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Abstract

Early identification of kidney function deterioration is essential to determine which newborn 

patients with congenital kidney disease should be considered for surgical intervention as opposed 

to observation. Kidney function can be measured by fitting a tracer kinetic (TK) model onto a 

series of Dynamic Contrast Enhanced (DCE) MR images and estimating the filtration rate 

parameter from the model. Unfortunately, breathing and large bulk motion events due to patient 

movement in the scanner create outliers and misalignments that introduce large errors in the TK 

model parameter estimates even when using a motion-robust dynamic radial VIBE sequence for 

DCE-MR imaging. The misalignments between the series of volumes are difficult to correct using 

standard registration due to 1) the large differences in geometry and contrast between volumes of 

the dynamic sequence and 2) the requirement of fast dynamic imaging to achieve high temporal 

resolution and motion deteriorates image quality. These difficulties reduce the accuracy and 

stability of registration over the dynamic sequence. An alternative registration approach is to 

generate noise and motion free templates of the original data from the TK model and use them to 

register each volume to its contrast-matched template. However, the TK models used to 

characterize DCE-MRI are tissue specific, non-linear and sensitive to the same motion and 

sampling artifacts that hinder registration in the first place. Hence, these can only be applied to 

register accurately pre-segmented regions of interest, such as kidneys, and might converge to local 

minima under the presence of large artifacts. Here we introduce a novel linear time invariant (LTI) 
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model to characterize DCE-MR data for different tissue types within a volume. We approximate 

the LTI model as a sparse sum of first order LTI functions to introduce robustness to motion and 

sampling artifacts. Hence, this model is well suited for registration of the entire field of view of 

DCE-MR data with artifacts and outliers. We incorporate this LTI model into a registration 

framework and evaluate it on both synthetic data and data from 20 children. For each subject, we 

reconstructed the sequence of DCE-MR images, detected corrupted volumes acquired during 

motion, aligned the sequence of volumes and recovered the corrupted volumes using the LTI 

model. The results show that our approach correctly aligned the volumes, provided the most stable 

registration in time and improved the tracer kinetic model fit.

Keywords

Dynamic contrast enhanced MRI; Model based registration; Motion compensation; Quantitative 
MRI

1. Introduction

Accurate assessment of kidney function and anatomy in newborns and children with 

hydronephrosis is clinically important. Patients require surgical intervention as opposed to 

observation when there is clear evidence of obstruction of the urinary tract and renal 

function deterioration. For these conditions, as well as other conditions affecting kidney 

function in both children and adults, timely determination of which patients have renal 

dyfunction or deterioration is important since delays in intervention can lead to potential 

lifelong complications and chronic renal insufficiency Chevalier (1995); Chevalier et al. 

(2010). In current clinical practice, kidney function, i.e. glomerular filtration rate (GFR) is 

estimated based on serum creatinine and drainage times and differential renal function is 

estimated based on nuclear renography Grattan-Smith et al. (2008); Michaely et al. (2008); 

Chandarana et al. (2014). However, serum creatinine is not sensitive to early decline in 

function and nuclear renography is invasive, has low spatial and contrast resolution, does not 

provide anatomic information and exposes the patient to ionizing radiation, which makes it 

unsuitable as a routine monitoring test, especially for children.

Dynamic Contrast Enhanced (DCE) MRI is an imaging technique with great potential since 

it provides both a detailed anatomical evaluation of kidneys and qualitative and quantitative 

information about kidney function at the same time Grattan-Smith et al. (2008). Another 

advantage is that, unlike nuclear renogram techniques, MRI does not expose patients to 

ionizing radiation and is superior in terms of spatial resolution, which enables differentiated 

evaluation of kidney compartments, including cortex, calyces and medulla as well as renal 

arteries and urinary tract.

