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Sperm cells experience considerable post-ejaculation environmental vari-
ation. However, little is known about whether this affects their molecular
composition, probably owing to the assumption that sperm are transcrip-
tionally quiescent. Nevertheless, recent evidence shows sperm have
distinct RNA profiles that affect fertilization and embryo viability. Moreover,
RNAs are expected to be highly sensitive to extracellular changes. One such
group of RNAs are heat shock protein (hsp) transcripts, which function in
stress responses and are enriched in sperm. Here, we exploit the experimen-
tal tractability of the mussel Mytilus galloprovincialis by exposing paired
samples of ejaculated sperm to ambient (19°C) and increased (25°C) temp-
eratures, then measure (i) sperm motility phenotypes, and (ii) messenger
RNA (mRNA) levels of two target genes (hsp70 and hsp90) and several puta-
tive reference genes. We find no phenotypic changes in motility, but reduced
mRNA levels for ssp90 and the putative reference gene gapdh at 25°C. This
could reflect either decay of specific RNAs, or changes in translation and
degradation rates of transcripts to maintain sperm function under stress.
These findings represent, to our knowledge, the first evidence for changes
in sperm RNA profiles owing to post-ejaculation environments, and suggest
that sperm may be more vulnerable to stress from rising temperatures than
currently thought.

1. Introduction

Sperm cells are traditionally thought to function as DNA-delivery machines,
with fixed phenotypes determined by males during spermatogenesis [1]. This
view was formed primarily from the study of sexual reproduction in internal
fertilizers, where sperm follow a predictable path from one homeostatically-
controlled environment (the male reproductive tract) to another (the female
reproductive tract). However, it has recently become clear that sperm undergo
numerous post-ejaculatory modifications, both at the phenotypic and molecular
levels, as they move through the reproductive environment (reviewed in [2]).
Even for internal fertilizers these modifications can be variable, for example,
depending on the identity of the female with which the male mates (e.g. [3]).
However, in the case of external fertilizers, sperm have no homeostatic protec-
tion once they have been released from the male; to achieve fertilization
they must navigate an environment that fluctuates considerably, both abioti-
cally and biotically [4,5]. We would therefore also expect highly variable
post-ejaculatory modifications in these taxa.

Superimposed on natural environmental variation, externally spawned
gametes also face substantial human-induced changes to abiotic conditions.
Importantly, rapid warming owing to anthropogenic climate change is likely to
have a disproportionate effect on external fertilizers in the marine environment,
which has absorbed over 90% of the Earth’s warming in the last 50 years [6,7].
Climate change has led to rises in both mean sea surface temperature and the
frequency of extreme heatwave events (e.g. [8-10]). So far, studies of sperm
responses to rising post-ejaculation temperatures have focused on swimming
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behaviour and fertilization rates. Sperm of external fertilizers
tend to swim more quickly at higher temperatures, possibly
owing to a trade-off between sperm velocity and longevity
(e.g. [11]), and fertilization rates of some broadcast spawners
(where both sexes release gametes externally) may be largely
unaffected by predicted changes to mean ocean temperatures
(reviewed in [12]). Nevertheless, decreases in fertilization
success in response to rising temperatures have also been
reported, particularly at the more extreme temperatures that
reflect expected conditions during heatwaves (e.g. [13-15]).
Therefore, the full effects of external warming on sperm
remain unclear.

