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Host heterogeneity in pathogen transmission is widespread and presents a
major hurdle to predicting and minimizing disease outbreaks. Using Droso-
phila melanogaster infected with Drosophila C virus as a model system, we
integrated experimental measurements of social aggregation, virus shed-
ding, and disease-induced mortality from different genetic lines and sexes
into a disease modelling framework. The experimentally measured host het-
erogeneity produced substantial differences in simulated disease outbreaks,
providing evidence for genetic and sex-specific effects on disease dynamics
at a population level. While this was true for homogeneous populations of
single sex/genetic line, the genetic background or sex of the index case
did not alter outbreak dynamics in simulated, heterogeneous populations.
Finally, to explore the relative effects of social aggregation, viral shedding
and mortality, we compared simulations where we allowed these traits to
vary, as measured experimentally, to simulations where we constrained vari-
ation in these traits to the population mean. In this context, variation in
infectiousness, followed by social aggregation, was the most influential com-
ponent of transmission. Overall, we show that host heterogeneity in three
host traits dramatically affects population-level transmission, but the relative
impact of this variation depends on both the susceptible population
diversity and the distribution of population-level variation.
1. Introduction
Individual heterogeneity in host traits affecting disease transmission has major
consequences for the predictability and severity of outbreaks of infectious dis-
ease, and in extreme cases can lead to ‘superspreaders’ or ‘supershedders’ of
infection [1–3]. An individual’s transmission potential can be described as a
function of: (1) its rate of contact with susceptible individuals, (2) the likelihood
of that contact resulting in infection and (3) the length of time that individual
remains infectious [4,5]. It is, therefore, important to understand how
common sources of variation, such as host genetic background and sex, may
contribute to the variance in these traits and how individual variation may
scale up to population level disease dynamics [4,6,7].

Disease dynamics may be disproportionately driven by individuals with
extreme behavioural and physiological traits including social aggregation,
pathogen shedding or in the host’s ability to resist or tolerate the infection. For
example, sex differences in immunity [8] or nutritional and thermal effects on
host behaviours [9,10] can lead to differences in hosts’ ability to tolerate infection
and consequently increase transmission rates. Similarly, there are also examples of
genetic differences driving the extent of pathogen shedding [11] and behaviours
that mediate contact between infected and susceptible individuals [12,13]. Quan-
tifying these relevant behavioural, physiological and immune traits and their
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interactions remains tremendously challenging, particularly in
wild or natural disease settings [4].

One potentially useful approach is experimentally infect-
ing model systems under controlled laboratory settings in
order to quantify the roles of physiological and behavioural
host heterogeneity on pathogen transmission [12,14,15]. This
experimental approach offers the advantage of providing an
experimentally tractable framework to partition the variance
in individual transmission among a range of behavioural,
physiological and immune phenotypes [4], while minimizing
environmental variation and allowing highly replicated
measurements of individual host traits. However, such studies
may be limited in their ability to extrapolate the effects of
measured heterogeneity at the level of individual hosts to
population-level epidemic dynamics. Mathematical modelling
is a useful tool to efficiently test different hypotheses and infer
patterns across scales [16], but many theoretical studies often
rely on assumptions about the level of heterogeneity in host
traits, in the absence of empirical data [4,5]. A helpful
approach is therefore to use mathematical modelling of epide-
miological dynamics where as many parameters as possible
are informed by experimental data measured on individual
hosts in controlled laboratory settings.

Here, we combine experimental data and a simulation
approach to test how population-level disease transmission
dynamics are affected by experimentally measured levels of
variation in pathogen shedding, lifespan following infection
and social aggregation. We previously measured individ-
ual-level variation in behavioural and physiological traits
that are relevant to pathogen transmission in the fruit fly
(Drosophila melanogaster) when infected with its viral patho-
gen Drosophila C virus (DCV) [13,17]. DCV is a horizontally
transmitted ssRNA virus of Drosophila. While relatively little
is known about DCV dynamics in the wild, it appears to be
common as a low-level persistent infection with apparently
little pathology among several species of Drosophila [18,19].
Following what is presumably a predominantly faecal–oral
route of transmission, DCV replicates in the fly’s reproduc-
tive and digestive tissues leading to intestinal obstruction,
lower metabolic rate and reduced locomotor activity
[20–22]. Some experimental work has also shown that canni-
balism of infectious fly cadavers is a viable route of
transmission, but it is unknown how common this trans-
mission route is in the wild [23]. Previously, we observed
sex-based and genetic-based variation in both locomotor
activity and social aggregation following DCV infection
[13]. We also showed that fly genetic background, sex and
female mating status significantly influenced infected life-
span, viral growth, virus shedding and viral load at death
[17]. These experiments leveraged genetic and sex-specific
sources of variation in three traits that likely affect individual
transmission potential of DCV: the degree of group-level
social aggregation (as an indicator of potential contact rate);
how much DCV each individual sheds into its environment
(as a proxy measure of infectiousness); and mortality rate
(which defines the duration of infection).

