepidopteran species. In several species, no associ-
ation has been found between fecundity and adult amino
acid intake [46–48]. Yet, for other species, it has been linked
to increases in egg quantity [49] and size [50]. Importantly,
the transfer of nectar-derived amino acids to eggs has been
directly demonstrated in some species [51,52]. The effects
on male fecundity have received less attention, however,
male Coenonympha pamphilus produced larvae with larger
hatching masses when provided with amino acids, probably
owing to enhanced spermatophore quality [53]. Adult amino
acid intake also increases longevity in some species, but has
no effect in others [46,54]. Interestingly, lifespans comparable
to Heliconius have been recorded in some fruit-feeding butter-
flies [55], raising the possibility that fruit-derived amino acids
may similarly facilitate an extended lifespan.

While the effects appear to be highly species-dependent,
evidence that adult amino acid intake can lead to improve-
ments in longevity or fecundity supports the hypothesis
that pollen feeding in Heliconius probably originated from
passive uptake of pollen-derived amino acids during nectar
feeding (figure 2). If so, it remains puzzling that pollen feed-
ing is so rare. Central to answering why, is identifying the
adaptations necessary for the transition to pollen feeding.
(c) Using old traits for new purposes
Comparative studies across Heliconiini suggest that pollen
collection does not involve any novel morphological
structures [56]. However, Heliconius do have elongated pro-
boscises compared to non-pollen-feeding Heliconiini, with
longer and more numerous bristles at the proximal- and
mid-regions (figure 1b), which may assist in affixing pollen
grains [56]. In addition, the intrinsic muscles involved in coil-
ing movements are more numerous and extend further into
the proboscis [57]. Pollen collection also involves the same
sequence of probing movements as nectarivorous butterflies
[27,58], but Heliconius probe with higher frequency and
handle individual flowers for longer, with handling time
increasing in the presence of pollen [27,58]. Additionally,
pollen processing may be derived from proboscis grooming
behaviours, which similarly involve the release of saliva
and the repetitive coiling of the proboscis [59].

Saliva appears to play a key role in pollen feeding by
helping to bind pollen to the proboscis and facilitating exter-
nal digestion. Indeed, the salivary glands of Heliconius are
larger than in other nymphalids [60], and Heliconius release
greater quantities of saliva during feeding [58]. Although
the saliva of Heliconius contains proteases [61,62], it is
unknown how it differs from that of other Heliconiini. How-
ever, proteolytic activity of the saliva does increase when the
proboscis is stimulated with pollen, and is generally higher in
females [61]. Two of the proteases identified in Heliconius mel-
pomene saliva also show close homology with the serine
protease cocoonase [62,63], which is secreted from the probos-
cis of silkworms to weaken the cocoon during eclosion [64].
Like all butterflies, Heliconius lack cocoons, and it has been
suggested that cocoonase homologues may have been co-
opted for use in digesting pollen proteins [62,63], potentially
weakening the pollen wall. Cocoonase underwent several
duplications along the lineage leading to Heliconius and
their sister genus, Eueides, with an additional duplication
specific to Heliconius and a further duplication in H. melpo-
mene [63]. However, a functional role for cocoonase in pollen
feeding has not yet been directly demonstrated. Importantly,
it is unclear how proteolysis would break down sporopol-
lenin, the primary component of pollen exines, as it is not
composed of proteins [65]. Pollen grains are, in fact, visibly
damaged after processing by Heliconius [66]. However, it is
unknown if this is achieved solely by mechanical digestion,
or through biochemicals capable of breaking down sporopol-
lenin, as is claimed for Gelechiidae moths [41]. The role of
specific salivary proteins in pollen digestion therefore
requires further comparative studies that include a broader
representation of the non-pollen-feeding Heliconiini.