DCE-MRI consists of acquisition of a continuous sequence of MRI volumes during which a 

contrast agent is injected into the bloodstream and filtered through the kidneys. This 

dynamic series of images allow radiologists to qualitatively evaluate the temporal evolution 

of the contrast agent through the kidney compartments, where a delay in contrast reaching 

the calyces may indicate obstruction in the urinary tract and may require surgical correction. 

At the same time, quantitative evaluation with the appropriate tracer kinetic models can 
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provide important markers of kidney function including the perfusion rate in the cortex and 

the filtration rate in the kidneys. Moreover, it is possible to quantitatively evaluate the 

relative function of the right and left kidneys, i.e. differential renal function, the absolute 

function of each kidney, and to generate a voxelwise functional map for assessment of 

regional function in duplex kidneys.

We recently showed that DCE-MRI acquisition with a dynamic radial VIBE sequence is 

both robust to respiratory motion and can attain high temporal and spatial resolution (3s, 

1.25 × 1.25 × 3 mm) for accurate estimation of AIF peak Block et al. (2014); Kurugol et al. 

(2017a, 2018); Coll-Font et al. (2019c,b); Kurugol et al. (2019, 2020). Specifically, we 

acquired k-space data with a golden angle stack-of-stars sampling scheme and reconstruct 

images from undersampled data with high spatio-temporal resolution using a compressed-

sensing method with temporal regularization to minimize the undersampling artifacts Feng 

et al. (2014); Chandarana et al. (2015); Kurugol et al. (2019); Coll-Font et al. (2019b); 

Kurugol et al. (2020).

Despite using a motion-compensated sequence, heavy breathing or bulk motion of the 

patient due to discomfort and the extended length of the scan (∼ 6min), can still affect the 

quality of the imaging. This is particularly problematic for infants imaged without sedation 

Kurugol et al. (2019), using feed and wrap imaging technique, who often move their bodies 

during their scan. These bulk motion events deteriorate the quality of the images, introduce 

blurring, signal dropout and cause misalignment between volumes within the dynamic 

series. As a result, these artifacts limit the diagnostic quality of the images and dramatically 

reduce the accuracy of quantitative evaluation of kidney function. Moreover, since DCE-

MRI requires injection of contrast agent during acquisition, the scans cannot be easily 

repeated when the subject moves and consequently the imaging provides incomplete 

information.

In order to correct for the misalignment created by bulk motion events, it is necessary to 

register the DCE-MR sequence. However, contrast agent intake in the body generates large 

changes in both the signal intensity and the geometry of the volumes over time, and 

therefore volumes at different time points look quite different from each other. This 

limitation complicates the registration between image pairs, especially if they are acquired at 

distant time points, and particularly for those acquired before injection of contrast. 

Moreover, streaking artifacts and low SNR due to undersampled acquisition (for high 

temporal resolution) reduce the image quality and make the ill-posed task of registration 

even more challenging and an outstanding problem in DCE-MRI.

There have been extensive efforts in the research community to address the challenge of 

registration in DCE-MRI. However, each technique has its limitations and there is no 

agreement to which registration technique is best suited for this problem Zöllner et al. 

(2019). Some researchers registered each volume in the sequence against a reference volume 

and used registration metrics that are robust to contrast variations. Typical metrics are cross-

correlation, normalized gradients Merrem et al. (2013); Hodneland et al. (2014b), mutual 

information and normalized mutual information Hodneland et al. (2014a); Positano et al. 

(2013); Fei et al. (2005); Melbourne et al. (2011) or sum-of-squares difference after 
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equalization of the contrast between images Wright et al. (2014). Since these approaches 

register individual volumes to a single reference, they can compensate for rapid changes in 

position of the subject –i.e. bulk motion events. However, the motion and undersampling 

artifacts in the images introduce registration errors to each volume and, consequently, 

volume-to-volume variability in the alignment of the sequence. On the other hand, more 

recent work has focused on groupwise metrics to jointly register an entire sequence of 

volumes. These metrics often minimize the variance or discrepancy of the registered 

volumes over time with low rank approximations Melbourne et al. (2007); Hamy et al. 