Focusing on broad patterns of sperm behaviour or fertili-
zation success might obscure cellular-level responses of
sperm to environmental changes such as heat stress. We
now know that sperm cells are much more than simple
DNA-delivery packages; importantly, they contain complex
populations of both coding and non-coding RNA transcripts
[16]. Traditionally, it has been assumed that these transcripts
are loaded into the cell during spermatogenesis, with the
sperm genome itself in a transcriptionally quiescent state
[17]. Nevertheless, there is evidence that sperm can translate
proteins from messenger RNA (mRNA) transcripts prior to
fertilization [18,19] and that transcript profiles covary with
male fertility [20]. This raises the possibility that sperm cells
could potentially adjust transcript profiles and protein pro-
duction to maintain function in unpredictable or stressful
environments. Changes to sperm RNA profiles have pre-
viously been reported in the absence of phenotypic changes
[21]. Moreover, coding and non-coding RNAs can be trans-
ferred to fertilized eggs and influence gene expression and
development in early embryos (e.g. [22-24]), and sperm
might alter transcript profiles following environmental
stress to prepare embryos for similar conditions (see [25]).
Even accidental or non-adaptive changes to transcript profiles
under stress (e.g. through cellular damage) could have impli-
cations for embryo viability. However, few studies of sperm
RNA have been conducted on external fertilizers (but see
[26-28]), and we are not aware of any that have examined
whether abundance of sperm transcripts changes in response
to variable post-ejaculation environments.

The broadcast spawning blue mussel Mytilus galloprovincia-
lis is an ecologically dominant member of temperate subtidal
communities in both hemispheres [29] and an ideal candidate
model for evaluating the post-ejaculatory responses to rising
sea temperatures. Australian populations of M. galloprovincialis,
which contain signatures of both a native southern lineage and
more recently introduced northern individuals [30-32], are dis-
tributed across the southern coastline where they experience
relatively high rates of sea surface warming, and have also
been subject to several prolonged heatwave events in recent
years where nearshore sea surface temperatures of up to 6°C
above average have consistently been recorded [8,10]. Such
temperature anomalies can have substantial effects on fitness
across various life stages in M. galloprovincialis, including ferti-
lization success, larval viability and adult mortality [33-35].
These factors, as well as the tractability of M. galloprovincialis
for spawning and gamete manipulation experiments (e.g.
[35,36]), make it an excellent model system for exploring
the effects of ocean warming on sperm. A previous study
found that sperm of M. galloprovincialis appeared to maintain
normal swimming behaviour and fertilization competence
under short-term exposure to high temperatures [37], although

decreased fertilization rates have also been reported at elevated [ 2 |

temperatures [35]. Importantly, the potential for molecular
changes to the sperm cells has yet to be explored in this or
any other system, which as we note above, could underlie the
maintenance of normal phenotypic function under stresses
such as heat shock. Uncovering such molecular changes in
sperm would provide key experimental support for the hypo-
thesis that post-ejaculatory environmental changes can affect
fertilized eggs and embryos.

In this study, we conduct, to our knowledge, the first inves-
tigation of changes in sperm transcript levels in response to
post-ejaculation temperatures. To achieve this we employ a
split-ejaculate design to expose samples of sperm from individ-
ual males of M. galloprovincialis to both ambient and
experimentally increased seawater temperatures. At each
temperature, we measured sperm motility phenotypes (exper-
iment 1) to clarify whether sperm can maintain normal
phenotypic function under heat stress. We then measured
mRNA abundance of candidate genes (experiment 2) to
explore putative underlying molecular responses to high temp-
eratures. Specifically, we target mRNA derived from the heat
shock protein genes hsp70 and hsp90. These genes code for mol-
ecular chaperone proteins that maintain protein stability and
transport, and are typically upregulated by cells under stressful
conditions such as heat shock [38—40]. Previous studies in
M. galloprovincialis have shown that upregulation of these
genes in somatic tissues is induced by temperature changes
that reflect recent heatwaves, i.e. 5-6°C above mean ambient
conditions [41,42]. Transcripts from hsp70 and hsp90 are
enriched in sperm of disparate taxa, including M. galloprovin-
cialis [27,43], and studies of human and livestock sperm
suggest mRNA and protein dynamics of these genes are
linked to capacitation and fertility [44—46]. Heat shock proteins
are also crucial in early embryo development [47], and mRNAs
coding for them could be transferred from sperm to fertilized
eggs [46,48]. They are, therefore, highly relevant targets for
exploring molecular changes to sperm induced by heat shock.