Pollen feeding illustrates how evolutionary innovation
can occur through the co-option and modification of pre-
existing anatomical, behavioural and physiological traits for
new purposes. Although it remains unclear why pollen feed-
ing arose in Heliconius but not other butterflies, this question
can potentially be answered by combining functional
genetics, physiology and anatomy.
4. Increases in behavioural sophistication and
neural elaboration

Dietary innovations not only involve adaptations in the pro-
cessing and use of a resource but often co-occur with changes
in foraging behaviour as determined by the quality, and
spatial and temporal distribution of food sources [67].
These parameters impose demands on perception, learning
and memory, and can favour investment in associated brain
structures [68]. In Heliconius, the interactions between butter-
flies and their pollen sources may have led to notable
refinements in both the brain and behaviour [11,16,69,70].

(a) Exploitation of a novel resource: plant–animal
interactions and foraging strategies

Many species of Heliconius collect pollen predominantly from
cucurbitaceous vines, particularly the relatively rare, but
pollen rich Psiguria and Gurania, which show evidence of co-
evolution with Heliconius [8–12]. Heliconius are the primary
pollinators of Psiguria, visiting more plants, and depositing
more pollen, over greater distances, than even hummingbirds
[71]. Indeed, several species of Gurania and Psiguria appear to
have evolved lower nectar production and smaller flowers to
promote visitation from Heliconius over hummingbirds, and
older plants may even switch from producing male to
female flowers once Heliconius visitation is established [72].

Psiguria flowers contain large amounts of pollen, and inflor-
escences generally produce a new flower every 1–3 days [11].
Individual plants can flower continuously for up to a year
[11], in contrast to the seasonal pollen production common
for neotropical angiosperms [73]. A single Psiguria plant is
therefore potentially a reliable pollen resource for the entire
lifespan of an individual. Heliconius use this dependable, but
scarce, resource by establishing ‘traplines’, foraging routes
along which specific plants are visited with a high degree
of spatial and temporal regularity [11,15,16]. This suggests
Heliconius possess a capacity for navigation using learnt
visual landmarks, similar to behaviours observed in certain
bees [74,75]. Heliconius traplines centre on a limited home
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range of 100 m2 to 1 km2, within which individuals return to
the same roosting locations at night, located using visual cues
[16,71,76]. Although other butterfly species, including the heli-
coniine Agraulis vanillae, are reported to temporarily establish
home ranges [77], Heliconius seem peculiar in maintaining
long-term, stable home ranges with high roost-site fidelity
[16,71]. Site fidelity is presumably a pre-requisite for trap
lining, which, together with the central role of pollen resources
in Heliconius trap lines, suggests that these behaviours are
linked to the acquisition of pollen feeding. However, the lack
of data on whether non-pollen feeding Heliconiini use spatial
information during foraging, means this hypothesis is yet to
be formally tested.

Despite the role of Psiguria and Gurania in Heliconius
foraging behaviour, there is considerable variation in the exploi-
tation of pollen sources between species. Although these
differences are partly explained by habitat preference, there
appears to be a division between the two main Heliconius
clades [8]. Species of the melpomene clade tend to forage more
intensively on Psiguria, while erato clade species predominantly
exploit non-cucurbitaceous plants, such as Lantana [8–10]
(figure 1g). Notably, Heliconius erato do trapline on specific
patches of Lantana [16]. Hence, the role of cucurbitaceous
pollen sources in the transition to pollen feeding is unclear.
One possibility is that pollen feeding arose in the context of coe-
volution with certain cucurbitaceous vines, with members of
the erato clade subsequently pushed towards other pollen
resources owing to competitive exclusion. Alternatively,
pollen feeding may have originated as a more opportunistic,
generalist strategy, retained in the erato clade,with specialization
onCucurbitaceae secondarilyemerging in themelpomenegroup.
(b) Neural basis of a cognitive adaptation
Behavioural innovations are generally associated with changes
in the structure and function of the brain [78]. For example, fora-
ging innovations are linked to brain expansion in several
vertebrate groups [23,79]. Trapline foraging in Heliconius rep-
resents a degree of behavioural sophistication rarely reported
among the Lepidoptera, and is suggestive of enhancements in
visually oriented spatial memory and long-term memory
retention [11]. The cognitive abilities of Heliconius relative
to non-pollen-feeding Heliconiini are, however, yet to be
experimentally assessed. Nevertheless, the apparent cognitive
demands of traplining are predicted to be associated with
elaborations in the Heliconius nervous system [69,70].