In the present study, we explore the interactions of social
aggregation, viral shedding and mortality on pathogen trans-
mission when we: (1) vary population means of these traits;
(2) vary the individual traits of the index case; and (3) constrain
the variance of these traits in the population at large. First, we
asked if genetic and sex-specific variation in the population
means of social aggregation, virus shedding and duration of
infection—as measured in a lab setting—would result in differ-
ent predicted epidemics in theoretical populations. By
comparing simulated epidemics in host populations com-
prised of a single sex and one genetic background, we
isolated genetic and sex-specific sources of variation in disease
transmission. Second, to test the relative importance of the
index case versus group composition, we simulated epidemics
in populations where the index case’s traits were sampled from
a larger phenotypic distribution, including males and females
from all 10 genetic backgrounds. Third, to test the relative
importance of variation in specific host traits on epidemic
dynamics, we compared epidemic dynamics of populations
exhibiting experimentally measured levels of variation in
social aggregation, viral shedding and mortality, to popu-
lations where we constrained variation in these traits to the
population mean.
2. Methods
(a) Simulation model
We developed an individual-based, stochastic, discrete time
model that tests how experimentally measured variation in
host social aggregation, mortality and viral shedding in D. mela-
nogaster translates to differences in disease dynamics. The
simulated contact networks underlying this model were gener-
ated from degree distributions derived from experimental
measurements of social aggregation specific to the sex (σ) and
genetic line (g) present in the simulated population. Using a sus-
ceptible–infected–removed (SIR) process, we simulated direct
transmission of DCV in a closed population with no births and
where only infected individuals die [24]. We did not include
background (i.e. non-disease related) mortality. Note that these
transmission processes are consistent with other agent-based
models that encompass contact heterogeneity [25].

Let the time step be equal to 1 day, S(t) equal the number of
susceptible hosts at time t and I(t) equal the number of infectious
hosts at time t. The total number of hosts, N(t), in the population
at time t is represented by: N(t) ¼ S(t)þ I(t). The number of sus-
ceptible (S) and infected (I ) individuals at the next time step is
given by

S(tþ 1) ¼ S(t)�
XS(t)
i¼1

XI(t)
j¼1

bij(t)si(t)ij(t)

and

I(tþ 1) ¼ I(t)þ
XS(t)
i¼1

XI(t)
j¼1

bij(t)si(t)ij(t)� aj(s, g)ij(t):

Here, si(t) is a vector of susceptible individuals at time t, and
ij(t) is a vector of infected individuals at time t. Therefore, the
summations in both equations above iterate over individuals
and not time steps.

The processes of mortality αj(σ, g) and transmission (βij ) were
individual-specific reflecting the covariates of sex (σ) genetic line
(g). More specifically, the transmission between a susceptible
individual (si) and infectious host (ij) is given by

bij(t) ¼ kj(s, g)htxij(t),

where κj(σ, g) represents the infectiousness of infectious host ij
and xij represents whether or not an edge exists in the network

between individuals si and ij
�
xij(t) ¼ 1

0

� ��
. Because of the

uncertainty surrounding the DCV transmission process, we
also include scaled infectiousness (η) and transmission efficiency
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Figure 1. The epidemiological model was parameterized by sampling frequency distributions of experimental data collected from 10 Drosophila Genetic Reference
Panel lines for both male and female flies infected with DCV published previously [13,17]. Here, we provide a qualitative description of these data. (a) Social
aggregation: the average number of neighbouring flies present within a 15 mm radius of each focal fly; (b) infectiousness: the number of viral copies shed
per fly within the first 3 days following infected, as measured by DCV-specific qPCR; (c) the day of death of each individual infected fly. Detailed analysis showing
extensive line-by-sex interactive effects are reported in [13,17]. (Online version in colour.)
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of the pathogen (τ) as components of βij(t), which we discuss in
further detail below.