Live mussels were collected from Woodman Point, Western
Australia (32°14'03.6” S, 115°76'25" E) during the 2018 spawning
season (June-September), and used in experimental trials on the
day of collection. Many other marine organisms use mussel
shells as substrates, which could potentially contaminate RNA
preparations (as used in experiment 2; see below) with transcripts
from non-target species. Therefore, for mussels collected during
experiment 2, encrusting organisms were cleaned from shells
prior to spawning. To ensure there were no contaminants in the
seawater that could affect RNA preparation and analyses (see
below), we prepared experimental seawater synthetically via a
multi-step filtration protocol prior to using it for gamete collection
(hereafter filtered seawater, FSW; see the electronic supplementary
material, Supplementary methods and results).

Spawning was induced by placing mussels in a heated water
bath (28°C), as is standard for M. galloprovincialis ([36], e.g.
[49,50]). We note that while there is a possibility that the tempera-
ture shock experienced by whole mussels could affect gametes and
fertilization, all mussels were treated to this procedure prior to
gametes being collected, and thus before intra-ejaculate samples
were split across experimental temperature treatments (see ‘Exper-
imental overview and temperature treatments’). This means that



any effect of the spawning temperature would not confound
gamete treatment effects. Moreover, as soon as a mussel began
spawning, it was removed from the spawning tank, washed in
FSW to remove any gametes that had already been spawned,
and placed into an individual jar of FSW at 19°C (reflecting ambi-
ent sea surface temperatures) for gamete collection. Therefore,
spawned gametes used in experiments were not directly exposed
to FSW at elevated temperatures prior to the application of
experimental treatments.

After approximately 30 min of spawning, we removed the mus-
sels from their individual jars and estimated gamete concentrations.
Sperm in Mytilus spp. can remain fertilization competent for longer
than 11 h [51], and studies in M. galloprovincialis have found sperm
are fully motile after 3 h trials [52,53]; therefore, sperm ageing is
likely to be negligible over the 30 min period of spawning. Egg con-
centrations were estimated by counting the number of cells in a
homogenized 5 pl subsample, and sperm concentrations were esti-
mated in subsamples fixed with 1% formalin using an improved
Neubauer haemocytometer (Hirschmann Laborgeréte, Eberstadt,
Germany). Gametes were then adjusted to the concentrations
required for experimental trials (see below).

(b) Experimental overview and temperature treatments
In both experiments, sperm were exposed to two temperature
treatments (prepared with water baths in a temperature-
controlled room): (i) ambient (i.e. average temperature during
the spawning season), 19°C; and (ii) high, 25°C. The latter temp-
erature was chosen to reflect thermal stress from a heatwave
event [8]. For logistical reasons, it was not always possible to
collect both sperm motility and RNA data from the same
males; although a subset of males did have both sets of data
collected (see Results). For both sperm motility (experiment 1)
and heat shock gene RNA assays (experiment 2), we used a
paired (split-ejaculate) design in which two separate aliquots of
each male’s ejaculate were collected and exposed to the different
temperature treatments. In the dense, highly competitive spawn-
ing events typical of M. galloprovincialis [54,55], acute effects of
short-term heat stress on sperm are likely to be most relevant
to reproductive fitness. Therefore, we suspended tubes contain-
ing the ejaculate aliquots in the respective water bath
treatments for a period of 10 min before downstream assays.

() Experiment 1: sperm motility

Sperm motility was measured using computer-assisted sperm
analysis (CASA; CEROS, Hamilton-Thorne, Beverley, MA) for
paired ejaculate samples in each treatment from 7 =23 males.
For logistical purposes, these males were measured across four
spawning days (referred to as ‘blocks’). For each male, two
separate 10 ml aliquots of sperm at 5.0 x 10° cells ml™! were col-
lected. This concentration was chosen to ensure sufficient
motile cells would be present in the field of view, while remain-
ing well within the recommended maximum for CASA [56].
Sperm motility was measured immediately after temperature
treatment by placing 2 pl of the sample onto an individual well
of a 12-well multi-test slide, which had previously been washed
with 1% polyvinyl alcohol to prevent sperm sticking to the slide.
Elsewhere we have measured sperm motility both in seawater
and in the presence of egg-derived substances that change swim-
ming patterns [57]. Here, however, we confine the measures to
seawater, as we would not have been able to separate the effects
of high temperature treatments on the sperm themselves, from
altered bioactivity of egg-derived substances. Threshold values
for defining static cells were set to 19.9 pm s~ for average path
velocity (VAP) and 4 ypm s™" for straight-line velocity (VSL). The
following motility parameters were recorded (which are highly
repeatable within samples for M. galloprovincialis; [50]): VAF,
VSL, curvilinear velocity (VCL), linearity (LIN), straightness

