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Coronavirus disease 2019 (COVID-19) is caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Lessons learned from severe acute respiratory syndrome
coronavirus (SARS-CoV) have facilitated a better under-
standing of the COVID-19 pandemic and efforts to develop
targeted therapies. In particular, COVID-19 reminds us of
the importance of the renin-angiotensin-aldosterone system
(RAAS) in cardiovascular, pulmonary, and kidney phy-
siology. After decades of RAAS research, we can apply this
knowledge to better understand COVID-19 pathophysiol-
ogy and to inform rigorous studies.

Role of ACE2 in the RAAS

Angiotensin-converting enzyme 2 (ACE2), a component of
the RAAS, was identified as the SARS-CoV binding site
[1], and these data facilitated confirmation of the same
mechanism for viral entry for SARS-CoV-2, although with
10-20-fold higher affinity [2]. Briefly, the RAAS comprises
two major pathways; the first consists of ACE converting
angiotensin I (Ang I) into Ang II, which acts at the Ang II
type 1 receptor (AT;R) to (1) raise blood pressure via
increased renal water and sodium reabsorption and vaso-
constriction and (2) stimulate proinflammatory chemokines
and endothelial dysfunction [3-5] to promote inflammation.
The second is the counter-regulatory arm consisting of
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ACE2 (60% homologous to ACE) that utilizes two routes to
generate Ang-(1-7) that then acts at the Mas receptor to
reduce blood pressure and inflammation [6]. ACE2 pri-
marily metabolizes Ang II into Ang-(1-7) and can also
convert Ang I to Ang-(1-9), which is further metabolized
by ACE into Ang-(1-7) (Fig. 1A). The balance between
these two pathways is a key determinant of both acute and
chronic diseases [6], and the beneficial effects of RAAS
inhibitors such as ACE inhibitors and AT;R blockers
(ARBS) are, in part, due to shifting this balance away from
ACE—Ang II and toward ACE2—Ang-(1-7) [1, 7].

History of ACE/Ang Il and development of
RAAS inhibitors

The physiologic pathway utilized by SARS-CoV-2 was first
studied over 100 years ago, and advances in our under-
standing of the RAAS have accelerated until present day. In
1898, Tigerstedt and Bergman first identified “renin” from
kidney extracts that increased blood pressure in rabbits.
Further progress was made in 1934, when Goldblatt and
colleagues demonstrated that renal artery vasoconstriction,
which stimulates renin, induced hypertension [8]. In the
mid-1950s, several groups investigated the end-product of
renin activity [9, 10], Elliott and Peart characterized a
“hypertensin” or ‘“‘angiotonin” by incubating renin from
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Fig. 1 Historical context of the renin-angiotensin-aldosterone sys-
tem and coronavirus. A Role of counter-regulatory effects of the
ACE2—Ang-(1-7) pathway (blue) in the context of pathologic effects
of the ACE—Ang II pathway (red). ACE2 is the receptor for SARS-
CoV and SARS-CoV-2, which may decrease ACE2 cell surface
expression after binding. B Timeline of discoveries of the RAAS. C
Annual PubMed® citations for the two RAAS pathways and SARS
(source: https://esperr.github.io/pubmed-by-year/). Ang angiotensin,
Aldo Aldosterone, ACE angiotensin-converting enzyme, ACE2
angiotensin-converting enzyme 2, NEP neprilysin, AT|R angiotensin
II type 1 receptor, AT,R angiotensin II type 2 receptor, MasR Mas
receptor, SARS severe acute respiratory distress syndrome, CoV
coronavirus.

rabbit kidney with 200 liters of ox sera and quantifying the
rise in blood pressure from various eluates. The decapeptide
that they isolated and sequenced became known as Ang I
[9] and the octapeptide hypertensin II or Ang II [11].
Skeggs and Shumway then isolated the ‘hypertensin’ con-
verting enzyme, later renamed ACE, from equine plasma by
ammonium sulfate fractionation and isoelectric precipitation
[12]. This first arm of the RAAS was further defined in
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1961 when Genest et al. reported an increase in aldosterone
production in medical students and other volunteers upon
infusion of Ang II [13], temporarily referred to as
aldosterone-secreting hormone. The last link of this path-
way, the receptor for Ang II, AT|R, was identified and
cloned in 1991 by two laboratories [14, 15].