Indeed, Heliconius have dramatically enlarged mushroom
bodies (figure 1c), which are three to four times larger than is
typical of Lepidoptera, including two closely related Helico-
niini, Dryas iulia and Agraulis vanillae [69,70]. Mushroom
bodies are paired, central brain structures that receive visual
and/or olfactory information, and play an important role in
learning and memory [80]. Mushroom body function varies
across insects with different ecologies, which is reflected in
the relative importance of visual and olfactory inputs [80].
In Heliconius, the demands of trapline foraging is hypoth-
esized to have driven mushroom body expansion [69,70].
However, direct evidence for a functional link between the
mushroom bodies and visually oriented spatial memory is
limited to a handful of ablation experiments in cockroaches
[81] and ants [82,83]. Indirect evidence also comes from com-
parative data from Hymenoptera, showing that expansion of
the mushroom bodies coincided with the evolution of
parasitoidism [84], which relies on spatial memory for host
location [85], and plasticity experiments in a desert ant that
show visually guided foraging experience affects mushroom
body maturation [86]. Though suggestive, these data are rela-
tively impoverished compared to our understanding of the
role of the central complex, another sensory-motor inte-
gration structure in the central brain, in insect spatial
learning and orientation [87,88].

Increases in Heliconius mushroom body size have also
been speculatively linked to host plant use [89]. Heliconius
lay exclusively on Passiflora plants, with varying degrees of
specialization. Passiflora display a remarkable diversity of
leaf shape, and host plant use in Heliconius appears to be,
in part, based on leaf shape recognition and learning through
associative conditioning [90]. Mushroom body expansion
may, therefore, support a greater array of search images
and enhanced shape-learning abilities, facilitating improved
visual identification of host plants [89]. Indeed, there are indi-
cations that, for some butterflies, mushroom body plasticity is
shaped by experience with host plants [91,92]. However, the
current lack of data on variation in mushroom body size
within Heliconius and across Heliconiini prohibits tests of
these hypotheses. Likewise, a better understanding of the
foraging behaviours of non-pollen-feeding Heliconiini is cru-
cial to understanding the drivers behind mushroom body
expansion in Heliconius.

The impacts of pollen feeding in Heliconius clearly extend
beyond direct effects on fecundity, shaping their foraging
strategy and probably changing the types and complexity of
information processed and stored by the brain. Heliconius
therefore offer a highly tractable system for investigating how
behavioural innovations can alter a species’ cognitive ecology.
5. Ripple effects following evolutionary
innovations

Profound shifts in a major trait can have substantial knock-on
effects on the selection regimes governing both developmen-
tal and evolutionary processes [2] (figure 3). In Heliconius,
the evolution of pollen feeding has been linked to an exten-
sive suite of life history, reproductive and phenotypic traits.
However, the interactions and dependencies between these
traits are poorly explored. Here, we highlight three areas
in which pollen feeding is hypothesized to have altered
Heliconius biology (figure 3), and which illustrate the broader
impacts of behavioural innovations.

First, dietary improvements in adults can alter how energe-
tically expensive investments are provisioned during the larval
stage [28] (figure 3, green). As larvae, Heliconiini sequester
cyanogenic compounds and synthesize cyanogens de novo
from host plant (Passiflora) derived amino acids [99], making
them distasteful to predators. A pollen-rich adult diet may
allow Heliconius to allocate a greater proportion of larval
resources towards chemical defence, rather than energy
reserves, with the shortfall in reproductive investment being
recouped during the adult stage [100]. However, although
Heliconius tend to emergewith higher cyanogen concentrations
than most other Heliconiini, the non-pollen-feeding Agraulis
vanillae and Eueides spp. show levels similar to Heliconius
[100,101]. Such comparisons are, however, complicated by
adult cyanogen profiles being influenced by larval diet
[99,102], which varies between and within Heliconiini species.
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Moreover, cyanogen concentration is an imperfect proxy for
distastefulness due to interspecific variation in chemical profile
[101]. Pollen feeding has also been suggested to allow Helico-
nius to reduce time spent in the vulnerable larval stage [3,12]
by trading off increased growth rates against investment in
nitrogen reserves. Although larval growth rates across theHeli-
coniini have not yet been compared, femalesDryas iulia emerge
with a higher proportion of abdominal nitrogen allocated to
reproductive reserves thanHeliconius [28]. Similarly, compared
withD. iulia,H. charithonia females emergewith smaller ovaries
containing fewer oocytes, further suggesting a reduction in
larval investment in reproduction [13].