(STR), beat cross frequency (BCF) and amplitude of lateral head
displacement (ALH). We also calculated the proportion of motile
sperm (PM) from the motile and total cell counts. These traits
have previously been shown to be predictive of sperm success
during both non-competitive and competitive fertilizations in
M. galloprovincialis [50,53,57,58].

(d) Experiment 2: sperm RNA extraction and RNA
abundance assays

For gene expression assays, paired 10 ml ejaculate samples were
collected from 1 =18 males over three spawning days (‘blocks’).
Sperm cells contain very small quantities of RNA, and large
numbers of cells are required for downstream analyses [59];
therefore, the two ejaculate samples from each male were pre-
pared at 1.0 x 10° cells ml™". Following temperature treatment,
these samples were immediately centrifuged to pellet the
sperm samples (10 min at 2500 r.p.m. (1258g) and a constant
temperature of 19°C) and snap frozen in liquid nitrogen. The
temperature of 19°C for the spinning step was chosen to ensure
that sperm from the ambient treatment did not receive any ther-
mal shock during spinning, and thus that any differences in
transcript counts between treatments could be attributed to
temperatures experienced prior to centrifugation.

RNA was extracted from the sperm samples using the RNeasy
Plus Universal Mini Kit (Qiagen, Melbourne, Australia) according
to the manufacturer’s instructions, with the following modifi-
cations: (i) sperm cells were lysed by adding 100 pl of glass
beads to the sample and lysis reagent, and samples were shaken
for 45 s using a FastPrep benchtop homogenizer (MP Biomedicals,
Perth, Australia); (ii) during phase separation, samples were trans-
ferred to 1.5 ml phase-lock gel heavy tubes (VWR International,
Brisbane, Australia), avoiding the transfer of any glass beads,
and centrifuged at 20 000g for 30 min; (iii) on-column DNA diges-
tion was performed using Qiagen DNase. RNA quantity and
purity was assessed using a Qubit® 2.0 Fluorometer (Thermo-
Fisher Scientific, Melbourne, Australia). Concentrations ranged
from 12.2 to 45.4 ng pl™". In sperm cells, much of the ribosomal
RNA (rRNA) is degraded, and they contain intact 185 rRNA, but
not 28S rRNA [60]. Therefore, to check that there was no contami-
nation by non-sperm cells, we examined rRNA peaks using a
LabChip GXII Automated Electrophoresis System (PerkinElmer,
Melbourne, Australia). All samples contained a single rRNA
peak in the size range expected for 18S, with no larger peaks that
would correspond to 285 rRNA (electronic supplementary
material, figure S1), indicating that our samples did not contain
any somatic contamination.

We converted 200 ng of each RNA sample to complementary
DNA (cDNA) in a 20 pl reaction volume using a High-Capacity
cDNA Reverse Transcription Kit (ThermoFisher Scientific, Mel-
bourne, Australia) following the manufacturer’s instructions. We
assayed the RNA abundance of the heat shock genes hsp70 and
hsp90, with primer pairs designed from the relevant GenBank
sequences using the ThermoFisher Scientific Custom Gene
Expression Assay Design Tool (see the electronic supplementary
material, table S1). Additionally, we tested three putative reference
genes, a-tubulin, actin, and glyceraldehyde-3-phosphate-dehydrogenase
(gapdh) using previously described primers for M. galloprovincialis
(electronic supplementary material, table S1; [61,62]). However, for
some samples a-tubulin either failed to amplify or amplified non-
specific products. Therefore, we only retained actin and gapdh as
putative reference genes for further analysis.