For each susceptible individual si at each time step, trans-
mission was a stochastic process governed by a Bernoulli draw
based on the value of βij(t). Likewise, for each infectious individ-
ual ij, mortality was a stochastic process stochastic processes
based on a Bernoulli draw for the value of αj(σ, g). Individuals
removed during the mortality process no longer contributed to
transmission dynamics.

(b) Experimental data distributions: measuring social
aggregation, viral shedding and mortality rate in
infected D. melanogaster

We used experimental measurements of host social aggregation,
mortality and viral shedding from D. melanogaster infected with
DCV (figure 1a–c; note the heterogeneity among genotypes) to
test how the sex-specific and genetic variation translates to differ-
ences in disease dynamics. An in-depth analysis of these
experimental data has been carried out previously, showing sub-
stantial genotype-by-sex interactive effects on each of these traits
[13,17]. Briefly, we established systemic infections with DCV in
males and females of 10 lines (table 1) from the Drosophila Gen-
etic Resource Panel (DGRP) [26] and measured a number of
traits including social aggregation [20], the infected lifespan
and the viral shedding of each line-by-sex combination [17].

Here, we focus on the frequency distributions of these data
for each fly line and sex (figure 1), as the simulations described
below were parameterized using these experimentally derived
distributions. Of particular, note is the distribution of viral shed-
ding (figure 1b), which showed substantial zero-inflation, due to
many flies not shedding DCV in detectable quantities despite
being infected.

(c) Social aggregation and contact network degree
distribution

Social aggregation was measured by calculating the nearest
neighbour distance (NND) from a photograph of groups of 10
to 12 flies of the same genetic background, sex and infection
status, in 55 mm Petri dishes [13]. In accordance with other
studies of D. melanogaster social aggregation [27], photos were
taken of fly groups in Petri dishes following 30 min of acclimation
to ensure minimal fly activity. Social aggregation was measured
in n = 14–16 replicate groups of 12 flies for every combination
of genetic background and sex (580 groups of flies in total).

The dynamics of faecal–oral DCV transmission are poorly
understood [19,28], but the virus readily proliferates through lab-
oratory stocks of Drosophila [18]. To account for this uncertainty
in transmission mode and to assess the relative importance of
possible direct transmission routes, we considered three
threshold radii (10, 15 or 20 mm) for feasible transmission. For
each of these thresholds, the qualifying neighbours for each
focal individual was calculated using the coordinates of each
fly generated with the ImageJ multipoint tool.

To generate a simulated contact network reflecting contact
rates of different phenotypes, we started by creating empirical
contact networks where an individual (node) shared an edge in
the network if they appeared within the prescribed threshold
radius of the focal fly. Importantly, using social aggregation as
a proximate measure of contact rate assumes the likelihood of
contact with DCV is proportional to an individual’s proximity
to an infected fly. Using the number of neighbours within this
radius for each fly (i.e. unweighted degree centrality), we derived
an empirical degree distribution for each genetic line and sex
combination. From this empirical degree distribution, we
sampled 1000 times with replacement to generate a larger
degree distribution representing more individuals. To produce
a random graph with this given degree sequence, we then used
the samp_degseq function from the igraph package [29]. Note
that we resampled if the degree sequence summed to be odd.
This produced a network where the mean degree (rather than
network density) was maintained between experimental and
simulated populations.
(i) Infectiousness
We estimated infectiousness (κj) for any given infected individ-
ual, j, from our experimental measurements of viral shedding



Table 1. Parameters used to simulate outbreaks of infectious disease in simulations 1–3. Simulation 1 tested the effect of genetic and sex-specific variation in
social aggregation, viral shedding and susceptibility on population-level disease dynamics. Simulation 2 tested the effect of susceptible host diversity on disease
transmission potential. Simulation 3 tested the effect of variation in social aggregation, infectiousness and infection duration on population-level disease
transmission dynamics. We conducted 500 replicates per parameter set with 1000 individuals in the network. Simulations were allowed to run for 1000 time
steps.

parameter levels simulation 1 simulation 2 simulation 3

population genetic background RAL-59, RAL-75, RAL-138, RAL-373, RAL-379, RAL-380,

RAL-502, RAL-738, RAL-765, RAL-818

X

population sex female, male X

index genetic background RAL-59, RAL-75, RAL-138, RAL-373, RAL-379, RAL-380,

RAL-502, RAL-738, RAL-765, RAL-818

X

index sex female, male X

threshold radius (r) 10 mm, 15 mm, 20 mm X X X

pathogen transmission efficiency (τ) 0.1, 0.5, 1 X X X

scaled infectiousness (η) 1, 2 X X X

vary social aggregation true, false X

vary infectiousness true, false X

vary infection duration true, false X
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[17]. Viral shedding was measured by housing single infected
flies in 1.5 ml Eppendorf tubes for 24 h, removing the fly, wash-
ing out the tube with 50 µl of TRI-reagent to preserve viral RNA,
and freezing this sample at −70°C to await RT-PCR and qPCR.
Each combination of sex and genetic background consisted of a
minimum of 20 replicate flies, with most combinations consisting
of 32–38 shedding samples [17].