(2014); Huizinga et al. (2016); Johansson et al. (2016). These reduce the volume-to-volume 

variability of the registration, but might not capture the sudden changes in position of the 

subject. An alternative approach to balance stability and rapid motion consists of registering 

individual volumes using the tracer kinetic (TK) model Adluru et al. (2006); Buonaccorsi et 

al. (2005, 2007) or the signal decay model Kurugol et al. (2017b) itself. This approach 

allows to compensate for rapid bulk motion –since each volume is registered independently– 

while introducing robustness to artifacts with the noise free templates generated with the 

signal model. Unfortunately, the TK models are specific to organs of interest (e.g. kidneys), 

therefore, they cannot fit well to the neighboring tissue types Buonaccorsi et al. (2006) and 

their fitting is sensitive to motion and undersampling artifacts in the data. Consequently, TK 

model-based registration cannot be applied to the entire field of view. It requires accurate 

segmentation of the region of interest, such as kidneys, leaving other tissue in the image, and 

aorta, which is important for tracer kinetic model fitting, misaligned. This reduces the 

accuracy of the TK model fitting in the kidneys.

To be able to characterize the entire field of view and overcome introduce a Linear Time 

Invariant (LTI) model based motion correction (LiMo-MoCo) algorithm. Our approach, 

depicted in Fig. 1, uses and LTI model to characterize the signal intensity for all tissues – 

including aorta, kidneys as well as the other neighboring tissues– and generate a template 

with matched contrast levels to which the original volumes can be registered. Unlike 

previous work using LTI models for DCE-MRI Caldeira and Sanches (2008), we 

approximate the LTI model as a sparse sum of first order LTI functions, which 1) avoids 

convergence to local minima and 2) reduces the sensitivity to outliers. This approach ensures 

that the reference image for registration is a noise-free template with similar appearance to 

the moving image, thus simplifying the task of registration. This paper extends our model-

driven motion compensation framework for renal dynamic radial DCE-MRI, originally 

presented at the MICCAI 2019 conference. We provide a more detailed description of the 

model, and an extensive additional set of simulated experiments Coll-Font et al. (2019a) and 

analysis. We also extended the dataset composed of patient data to more extensively analyze 

the quality of the resultant images, the estimated time-intensity curves and the quantitative 

parameters after LTI model based motion compensation in comparison to previous 

approaches.
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2. Methods

2.1. LTI model for tissue contrast enhancement

Most tracer kinetic models characterize the signal intensity in DCE-MRI, s(t), as the 

convolution of the arterial input function (i.e. the contrast agent introduced through the 

arteries), a(t), with a system response, h(t), that describes the filtration of the contrast 

through the kidneys:

s t = ℎ t ∗ a t . (1)

Typically, these tracer kinetic models describe the unknown tissue response h(t) as the 

composition of multiple leaky compartments through which the tracer flows Khalifa et al. 

(2014); Ingrisch and Sourbron (2013). These multi-compartment models are often tailored to 

a specific type of tissue, and estimating their parameters requires solving a non-linear least-

squares optimization problem. Hence, these are not adequate to characterize the signal 

intensity in an entire DCE-MRI volume series with noisy measurements and motion 

Buonaccorsi et al. (2006).

To overcome these limitations, we introduced an LTI model to describe the tissue response 

h(t). Specifically, we approximate the system response as the weighted sum of first-order, 

strictly-proper LTI transfer functions gpk t  with weights ck and poles pk contained within the 

section of the unit disk Dρ.

ℎ t = ∑
pk ∈ Dρ

ckgpk t
(2)

The advantages of characterizing the DCE-MRI data with this model are threefold. First, the 

LTI model is flexible enough to characterize a broad set of impulse responses and, hence, 

tissue types present in an acquired volume. Second, this model is linear with respect to its 

unknowns –i.e. the weights ck – and can be solved as a convex optimization problem. Third, 

the model can be regularized by restricting the poles of the transfer functions gpk to those in 

the low frequency disk Dρ (with normalized frequency ρ < 0.014), and the weights ck can be 

estimated using sparsity priors. All these advantages make the resulting model well suited to 

characterize DCE-MRI data under realistic noise and motion.