Second, ithasbeensuggested thatHeliconiusmayalsoappro-
priate pollen-derived amino acids for increased cyanogenesis
during the adult stage [12]. Together with a potential increased
allocation of larval resources to chemical defence, this could
strengthen selection foraposematicwingpatterns andMüllerian
mimicry [76] (figure 3, blue).Heliconiusdo experience lower pre-
dation rates than sympatric non-pollen-feeding Heliconiini
[97,98], indicatinggreater unpalatability and salience ofwarning
cues, which, in butterflies, is also associated with decreased
investment in flight muscle [96]. However, the role of pollen
intake in adult cyanogenesis remains ambiguous. Restriction
of dietary amino acids reportedly has no effect on cyanogen
levels in two-week old Heliconius ethilla and Heliconius hecale
[100]. However, an effect was seen in H. melpomene after two to
fourweeks, suggestingpollen feedingcouldprolongadult cyano-
genesis [93].Heliconius also invest large amounts of cyanogens in
eggs and spermatophores [99], and pollen feeding may help
replenish cyanogens lost through reproduction. Indeed, when
deprived of amino acids, H. charithonia show depressed cyano-
gen levels relative to freshly eclosed adults, suggesting that
cyanogens are re-appropriated under stressful conditions [100].

Finally, a decrease in adult mortality owing to predation,
together with a delay of reproductive senescence, probably
strengthened selection for extended lifespans (figure 3,
yellow). An increase in longevity would also favour investment
in learning, long-term memory and their neural correlates
(figure 3, pink),which is less rewarding for shorter-lived species
[94,95]. However, this interactionmay itself require concomitant
investment trade-offs or physiological adaptations, as the costs
of learning can cause reductions in longevity [103], and fecundity
[104]. While the above hypotheses remain poorly tested, inter-
actions between these diverse traits may be crucial to the
evolution of pollen feeding [25].
6. Disentangling the origins of a singular
adaptation

Since it was first described nearly 50 years ago [3], pollen feed-
ing in Heliconius has been shown to involve a complex suite of
adaptations (figure 2), with substantial knock-on effects on life
history (figure 3). We propose one evolutionary scenario that
describes plausible transitional stages inmoving fromnectariv-
ory to trapline pollen feeding (figures 2 and 3), highlighting
important ecological and evolutionary interactions. However,
the order in which these traits were acquired, and therefore
how they interact, is unresolved. Nevertheless, the compara-
tively recent phylogenetic scale over which these shifts
occurred (approx. 18 Ma [5]) positions Heliconius as a valuable
model for exploring a number of core questions in evolutionary
biology. Importantly, Heliconius are already a highly tractable
system, readily reared in insectaries and amenable to behav-
ioural experimentation [90], and supported by broad genomic
resources [17] and tools for studying candidate genes [18,20].
Below, we identify five fundamental questions in evolutionary
biology that can be addressed through further investigation of
pollen feeding in Heliconius.

(a) How quickly do behavioural innovations alter
selection on related traits?