The untransformed distribution of these data was highly
skewed and zero-inflated, with some rare flies shedding exceed-
ingly high viral titres (i.e. supershedders)—over two orders of
magnitude greater than the population mean—and others not
shedding any virus at all (within the technical limit of detection).
To account for this disparity, we used the natural log to transform
our viral load shed distribution and then normalized values by
the greatest amount of virus shed. This transformation yielded
a distribution constrained between 0 and 1 with a median
value of 0 and a mean value of 0.23. With this transformed distri-
bution, only extreme supershedders at the upper end of the
distribution would ensure a high probability transmission, with
all other individuals had a probability much less than one.

Since the amount of virus needed to ensure DCV trans-
mission is unclear, we also considered a ‘scaled infectiousness’
(η) parameter to explore what would happen if average or non-
zero shedders could also shed enough to ensure infection. This
scenario was implemented by multiplying our measure of infec-
tiousness (κj) by 2. This step expanded the range of the
transformed experimental distribution from 0 to 2. Note that
for the Bernoulli trial determining whether a transmission
event had occurred, the final transmission probability (βij(t))
was than capped at a maximum value of 1.

Finally, because the dosage and viability of DCV in the
environment remain unclear, we included a transmission efficiency
(τ) parameter in our model to account for this uncertainty. The
three levels, τ = 0.1, 0.5 or 1, altered infectiousness and correspond
to 10, 50 and 100% probability of transmission given contact. Both
scaled infectiousness (η) and transmission efficiency (τ) were held
constant in simulations unless specifically mentioned.

(ii) Mortality rate
DCV results in death for infected flies, making our experimental
measurement of the time between inoculation and death an ideal
measure of mortality rate. Infected lifespan was measured by
housing single flies in standard Lewis medium vials following
systemic DCV infection and monitored daily until death. For
18 of 20 sex and genetic background combinations, the lifespan
following infection was measured for n = 17–20, two combi-
nations consisted of n = 13 and n = 15 flies [17]. For simulations,
we calculated mortality rate, αj(σ, g), as the inverse of experimen-
tally measured disease-related mortality for a given sex and
genetic background.

(d) Simulation factorial design
The effects of all parameters on outbreak dynamics were tested in
a full-factorial design. For each parameter set, 500 simulations
were conducted for a population of 1000 individuals over the
course of 1000 time steps (table 1). A wide variety of outbreaks
of infectious disease were produced by different combinations
of these parameters. To avoid datasets becoming predominated
by fadeout, we have presented the outbreaks in populations
defined by a set of parameters (r = 15 mm, τ = 1, η = 2). Key
metrics to measure outbreak dynamics included: fadeout prob-
ability, maximum number of infected individuals, outbreak
duration and time to maximum number of infected individuals.
Fadeout probability represents the probability of an outbreak sto-
chastically dying out [30]; in this case, we define it as the
proportion of simulations where DCV fails to spread beyond
the index case. We use R0 as a measure of the number of second-
ary cases of infection caused by the index case for the duration of
the simulation. Code to conduct these simulations was written in
R (v. 3.4.4) and is available at: https://doi.org/10.5281/zenodo.
4139408 [31].

(e) Random forest analysis
Parsing out the effects of individual variables in simulation mod-
elling can be challenging because of collinear effects and
sensitivity of frequentist measures of significance to sample
size. To further a descriptive discussion of our simulation results,
we have used random forest analysis—a machine learning
method that can handle complex, nonlinear relationships
between model inputs and outputs, as well as potential collinear-
ity between covariates [32]. Random forest analysis is a recursive
partitioning method that combines the predictions from numer-
ous fittings of classification or regression trees to the same set

https://doi.org/10.5281/zenodo.4139408
https://doi.org/10.5281/zenodo.4139408


400

200

0

400

200

0

0 50

1.00

400

300

200

100

0

200

0

0.75

0.50

0.25

0

59 75 13
8

37
3

37
9

38
0

50
2

73
8

76
5

81
8

fa
de

ou
t l

ik
el

ih
oo

d

no
. i

nf
ec

te
d 

in
di

vi
du

al
s

no
. i

nf
ec

te
d 

in
di

vi
du

al
s

ou
tb

re
ak

 d
ur

at
io

n

genetic background

59 75 13
8

37
3

37
9

38
0

50
2

73
8

76
5

81
8

genetic background

59 75 13
8

37
3

37
9

38
0

50
2

73
8

76
5

81
8

genetic background

100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50

time (days)