To learn the tissue response h(t), it is necessary to solve a convex optimization problem with 

respect to the unknown weights ck. Moreover, in order to enforce sparsity, the objective 

function should find the minimum number of ck > 0 such that the difference between s(t) and 

h(t) ∗ a(t) is minimized. This is an NP-hard problem over a infinite dimensional space, 

hence, it requires to be relaxed in order to be solved. To that objective, we use the 

randomized system identification method by Yilmaz et. al. Yilmaz et al. (2018). This method 

solves a convex relaxation of the original l0 norm minimization problem where the 

regularization is done through an l1 norm on the weigths ck and regularization parameter τ 
(see Eq. 3):
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min
ck

∑
t

s t − ∑
pk ∈ Dρ

ckg pk t
2

st . ∑
k

ck ≤ τ
(3)

We then solve (Eq. 3) with a randomized version of the Frank-Wolfe algorithm Jaggi (2013) 

described in Algorithm 1. The algorithm follows the basic structure of standard Frank-

Wolfe, although here, we randomly select the elements of the atomic set at every iteration. In 

short, at every iteration ‘i’, the algorithm selects N random poles pk ∈ Dρ, computes their 

corresponding impulse responses g pk t n = 0
N − 1, and picks the one most aligned with the 

descent direction. Then, it updates the coefficients ck such that 

f ℎi + 1 = ∑t ℎi + 1 t ∗ a t − s t 2
 is minimized with ℎi + 1 t = ℎi t + ckg pk t .

Algorithm 1 LTI model fit .
1: procedure LTIFIT a t , s t
2: x0 gp0 t

3: for k = 1, 2, …, Kmax do
4: Select N poles randomly distributed over gpn t ∈ Dρ
5: gpk t argminpn < ∇f xk , gpn ∗ a t >

6: αk argminα = 0, 1 f xk + α τgpk t ∗ a t − xk

7: xk xk + α τgpk t ∗ a t − xk
8: return xk

2.2. LTI model based motion correction (LiMo-MoCo) for DCE-MRI

Our proposed LTI model based motion correction (LiMo-MoCo) algorithm uses the LTI 

model described in Section 2.1 as a prior when performing the registration for motion-

correction. The basic idea is to iteratively generate a template of the contrast agent dynamics 

in the tissue without the effects of motion and then register the volumes of the acquired 

DCE-MRI sequence to these contrast-matched template volumes. At each iteration, the 

algorithm performs two steps: 1) estimation of the LTI model parameters from the measured 

signal and reconstruction of template volumes using the LTI model and 2) registration of the 

volumes to the templates reconstructed using the LTI model, which we perform using the 

non-rigid registration algorithm implemented in the ELASTIX tool Klein (2010).

There are some practical challenges when fitting the LTI model to the DCE-MRI data. First, 

the model requires an input function, i.e. a known AIF, which is not typically known a priori. 

Second, fitting the LTI model to every voxel in the volume is computationally expensive, 

although its burden can be reduced with the assumption of similarity between neighboring 

voxels. In consequence, our registration algorithm includes an AIF estimation and a 

clustering steps prior to the LTI model fitting.
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To estimate the AIF, we use a pre-computed mask of the aorta using our convolutional 

neural network based aorta segmentation algorithm Haghighi et al. (2018). We then generate 

candidate AIFs by clustering the selected voxels using K-means (K = 10) and fit the LTI 

model to the centroids of each cluster. Since the objective is to estimate the unknown AIF, 

here we assume a delta function centered at the time of injection as an input to the LTI 

system. Among the resulting denoised AIF candidates, we select the curve with highest peak 

as the AIF for the LTI model fitting procedure in the rest of the tissue1

Afterwards, we fit the LTI model to the remaining voxels in the FOV. We reduce the 

computational cost by clustering all voxels with K-means and apply Algorithm 1 to each 

centroid. Then, we reconstruct a 4D template volume using the estimated LTI model for 

each voxel. Here, we use K-means with K = 1000 to two separate groups of voxels –those in 

the kidneys, selected with a pre-computed mask, and those outside– to maximize accuracy 

near the kidneys.