RNA from a non-experimental mussel sperm sample was
used to prepare standard cDNA curves of fivefold serial
dilutions (10, 2, 0.4, 0.08 and 0.016 ng pl™"). These curves pro-
duced slopes ranging from —3.394 to —3.108 and R*>0.943,
corresponding to acceptable amplification efficiencies between
1.97 and 2.1 (electronic supplementary material, table S1). For
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Table 1. The first two principle components generated from sperm motility
traits, showing original trait loadings, eigenvalues and cumulative per cent
of variance explained by composite trait variables.

ALH: amplitude of lateral head —0.958 0.176
displacement
BCF: beat cross frequency 0.654 —0.393
LIN: linearity 0.765 0.635
STR: straightness 0.816 0.565
VAP: average path velocity —0.621 0.766
VCL: curvilinear velocity —0.734 0.619
VSL: straight-line velocity 0.466 0.878
eigenvalue 3.738 2.650
cumulative per cent of variance 53.400 91.251

explained

all genes, 10ng pl™" of cDNA produced cycle threshold (Cr)
values between 20.75 and 27.14; therefore, we chose this quantity
as the input for further assays.

Assays were set up in triplicate for each gene-sample
combination, using iTaq Universal SYBR Green Supermix (Bio-
Rad, Sydney, Australia) in 10 pl reactions containing 2 pl of
cDNA template and 200 nM each of forward and reverse primer
(actin primers were at 100 nM). Assays were run on a StepOne
Plus Real-Time PCR system (ThermoFisher Scientific, Melbourne,
Australia) using the following cycling conditions: a hold stage of
95°C for 10 min, followed by 40 cycles of 95°C for 15s and 60°C
for 60 s, and finally a melt curve stage with a gradual increase of
1.6°C s from 60°C to 95°C. For each male, all assays in both temp-
erature treatment samples were run on a single compatible 96-well
plate, along with negative controls for each gene. The amplification
results were analysed via STEPONE software v. 2.3 (ThermoFisher
Scientific, Melbourne, Australia).

(e) Data analyses

Statistical analyses were carried out in R v. 3.6.0 [63]. We reduced
the seven highly correlated sperm motility measures from exper-
iment 1 to principle components (PCs) and retained the first two
PCs, which had eigenvalues greater than 1 [64] and together
accounted for greater than 90% of variance in the original traits
(table 1). For the analysis of experiment 1, these PC scores were
used as response variables in separate linear mixed-effects
models (LMMs) in the package 1me4’ [65], with a fixed effect of
temperature treatment (ambient or high) and random effects for
male and block identity (ID). Model assumptions were checked
via residual versus fitted value and quantile-quantile plots;
additionally, formal tests revealed no evidence for heteroskedasti-
city of errors (Levene’s tests, p>0.5 for each model). The
proportion of motile sperm was analysed using a generalized
linear mixed-effects model (GLMM) with binomial error distri-
bution (logit link function), again including a fixed temperature
treatment effect and random effects for male and block. There
was evidence of overdispersion in the initial GLMM (residual
deviance = 104.43 on 42 degrees of freedom, dispersion factor =
2.49); therefore, the model was re-run with an observation-level
random effect (resulting in residual deviance = 8.82 on 41 degrees
of freedom, dispersion factor = 0.215). In all models, we tested the
significance of the fixed temperature treatment effect with Wald y*
tests. Note that in the LMM for motility PC2 and the GLMM for

proportion of motile sperm, ‘block” was excluded from the final
models, as the among-block variance was close to zero, which
affected model convergence (this had no qualitative effect, and
little quantitative effect, on tests of the fixed temperature
treatment).