100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

59 75 138 373 379 380 502 738 765 818

fem
ale

m
ale

(a)

(b) (c) (d)

Figure 2. (a) Simulation time courses of populations comprised of either male (red) or female (blue) individuals of the same sex and genetic background (columns)
for simulation experiment no. 1. Across all of these simulations, parameters outside of host genetic background and sex are fixed; threshold radius (r) = 15 mm,
transmission efficiency (τ) = 1 and scaled infectiousness (η) = 2. (b–d ) Summary statistics of simulations of populations comprised of male (red) or female (blue)
individuals of the same genetic background (x-axis) for (b) the proportion of simulations that resulted in fadeout; and, in the subset of simulations where fadeout
did not occur and disease spread from the index case; (c) the maximum number of infected individuals at any given time step; and (d ) the number of time steps
infected by the index case. Shown for threshold radius (r) = 15 mm, transmission efficiency (τ) = 1 and scaled infectiousness (η) = 2. A random forest analysis was
used to determine the relative importance of genetic background and sex to each summary statistic used to describe outbreak dynamics (electronic supplementary
material, figure S1). (Online version in colour.)
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of data [32,33]. A higher mean decrease in accuracy correlates
with higher variable importance, i.e. more predictive power is
lost if this variable is excluded from the analysis. For all three
simulation experiments, we analysed outputs of: fadeout
probability (whether the infection spread beyond initially
infected individual), maximum prevalence, outbreak duration
and R0 (the number of secondary cases resulting from a single
infectious individual in an entirely susceptible population).
A detailed description of the analyses can be found in electronic
supplementary material, information and figures S1–S3.
3. Results
(a) Simulation results
Overall, our findings were robust to changes in various par-
ameter combinations (table 1). Threshold radius had strong
effects on maximum prevalence but was not as strong predic-
tor of a predictor of outbreak likelihood (electronic
supplementary material, figures S1–S4). Here, we present
results for a threshold radius of 15 mm, a transmission effi-
ciency of 1, and a scaled infectiousness of 2, which were
generally representative of most parameter spaces. Summary
figures for every parameter combination are presented in
electronic supplementary material, figures S4–S15.

(b) Theoretical simulation no. 1
We scaled-up the experimental degree distributions for males
and females of our 10 genetic backgrounds to a theoretical
population size of 1000. In each simulated population, flies
were of the same sex and genetic background. We allowed
infectiousness, duration of infection and social aggregation
to vary based on experimental measurements for each combi-
nation of sex and genetic background (table 1). For each
individual simulation, we generated a new network from
the scaled-up degree distribution, and randomly selected an
individual from the network to start as the index case.

(c) Individual variation in host infectiousness, social
aggregation and mortality rate produced variation
in population-level, pathogen transmission
dynamics

The variation in experimental treatment groups produced dis-
tinct outbreaks of infectious disease in populations comprised
solely of one genetic background and sex (figure 2a–d). This
finding held true when comparing both genetic lines and
sexes. For example, the median outbreak size for line 373
females was approximately 200 flies compared to approxi-
mately one fly for line 373 males. By contrast, the median
outbreak size for line 818 females was approximately one
fly, but approached approximately 500 flies for line 818
males. Random forest analysis suggested that the two top pre-
dictors for outbreak likelihood were genetic and sex-specific
variation (electronic supplementary material, figure S1).
Given a successful outbreak, host genetic and sex-specific
variation also affected the maximum number of infected indi-
viduals at any given time step (figure 2c; electronic
supplementary material, figure S1) and outbreak duration
(figure 2d; electronic supplementary material, figure S1).
However, host genetic background and sex were less impor-
tant than the threshold radius used to derive social network
degree distribution for both outcomes (electronic
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supplementary material, figure S1) and less important than
transmission efficiency for predicting the maximum number
of infected individuals (electronic supplementary material,
figure S1).