The next step is registration of each volume in the original sequence to its corresponding 

template volume. We apply the ELASTIX Klein (2010) tool for registration using a 3rd 

order B-spline interpolation (spacing of 28 mm), “AdvancedMattesMutualInformation” 

metric, multi-resolution registration (pyramidal levels: [2, 2, 2, 1, 1, 1]) and random 

coordinate sampling (2048 samples). The template volume reconstruction and registration 

steps are repeated at each iteration until convergence, which in practice is completed after 

two iterations.

Finally, we use the LTI model to recover the volumes that have been corrupted by motion. 

Note that we use the raw k-space data to first detect which volumes were acquired during 

motion events, and therefore corrupted, using an outlier detection algorithm described in our 

recent work Coll-Font et al. (2019c,b). This algorithm leverages the center of raw k-space 

data acquired with “stack-of-stars”, golden angle radial sampling scheme. Specifically, it 

uses center point of each spoke – i.e. the center of each line traversing k-space radially and 

determines whether a spoke is corrupted by motion when its correlation with neighboring 

spokes is below a certain threshold. We use this algorithm to detect the volumes that include 

corrupted spokes and replace them with the template volumes reconstructed from the LTI 

model. The complete LTI Model Based Motion Correction (LiMo-MoCo) algorithm is 

shown in Algorithm 2.

1Note that the AIF estimated using the LTI model is used only within the registration algorithm but not in the TK fit performed to the 
motion-compensated data.
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Algorithm 2 LiMo‐MoCo .
1: procedure LIMO s t ⊳ DCE sequence s(t)
2: r(t) s(t) ⊳ Initialize registered sequence
3: for i = 1, 2, …, Imax do
4: estimate AIF
5: for sl = 1…S do ⊳ For each slice
6: Cluster voxels in r(t, sl) with K‐means
7: Fit LTI model to cluster means
8: generate LTI template m(t)
9: r(t) reg(s(t), m(t)) ⊳ Register s(t) to m(t)

10: Interpolate bad volumes with m(t)
11: return xk

3. Experiments

We evaluated the performance of our algorithm with a series of experiments using both 

synthetic data with simulated motion and patient data with motion.

Synthetic data generation:

Our goal was to generate synthetic data that resembled the clinical data from infants imaged 

without sedation. These infants often moved during their sleep causing several bulk motion 

events during the 6 mins duration of the scan. To mimic the patient data with motion, we 

used a DCE-MRI scan of a patient who presented no motion as a cartoon model. We first 

reconstructed the DCE-MRI volumes from the corresponding k-space data using GRASP 

reconstruction with a regularization parameter λ = 1 · 10−4 · M0, temporal resolution of 3.3s/

volume (100 volumes) and spatial resolution of 1.25×1.25×3 mm. We then simulated data 

for each voxel in the kidneys and aorta using Sourbron’s tracer kinetic model with known 

parameters and a representative arterial input function (AIF). To simulate more realistic data 

from the model, we added additive white Gaussian noise with SNR = 20 dB to the DCE-

MRI volumes. We then included rigid motion at random points in time with a maximum of 5 

motion events during the scan. We repeated this experiment 10 times and sampled the rigid 

motion parameters uniformly with bounds of 15 mm for translation and 5° for rotation.