Transcript abundance of target genes in each treatment for
experiment 2 was compared using the package MCMC.qpcr’
[66]. Briefly, this method converts Ct scores to molecule counts
and models them using Bayesian GLMMs, with Poisson-lognormal
errors and default uninformative prior distributions from the
‘MCMCglmm’ package of Hadfield [67]. Effects are estimated
using a Markov chain Monte Carlo (MCMC) algorithm to sample
from the joint posterior distribution. This mixed modelling
approach can correctly account for variation among samples in
template loading, even in the absence of reference genes [66].
This makes the method particularly useful when there is no pre-
vious information on the stability of reference genes, as is the case
in our study (i.e. our putative reference genes had not previously
been tested for M. galloprovincialis sperm samples at different temp-
eratures). We initially fit a ‘naive’ model, without specifying any
of the targets as reference genes, with a fixed treatment effect
and random effects of male and block ID. From this model,
we confirmed that the abundance of actin was stable across temp-
erature treatments (logy(fold change) = 0.265, fold change =1.202,
Pniemc = 0.356); however, the abundance of gapdh was significantly
lower in the high treatment than in the ambient treatment (log,(fold
change) =1.617, fold change =-3.068, Ppicmc < 0.001). Moreover,
the abundance of gapdh was considerably less stable across all
samples (Cr mean =26.67, s.d. = 3.16) than actin (Ct mean = 27.36,
s.d. = 1.68). Therefore, we fit a second ‘informed” model, specifying
actin (but not gapdh) as a control gene. The informed model is
slightly more powerful than a naive model, but still allows the con-
trol gene to vary slightly in response to fixed factors. This allowable
variation is specified by the ‘m.fix’ parameter, which by default cor-
responds to an average fold change very similar to our point
estimate for actin (default allowable fold change = 1.2; [66]).

3. Results

(a) Experiment 1: sperm motility

The first PC was strongly loaded in the positive direction by
LIN and STR, and negatively by ALH and VCL (table 1).
There were also moderate loadings of BCF in the positive
direction and VAP in the negative direction. The second PC
had strong positive loadings of VAP and VSL, and moderate
positive loadings of VCL and LIN (table 1). In other words,
high scores on the PC1 axis describe straight and slow swim-
ming sperm, while high scores on PC2 primarily describe fast
sperm. Sperm swimming motility did not differ significantly
between temperature treatments, either for PC1 (Wald }(% =
1.173, p=0.279) or PC2 (Wald z7=1.694, p=0.193). These
findings were reflected for linear mixed effects models
using the individual raw motility trait (electronic supplemen-
tary material, table S2). The proportion of motile sperm
was also the same in both temperature treatments (Wald
;ﬁ =1.266, p=0.261), with a mean of 66.42% of sperm
recorded as motile across all samples. Given the non-
significant results for all motility tests, we used a simulation
procedure to determine the power of our analyses to detect
differences in motility traits across temperature treatments
(taking into account the structure of the data; see the elec-
tronic supplementary material, Supplementary methods
and results). These revealed our analyses had power greater
than 0.8 to detect a mean difference of less than 10% for all
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Figure 1. Transcript counts (log base 2 transformed) of the two target genes, (a) hsp70 and (b) hsp90, and the two putative reference genes, (c) gapdh and
(d) actin, at the two temperature treatments (A =ambient, 19°C; H = high, 25°C). Lines show the log, transcript counts for each individual male. Points
show Bayesian posterior means and bars show 95% highest probability density intervals, calculated using an ‘informed” model in the package ‘MCMC.gpcr’
([66]; see Methods), with actin specified as a reference gene (results were qualitatively the same for a ‘naive’ model without any reference genes specified;
see Results). Estimates for actin itself are from the naive model. (Online version in colour.)

traits (except BCE for which a power of 0.8 fell between 10%
and 15% mean difference; electronic supplementary material,
table S3).

(b) Experiment 2: sperm RNA abundance

In the naive model, the mRNA count of target gene hsp90 was
significantly lower at the high temperature treatment (log,
(fold change) = —-0.589, fold change = —1.504, Pyicmc = 0.002),
as was the mRNA count of putative reference gene gapdh (see
Methods). There was a non-significant negative fold change
in the abundance of hsp70 in the high temperature treatment
(logx(fold change) =—0.290, fold change=—-1.222, Pyicmc =
0.115). Similar results were obtained using an informed
model, where actin was specified as a reference gene, but
allowing some variability across fixed effects (figure 1).
Again, hsp90 (logy(fold change) = —0.523, fold change = —1.508,
Pymcmc=0.001)  and  gapdh  (logy(fold  change) = —1.620,
fold change = —3.075, Pyicmc <0.001) had significantly lower
mRNA in the high temperature treatment, while there was
a non-significant negative fold change in hsp70 (logy(fold
change) = -0.287, fold change=-1.220, Pycmc=0.121). It is
also noteworthy that although most fold changes were negative
across replicate males for hsp90 and gapdh, they were not always
in the same direction (figure 1).