(d) Theoretical simulation no. 2
Many natural host populations have highly variable levels of
genetic diversity which can significantly affect host–pathogen
dynamics [34]. To test the relative importance of trait differ-
ences among potential index cases, we simulated populations
where males and females of all 10 genetic backgrounds were
combined in equal proportion. More specifically, the simulated,
scaled-up populations of 1000 individuals were comprised of
20 sub-populations each containing 50 sampled individuals
drawn from the larger experimental distribution for each
respective line/sex combination. Individuals maintained their
respective experimentally measured distributions for aggrega-
tion, infectiousness, and duration of infection according to
their genetic background and sex combination. A connected
network of these sub-populations was created by sampling
an expected degree for each node based on its subpopulation
traits and then using the samp_degseq function from the
igraph package to create a random graph with the given
degree sequence as described in the Methods [29]. Thus, flies
with different covariate traits (as simulated from sampling
from their respective experimental data distributions) could
be connected in the network. These simulated populations
therefore reflect a relatively diverse population. We then
varied which genetic background and sex combination
served as the index case (table 1). We conducted 500 replicates
per index case type. For each recorded replicate, the traits of the
simulated population were resampled, and a new network was
generated.
(e) Effects of the index case were outweighed by
heterogeneity in the susceptible population

The genetic background or sex of the index case did not alter
outbreak dynamics in diverse populations where 20 exper-
imental treatment groups (all genotype by sex
combinations) were equally sampled to create a hetero-
geneous population (figure 3; electronic supplementary
material, figure S2). This was true for all outbreak parameters
(figure 3; electronic supplementary material, figure S2). Based
on the random forest analysis, threshold radius and trans-
mission efficiency were the top two predictors for fadeout
probability, maximum number of infected individuals, out-
break duration and R0 (electronic supplementary material,
figure S2).

( f ) Theoretical simulation no. 3
To determine the relative importance of experimentally
observed variation in social aggregation, viral shedding and
disease-related mortality on disease transmission in a hetero-
geneous population, we simulated heterogeneous populations
derived from the variation seen across all genetic backgrounds
and both sexes. To determine the effect of population-level
variation, we iteratively constrained the variation in each
three host traits to the population’s mean. During these simu-
lations, the unconstrained traits were free to vary according
to their experimentally determined distributions (table 1). For
example, to understand at the effect of variation in social aggre-
gation in isolation, we constrained social aggregation to take on
the experimentally determined mean degree distribution of the
entire heterogeneous population but allowed viral shedding
and mortality rate to vary according to their experimentally
measured distributions across all genetic backgrounds and
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Figure 4. (a) Simulation time courses of populations where aggregation, infectiousness and duration variation are derived from the entire population’s variation
rather than for a single genetic line and sex combination (simulation experiment no. 3). In each panel, the variation of a particular set of components is confined to
the population’s mean. Across all of these simulations, parameters outside of host genetic background and sex are fixed: threshold radius = 15 mm, transmission
efficiency = 1 and scaled infectiousness = 2. (b–d ) Summary statistics of time course simulations where individual variation is determined by the variation seen
across all genetic backgrounds and sexes (simulation experiment no. 3). The x-axis of all panels sees variation in aggregation (A), infectiousness (I) and mortality rate
(D), and all their combinations fixed to the population mean. Outbreak metrics include: (b) the proportion of simulations that resulted in fadeout; (c) the maximum
number of individuals infected during the simulation; and (d ) the time until maximum prevalence was reached. A random forest analysis was used to determine the
relative importance of genetic background and sex to each summary statistic used to describe outbreak dynamics (electronic supplementary material, figure S3).
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both sexes. In the case of degree of the network, we rounded
this value to ensure a whole number, which is essential for con-
tact network formation (e.g. an individual cannot have 2.5
contacts). We also considered interactions between variability
of these three traits (table 1).

(g) Variation in infectiousness increased fadeout
probability and decreased maximum prevalence
of successful outbreaks, but increased outbreak
duration

Constraining the infectiousness of a population to the mean
(0.23, 0.46 for scaled infectiousness (η) levels 1 and 2, respect-
ively) of the experimentally measured distribution increased
the outbreak severity (figure 4a), made outbreaks twofold
more likely (figure 4b), more than doubled the maximum
prevalence (figure 4a,c), and persisted in the population for
longer (figure 4a,d ). Limiting variation in infectiousness
also made outbreaks more predictable, reducing the variance
of the time taken to reach the maximum number of infected
individuals (figure 4d ). According to the random forest
analysis, variation in infectiousness was the top predictor
for whether or not an outbreak spread beyond the initially
infected individual (electronic supplementary material,
figure S3).