Collaborations between academia and industry led to the
creation of RAAS inhibitors. Chemists and biologists sped
forward to identify the first ACE inhibitors as peptides from
the venom of the Brazilian viper Bothrops jararaca.
Characterization of these peptides in 1972 facilitated dis-
covery of captopril in 1977 [16]. These contributions led to
several novel compounds to treat hypertension, cardiovas-
cular disease, and kidney disease and solidified the impor-
tance of the RAAS for human health. ARBs were pursued
due to concerns of off-target effects of ACE inhibitors (e.g.,
increased bradykinin) and potential for nonspecific inhibi-
tion of Ang II-mediated AT,R activation. Innovators within
the pharmaceutical industry resurrected initial, low-affinity
agonists to generate losartan in the early 1990s [17, 18], one
of the first examples of rational drug design. Many ARBs
have since been approved for the treatment of heart failure,
hypertension, and chronic kidney disease [8].

In 2018, after 20+ years of efficacy, RAAS inhibitors
came under scrutiny. ACE inhibitors were associated with a
higher risk of lung cancer [19], and due to impurities
detected in several ARBs manufactured in China, India, and
elsewhere, the Food and Drug Administration recalled over
20 ARB formulations. After these recalls, regulatory
agencies, patients, and healthcare providers have struggled
for months to right the ship by instituting routine screening
of drugs manufactured outside the US, changing medicines
to account for side effects, and restoring trust in the medical
system [20]. Despite recent events, ACE inhibitors and
ARBs are still considered first-line therapy.

History of ACE2/Ang-(1-7) and development
of ACE2-related therapeutics

The paradigm of this apparently linear pathway was rede-
fined by the discovery of Ang-(1-7) as a by-product of Ang
I and Ang II in the late 1980s and early 1990s, and the
effects of Ang-(1-7), originally described in brain, were
found to be in direct opposition to Ang II [21-23]. More
recently, additional pieces of the puzzle have been eluci-
dated. ACE2 was identified as a component of the counter-
regulatory arm of the RAAS in 2000 by two separate groups
[24, 25]. Defined by comparison to its homolog, ACE,
ACE2 was characterized as an ACE-inhibitor-insensitive
monocarboxypeptidase that cleaves Ang I and Ang IL
Although Ang-(1-7) was known to act via a different
pathway than Ang II [26], the molecular mechanism was
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finally identified in 2003. Santos et al. discovered that the
Mas receptor, a G-protein-coupled receptor, was the pri-
mary conduit for the counter-regulatory arm of the RAAS
[27, 28]. Further studies demonstrated that Mas receptor
antagonists can inhibit actions of Ang-(1-7) [26, 29]. These
discoveries, that completed the picture of a more complex
RAAS, were contemporaneous with the first coronavirus
epidemic due to SARS-CoV [30]. Within a few months,
ACE2 was identified as the host receptor for SARS-CoV,
and the counter-regulatory arm took on a heightened sig-
nificance for public health [31] (Fig. 1B).

Much like the status of the ACE—Ang II pathway in the
1970s, no definitive therapeutics that target the ACE2—
Ang-(1-7) have been approved. A-779 and D-pro’-Ang-
(1-7) have been characterized as Mas receptor antagonists
in pre-clinical models, but to further counteract the ACE—
Ang II pathway, various groups focused on activation of the
ACE2—Ang-(1-7) arm. These include ACE2 activators,
bioavailable Ang-(1-7) formulations, and Mas receptor
agonists [32]. While these therapeutics have had success
in vitro and in pre-clinical animal models, none have pro-
gressed to clinical trials. In contrast, recombinant ACE2
was well tolerated in a Phase 1 study in healthy subjects and
has been employed under a compassionate use protocol in a
patient with COVID-19 [33]. Infusion of ACE2 predictably
altered circulating Ang II and Ang-(1-7) but did not sig-
nificantly change blood pressure or heart rate [34].

The potential roles of the RAAS and related
therapeutics in COVID-19

In 2020, the rapid spread of SARS-CoV-2 has made us again
reflect on the risk/benefit ratio of these important drug
classes and their mechanisms of action. Based on the
interaction between SARS-CoV-2 and ACE2, many postu-
lated that possible RAAS inhibitor-induced ACE2 expres-
sion and thus viral propagation could be an important
mechanism for the apparent associations between SARS-
CoV-2 infection and COVID-19 severity and hypertension,
cardiovascular disease, and chronic kidney disease. On the
other hand, ACE inhibitors and ARBs may be novel ther-
apeutic agents to treat patients with COVID-19 by shifting
the RAAS back toward the ACE2—Ang-(1-7)Ang-(1-7)
pathway [35]. Several, albeit limited, observational studies
have not shown an association between severity of COVID-
19 with use of ACE inhibitors or ARBs [36-38]. Further-
more, a recent experimental study in mice demonstrated that
ACE inhibitors and ARBs do not alter ACE2 activity in
lung-isolated epithelial cell membranes [39]. These
issues initially generated significant controversy in the
public domain and spurred multiple medical societies to urge
caution until additional data are available. Of note,