We further compared the sperm motility and RNA
response (i.e. the change between temperature treatments)
with correlation tests for each motility PC with hsp70, hsp90
and gapdh molecule counts, for those males that had both
motility and RNA data collected (n=11). We found no
significant correlations between the change in either motility
PC with changes in RNA abundance (electronic supplementary
material, table S4).

4. Discussion

Our investigation of the phenotypic and molecular effects of
temperature on the sperm of an external fertilizer show that
sperm appear able to maintain normal swimming behaviour
under temperatures experienced during heatwave events; in
contrast, however, sperm RNA profiles change at high temp-
eratures. Specifically, the number of hsp90 and gapdh mRNA
transcripts were approximately 1.5 and 3.1 times higher,
respectively, at ambient conditions than at high temperatures,
which are biologically relevant fold changes for cellular func-
tion [68]. These findings offer, to our knowledge, the first
evidence for altered mRNA profiles in sperm as a result of
variation in post-ejaculation environmental conditions. As we
discuss below, such molecular changes could represent a
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cellular response to heat stress owing to translation of proteins
that allow the sperm to sustain normal phenotypic function.
Standard cellular responses to increased temperatures, invol-
ving increased metabolism and faster movement, could be
detrimental to fitness in sperm of broadcast spawners, where
swimming slowly in seawater is critical for successfully tracking
eggs [50,58]. Moreover, regardless of the functional implications
to the sperm themselves, the changes to RNA profiles could
impact embryo development and fitness (e.g. [23,24]). Our find-
ings have important implications for our understanding of the
effects of environmental changes on gametes and reproduction;
most previous studies of such effects have focused on sperm
phenotypes and fertilization rates [12]. Importantly, our results
indicate that the lack of phenotypic changes to sperm under
factors such as increased temperature can mask underlying
cellular-level changes to sperm.

We envisage two possible explanations for the altered
abundances of target gene mRNAs: (i) changes in the transcrip-
tional dynamics of these genes; and (ii) changes in the stability
and degradation rate of mRNAs. We consider transcription
dynamics unlikely to explain our results, given the bulk of
the sperm genome is expected to be transcriptionally quiescent
[1]. Even if sperm possess the capability to actively transcribe
some genes (as has recently been suggested, [69-71]), we
would expect sperm to upregulate the production of hsp
transcripts under heat shock (e.g. [72-74]), contrary to our find-
ings of downregulation (although there appears to be some
among-individual variation). However, we cannot conclus-
ively rule out transcriptional changes as an explanation, and
suggest that future studies would benefit from testing this
potential mechanism by employing transcription inhibitors
(e.g. [75,76]). Nevertheless, we consider the second explana-
tion, regarding changes in mRNA stability and degradation
rate, more likely; this possibility is therefore the focus of our
present discussion.

Changes in the dynamics of mRNA degradation and
stability under heat shock could reflect either global or
gene-specific effects. An overall increase in mRNA decay
under thermal stress is certainly a possibility, for example
through denaturation of ribonucleoprotein complexes,
leaving transcripts unprotected [77]. However, it is unclear
whether our observed downregulation effect is global; at
least one of the genes we assayed (the putative reference
gene actin) was stable across treatments (the trend was also
non-significant for hsp70). The alternative hypothesis of
gene-specific changes in mRNA stability could be either non-
functional, for example if some transcripts are simply more
susceptible to heat damage than others, or functional. The
observed downregulation effects might represent a functional
change if mRNA degradation is co-translational; i.e. if mRNA
degradation is initiated by the process of translation [78], then
our observations of a decrease in transcript abundance might
represent an increase in translation of those genes into proteins
(and consequently higher degradation rates for the associated
transcripts). This would imply that the proteins encoded by
genes such as hsp90 are important in sperm responding
to heat stress and preserving cellular function, possibly
explaining the apparent ability of sperm to maintain normal
behaviour (as we report here) and fertility following thermal
shock. This could also explain the variable responses following
exposure to high treatment among replicate males, although
our experiment was not designed to statistically test among-
individual differences. Nevertheless, if the responses were