(h) Variation in social aggregation did not influence
fadeout probability but made outbreaks more
severe

When social network degree distribution of simulated popu-
lations was confined to the mean of the experimental data
(2, 3 and 4 for threshold radii of 10, 15 and 20 mm, respect-
ively), outbreaks became less severe (figure 3a) compared to
simulations based on the complete degree distribution. Simu-
lated DCV spread to fewer individuals (figure 4c) and was
quicker to die-out than in simulations where infectiousness,
social aggregation and mortality varied freely (figure 4d).

(i) Variation in disease-related mortality did not affect
epidemic outcomes

When constrained to the mean of the experimental data (13.6
days), we found disease-related mortality had little to no
effect on any aspect of disease outbreak (figure 4). This is sup-
ported by the random forest analysis which identified
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variation in mortality rate as the least important predictor
across outbreak metrics (electronic supplementary material,
figure S3).

( j) Variation in infectiousness, followed by social
aggregation, was the most influential component
of transmission

An increase in the maximum number of infected individuals
was only seen when variation in infectiousness was con-
strained. Interestingly, the same effect was seen in
simulations where other traits are constrained alongside virus
shedding, despite this differing substantially from the effects
of social aggregation and mortality rate when constrained
alone (figure 4; electronic supplementary material, figure S3).
A similar, overruling effect was seen when social aggregation
and mortality rate were constrained simultaneously, and
virus shedding varied freely; outbreak dynamics were similar
to the cases where only aggregation is constrained (figure 4;
electronic supplementary material, figure S3).
 201653
4. Discussion
Here, we investigated how host genetic background and sex
may contribute to the variance in social aggregation, infec-
tiousness and mortality and how this variation may scale
up to population level disease dynamics. We found substan-
tial between-individual differences in pathogen transmission,
constituting genetic and sex-specific variation in transmission
potential. Crucially, in relatively homogeneous populations
comprised of single sex and genotype combinations, hetero-
geneity in the index case produced major differences in
population-level outbreak dynamics, including making out-
breaks more likely, broader reaching and longer lasting.
However, variation in the index case’s transmission potential
exerted little influence over population-level outbreak
dynamics in diverse host populations. We also found that
population-level variation in social aggregation, virus shed-
ding and disease-related mortality affected outbreak
dynamics in starkly contrasting ways. This effect appeared
to be linked to the population-level distribution of each
respective host trait, with factors such as skewness and
zero-inflation influencing how variation in each trait affected
outbreak dynamics.

In simulation experiment no. 1, males from the RAL-818
genetic background were not only more likely to start an out-
break of infectious disease, but these outbreaks were also
more severe than in other populations. This suggests these
males represent a class of individuals with a high trans-
mission risk. Interestingly, high-risk males are seen in a
number of host–pathogen systems [35,36]. While high-risk
male classes can be produced by a range of traits pertaining
to sex-specific ecology or physiology, their occurrence across
systems is likely driven by sexual selection shaping male
traits affecting transmission [37]. For example, in the
yellow-necked mouse, Apodemus flavicollis, males are thought
to be a high-risk class due to a range of sex differences in their
immune response, home range and contact rates [35]. More-
over, as male Drosophila exhibit a number of other traits
with the potential to alter their transmission potential, such
as male–male fighting [38], the transmission risk of RAL-
818 males could increase further. Focussing on classes of
high-risk individuals is a more pragmatic approach to redu-
cing the effect of heterogeneity in transmission potential,
requiring less intensive monitoring protocols [4]. Addition-
ally, as classes of individuals are identified using ranges of
physiological or behavioural traits, classes are potentially
more generalizable to other host–pathogen systems (e.g.
sex, social dominance). Many studies of transmission hetero-
geneity in natural systems focus on using either behavioural
or physiological traits to infer transmission dynamics and
identify high-risk individuals [2,4]. Our results highlight the
importance of disentangling the relative contributions made
by behavioural and physiological traits together in order to
infer variation in transmission potential.