randomized clinical trials (NCT04311177, NCT04312009,
NCT04338009, and NCT04394117) are ongoing to better
address these questions. For example, REPLACECOVID
(NCT04338009) is a study of clinical outcomes in patients
with COVID-19 with prior outpatient therapy with ACE
inhibitors or ARBs with randomization to elimination or
prolongation of these drugs and CLARITY (NCT04394117)
is a study of ARBs for the treatment of COVID-19.

The recent significance for further research on ACE2
physiology has risen in two related but distinct ways: [1] in
its role as a receptor, understanding the regulation of ACE2
cell surface expression to mitigate SARS-CoV-2 entry into
host cells; and [2] in its role as a monocarboxypeptidase to
generate Ang-(1-7), understanding the consequences of
decreased ACE2 expression and function to assess its
contribution to hemodynamics, cardiovascular disease, lung
function, and kidney disease in patients with COVID-19. As
was demonstrated in an animal model of SARS-CoV [1],
SARS-CoV-2 may suppress ACE2 expression through
internalization, shedding, and downregulation, which would
predict diminished Ang-(1-7) production and a subsequent
shift toward Ang II—AT;R-mediated severe acute lung
injury and development of fibrosis. As yet, this remains
theoretical, and we do not know whether ACE2 expression
decreases in COVID-19 and in what tissues this may occur.
Moreover, we do not know whether and to what extent
tissue (e.g., lung) injury is mediated by Ang II—AT)R in
COVID-19. Also, whether modulation of ACE2 expression
would be beneficial and the timing of such modulation (i.e.,
before or after interaction with SARS-CoV-2) is unknown.
Although additional research on the fate of ACE2 expres-
sion and function is needed, recombinant ACE2 has been
redeployed in an ongoing Phase 2 clinical trial to test its
efficacy in patients with COVID-19 (NCT04335136). The
rationale behind this study is to utilize circulating ACE2 as
both a monocarboxypeptidase, its endogenous function, and
as a decoy receptor to prevent entry of SARS-CoV-2 into
host cells. An alternate strategy has employed ACE2-
derived peptides in vitro to compete with cell surface ACE2
for binding to SARS-CoV-2 [40, 41]. This would theore-
tically obviate considerations of drug-related changes in
ACE2 expression or changes in ACE2 expression or func-
tion upon infection, which could have potentially serious
ramifications.

An opportunity to restore balance

SARS-CoV-2 has resurrected the importance of ACE2,
including its role in viral transmission and in acute and
chronic disease. This pandemic is also a reminder of
the importance of basic and clinical research. Our ability
to understand the pathophysiology of COVID-19 is
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strengthened by work over the past two decades that out-
lined the physiologic significance of ACE2 and Ang-(1-7),
even though no pharmacologic targets as of now have
reduced cardiovascular events.

While we have learned much about the RAAS, our
attention, as captured by citations in the literature, has
leaned predominantly to one side of the pathway. ACE2-
related studies, although of crucial importance to hyper-
tension, cardiology, nephrology, and lung physiology,
existed in relative obscurity compared to ACE (Fig. 1C).
We still understand little about circulating and tissue ACE2
—Ang-(1-7) expression and function and how ACE inhi-
bitors and ARBs affect this pathway in various compart-
ments. Akin to the initial exposure to an antigen, ACE2-
related citations increased after the discovery of its role as
the receptor for SARS-CoV after the SARS epidemic.
However, the rate of published ACE2 studies quickly
declined back to baseline. Unfortunately, no ACE2-centered
therapeutics were approved that could now reduce SARS-
CoV-2 transmission or COVID-19 progression. ACE2 was
identified as the viral binding site less than two months after
the first case reports of COVID-19, and again, akin to a
secondary immune response, ACE2-related publications
have skyrocketed in the past few months and clinical trials
for ACE2-related therapeutics have begun. After the last
pandemic, we are scientifically primed to focus on ACE2,
and as a scientific community we are better prepared to
target the ACE2—Ang-(1-7) pathway during and after this
pandemic.
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