simply heat-induced mRNA decay we would have expected
that transcript abundance would universally decline across
replicates; the apparent among-male variation in the RNA
change suggests a biological response to high temperatures
(e.g. [11,35]).

Interestingly, one of our putative reference genes, gapdh,
also exhibited a downregulation effect. This gene is typically
involved in catalysing glycolysis (although it may also be
involved in a range of other cellular functions), and a previous
study in corals found that gapdh and other genes related to
carbon metabolism are upregulated in somatic tissues follow-
ing heat stress [79]. There is some debate over the extent to
which sperm cells depend on glycolysis (i.e. anaerobic metab-
olism) versus oxidative phosphorylation (OXPHOS; aerobic
metabolism) [80]; in broadcast spawners, where the availability
of external nutrients is presumably minimal, some authors
have argued that sperm might rely entirely on aerobic
metabolism [81]. Nevertheless, there is evidence of glycolytic
activity in broadcast spawner sperm (e.g. [82]), and recent
work suggests bivalve sperm might switch between
OXPHOS and glycolysis during periods of sustained, fast
swimming [83]. Based on our initial findings here of changes
in abundance of hsp90 and gapdh under sperm heat shock, it
could be highly revealing to: (i) conduct full transcriptomic
sequencing to determine whether the downregulation effect
is general or specific; and (ii) determine whether there are
corresponding changes in protein expression.

Regardless of whether the observed changes in RNA pro-
files are functional for sperm, they could have implications
for early embryo viability. Sperm mRNAs can be delivered
to the oocyte at fertilization, and correlations between
sperm mRNA profiles and embryo cleavage rates suggest
that paternally delivered transcripts may affect early zygote
development prior to activation of the embryonic genome
[22,48,84]. The importance of heat shock proteins in early
embryos is well established [47], and previous authors have
suggested that the relatively high amounts of hsp70 and
hsp90 mRNAs that typify sperm cells might have a role in
early embryonic translation (although this has yet to be
experimentally investigated) [46]. Moreover, if the downregu-
lation effects we report are representative of a general decay
of sperm RNAs, a range of epigenetic factors that influence
embryo development could be affected; for example, there
is strong experimental evidence that alterations to sperm
micro RNAs (miRNAs) caused by the environments experi-
enced by fathers can modify offspring phenotypes [23]. Our
results suggest a potential mechanism by which the post-
ejaculation environment experienced by the sperm themselves
might influence offspring fitness (e.g. [25]).

In conclusion, we provide novel experimental evidence
that RNA profiles in externally spawned sperm can be altered
by abiotic changes in the post-ejaculation environment. These
provisional findings indicate that at least some mRNAs have
reduced abundance following exposure of sperm to tempera-
tures that reflect heatwave events. We propose three key areas
for future research to expand on and clarify these findings:
(i) sequencing of the full sperm transcriptome at different
temperatures (as well as non-coding RNAs such as
miRNAs), to determine the generality of the downregulation
effect; (ii) comparison of transcript abundance changes to
protein expression changes, to explore the functional impli-
cations for sperm; and (iii) determining whether embryo
development is affected by alterations to sperm RNAs under



heat shock. Importantly, our findings suggest that externally
spawned sperm may be more sensitive than typically thought
to environmental changes such as warming, and highlight the
importance of considering molecular as well as phenotypic
sperm responses to changing conditions.

Data associated with this manuscript are available
from the Dryad Digital Repository: https://doi.org/10.5061/dryad.
8pk0p2nkh [85].
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