High-risk individuals, such as superspreaders, present a
challenge to current methods of disease control because
they are capable of starting outbreaks of infectious disease
that are difficult to predict and amplifying them once trans-
mission begins [39,40]. Pre-emptively identifying high-risk
individuals is therefore a major aim of epidemiology and dis-
ease ecology. However, in the second theoretical experiment
we conducted, we found that starting outbreaks with individ-
uals that differed in transmission potential did not affect
outbreak dynamics when susceptible populations are geneti-
cally diverse. Our results therefore suggest outbreaks are not
solely driven by the traits of rare, high-risk individuals, but
are also affected by the traits of the susceptible population.
High-risk individuals were unable to cause explosive out-
breaks of infectious disease when surrounded by low-risk
individuals as presumably, once infected, low-risk individ-
uals failed to transmit disease to the rest of the population.
Similar transmission dynamics have also been observed in
laboratory populations of the social spider, Stegodyphus dumi-
cola, where transmission of a bacterial pathogen was affected
by the boldness of the index case and the individuals it inter-
acted with [14], but ultimately traits of the index case did not
alter transmission dynamics compared to the collective traits
of the susceptible population. Together with our results, these
findings do not suggest diversity in the susceptible popu-
lation is a universal buffer to the effects of between-
individual heterogeneity in disease transmission. Instead,
this work highlights the necessity to characterise population
diversity in the context of social interactions and networks
as these may determine the relevance of this diversity.
Population-level diversity is particularly important in host–
pathogen systems where behavioural changes occur following
infection. In populations of the guppy, Poecilia reticulata, for
example, male, but not female, sociality has been shown
to increase following infection. As a result, females social
males are more likely to interact with, and infect, females
[12]. There are many traits across species that bias social inter-
actions, such as sexual receptivity or personality type [41].
Should these traits bias contact between transmission classes,
this may explain why social and transmission networks rarely
match.

Extreme phenotypes often play a key role in between-
individual heterogeneity in disease transmission. However,
being a relative term, ‘extreme’ phenotypes are defined by
population-level variation. Constraining population-level
variation in the amount of virus shed following infection to
the population mean increased outbreak likelihood and
severity. This was likely a result of the huge zero-inflation
of the distribution of virus shedding, where many infected
individuals did not shed virus. These individuals, previously
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termed ‘supersponges’ [42], represent the left-most extreme
of the population distribution, and bore no transmission
risk. While some of the individuals that do not transmit infec-
tion may simply not get any transmission opportunity, others
may be supersponges and therefore incapable of transmitting
disease. The presence of supersponges also demonstrates the
importance of measuring variation in both behavioural and
physiological traits when seeking to understand heterogen-
eity in disease transmission. Characterising extreme forms
of population-level variation, particularly in natural systems
where experiments are less controlled, should certainly be
prioritised in order to understand individual heterogeneity
in disease transmission.

An important caveat of our results is that because we did
not measure social aggregation, virus shedding and lifespan
simultaneously we cannot account for how they might
covary within individuals. We, therefore, allow them to co-
occur in hosts randomly, which may not reflect associations
produced in nature or potential combinations of traits that
are not likely due to physiological or evolutionary con-
straints. This is particularly true for how we estimated
contact behaviour from social aggregation arenas containing
10–12 flies and measuring 55 mm wide. For our simulations,
we scaled-up these smaller populations to create theoretical
populations of 1000 individuals. This approach was required
by the experimental demands of measuring social aggrega-
tion, although it is known that social aggregation changes
may change with population size and sex ratio [43,44].

Threshold radius was a singularly important parameter
across our theoretical experiment. Understanding how distance
affects pathogen transmission or definitions of what constitutes
a contact remains poorly described in many host–pathogen sys-
tems [7]. Moreover, real networks may have different structures
not accounted for here, such as a modular structure which has
been shown to facilitate or prevent the spread of disease
[27,44]. As our social aggregation data come from Petri
dishes containing only males or females from a single genetic
background, we cannot account for how aggregation might
change in more diverse and larger populations [43].

Our work bears a number of consequences for under-
standing how between-individual heterogeneity in disease
transmission is determined and how it could affect outbreak
dynamics. We show that variation in key individual traits can
dramatically affect population-level transmission, surmount-
ing to genetic and sex-specific variation in transmission
potential. Importantly, the influence of this variation is dra-
matically affected by susceptible population diversity and
the distribution of population-level variation. These results
support the observations of other systems that suggest the
traits of susceptible individuals can exert significant influence
over transmission. This is particularly relevant to populations
with low genetic diversity, such as agricultural monocultures,
as this lack of diversity increases the risk of explosive out-
breaks [45]. Our work posits the merits of integrating data
collected in highly controlled laboratory experiments with
simulations capable of extrapolating this information to
larger populations.
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