Heliconius are distinguished from their non-pollen feeding
relatives by several traits. However, whether these traits
evolved in a short burst of multi-trait adaptive evolution, or
were assembled gradually through time, is unclear. Variation
in the degree of specialization on cucurbit vines across
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Heliconius may provide one avenue to investigate ties
between pollen feeding and foraging behaviours. However,
as the only non-pollen-feeding Heliconius, the four Neruda
species offer the possibility of separating pollen feeding
from its associated adaptations. Although little is known
about Neruda biology, particularly their foraging behaviour,
there is evidence that they exhibit some ancestral traits. For
example, the proboscis of Heliconius aeode lacks the increased
density and length of bristles seen in other Heliconius [56].
However, the extent to which they share other traits with
non-Heliconius Heliconiini is unclear. Unresolved questions
include whether the Neruda trapline forage or possess
expanded mushroom bodies, and the level of proteolytic
activity in their saliva.
roc.R.Soc.B
287:20201304
(b) What molecular mechanisms underlie functional
innovations?

The nature of the molecular bases of adaptation is a central
question in evolutionary biology, and identifying the genetic
basis of a trait can help understand adaptive novelty [20]. For
Heliconius, it is possible that developing the molecular ‘toolkit’
to digest pollenwas a key innovation, unlocking a newecologi-
cal resource that triggered subsequent adaptive evolution in
other traits. Although a number of proteases have been ident-
ified in Heliconius saliva [61,62], their role in pollen digestion
is undemonstrated, and the mechanisms by which Heliconius
saliva can break down pollen remain unclear. Comparisons
of salivary compounds and gene expression in the mouthparts
of Heliconius and other Heliconiini may lead to the identifi-
cation of genes key to the evolution of pollen feeding, offering
important insight into how novelty evolves.
(c) How do biological trade-offs shape the evolution of
novel traits?

Novel traits often involve considerable costs and may only
confer fitness benefits under certain conditions, resulting in
unequal landscapes of adaptive opportunity between species
[25,32]. Despite pollen feeding offering large reproductive
benefits, Heliconius are the only butterflies to have evolved
this ability. It is possible that reliable collection of pollen can
only be achieved through increased investment in neural
tissue and learning, both of which can be costly [105,106]. The
benefits of increased reproductive longevity may also depend
on high adult survival, which is supported byMüllerianmimi-
cry inHeliconius. These interactions could be approached using
mathematical models that formalize their interdependencies
[107], or agent-based simulations that reveal a hierarchyof com-
petitive advantages provided by different traits [108]. This
provides one route to reconstructing the order in which these
traits changed, and their inter-dependencies, highlighting
which were key to the origins of pollen-feeding and which
were consequences of it.
(d) What selective pressures and constraints shape
brain evolution?

Expansion of specific brain regions is restricted by the energetic
costs of neural tissue [106] and constraints that can limit the
independent evolution of component parts [109]. Yet, region-
specific changes can underpin behavioural innovation [109].
In Heliconius, increased behavioural sophistication putatively
co-occurswith an expansion of themushroombodies. This pro-
vides an opportunity to study how selection for behavioural
innovation can shape brain evolution, and how ancestral
neural structures can be co-opted for new functions. Difficulties
associated with testing comparative hypotheses where pheno-
typic shifts occur in a single lineage [110]maybe overcomewith
more flexible phylogenetic methods that incorporate
rate heterogeneity in trait evolution to reveal distinct shifts in
correlated traits across time [19].

(e) What mechanisms permit delayed reproductive
senescence and extended lifespans?

Age-related declines in fitness are widespread among animals,
but these effects can vary dramatically between closely related
taxa and within species [111]. However, our understanding of
these processes remains incomplete. The greatly extended life-
spans ofHeliconius indicate a remarkable ability to delay bodily
senescence [13]. Additionally, the ability to maintain long-term
memories of foraging routes suggest that Heliconius may miti-
gate cognitive senescence observed in other insects [112,113].
Uncovering the mechanisms by which Heliconius delay senes-
cence, and the potential role of pollen-derived amino acids,
could provide valuable insight into ageing processes.
7. Conclusion
In conclusion, we highlight pollen feeding in Heliconius as a
remarkable example of a behavioural innovation triggering
an adaptive shift across a suite of multiple, interrelated
traits, with the potential to become a highly informative, text-
book case of the causes and consequences of behavioural
evolution. By exploring the questions set out above, we can
make progress towards better understanding how behaviour-
al novelties arise, and subsequently lead to profound changes
across diverse aspects of an animal’s biology.
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