Patient data:

We acquired data from 20 patients (ages 0 − 17 years old with mean 5.67 ± 6.13 years, 8 

female) with kidney disease who underwent DCE-MRI for evaluation of their kidneys. All 

data, including the one used as a template in the synthetic data experiments, were acquired 

following an approved IRB protocol and after obtaining consent. We imaged each patient 

with a “stack-of-stars” 3D FLASH prototype sequence using a multi-channel body-matrix 

coil (3T Siemens Skyra/Trio, TR/TE/FA 3.56/1.39ms/12°, 32 coronal slices, voxel 

size=1.25×1.25×3mm, 1326 · 3 radial spokes acquired in 6 mins with golden angle radial 

ordering) and reconstructed the sequence of volumes using GRASP reconstruction. We 

reconstructed 200 volumes per sequence (temporal resolution of ∼ 1.8s/volume or ∼ 18 

spokes per image) and used λ = 1 · 10−4 · M0 as regularization parameter.
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For both synthetic and patient data experiments, we aligned the 4D volumes and fitted the 

tracer kinetic model. We compared the results of LiMo-MoCo against 1) no motion 

compensation (No-MoCo), 2) MoCo with registration to a fixed reference volume using 

ELASTIX and mutual information as a metric (REFVOL) and 3) with a state of the art PCA-

based groupwise registration algorithm developed for quantitative MRI (gPCA) Huizinga et 

al. (2016). For all methods, we used an ELASTIX implementation with non-rigid 

registration and B-spline interpolation Klein (2010). All registration methods were tested on 

a server with CentOS 7 with 48 cores Intel Xeon CPU ES-297 v2.

We evaluated the performance of the algorithm in terms of both the quality of the alignment 

and the improvement in the quality of the tracer kinetic model fitting. We fitted the tracer 

kinetic model following the procedure described in Coll-Font et al. (2019b). Briefly, it 

consists of three steps: computing the concentration of contrast agent over time using the 

changes in T1 values after contrast injection, computing an arterial input function (AIF) 

from a subset of voxels in the aorta and fitting Sourbron’s two-compartment tracer kinetic 

model to the voxels in the kidney Sourbron (2008); Coll-Font et al. (2019b). This procedure 

resulted in the estimation of the filtration rate FT and the perfusion FP of the tracer kinetic 

model. To reduce computational demands, we fitted the model to K centroids of the voxels 

in the kidney after clustering the voxels with K-means (K = 100).

We first analyzed and compared the accuracy and stability of the registration algorithms on 

the synthetic data. We plotted a selected line (column) of voxels from the registered image 

volumes over time (referred as line plots in the text). We also computed the normalized 

mean-squared error between the registered volumes and the ground truth volumes.

We further evaluated the registration algorithm by computing the changes in position of the 

kidneys in time. To do so, we registered the kidney masks for every time instance and 

generated a 4D volume of the masks over time. This allowed us to compute the DICE scores 

between the masks and the ground truth masks. To measure the variability of the masks, we 

averaged them over time to compute the percentage of time in a sequence that each voxel 

was selected in the kidney. Voxels with a resultant percentage of 100% or 0% were 

consistently classified as inside or outside of the kidneys and those with in-between values 

indicated shifts of the masks in some time instances. We refer to the resulting maps as 

consistency maps.

We expect that our LiMo-Moco algorithm will remove the discontinuities and jumps in the 

concentration time curves and the signal dropout due to motion. To quantify this 

improvement in the concentration time curves, we defined a “Total Variation” (TV) metric. 

This metric measures the absolute difference between the motion-corrected concentration 

curves and a baseline curve obtained by smoothing the concentration curve with a Gaussian 

filter in time with σ = 9s.

Finally, we analyzed the effects of the registration on the quality of the tracer kinetic model 

fitting. We fitted Sourbron’s two-compartment tracer kinetic model to the signal and 

reported on the goodness of fit, measured as the normalized root mean squared error 
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(nRMSE) between the original signal and the fitted model, as well as the mean square error 

of the estimated parameters.

To analyze the experimental results from the patient data, we generated line plots for sample 

subjects, computed the TV metric over the concentration curves and the goodness of fit of 

the tracer kinetic model. Finally, we included the estimated parameter maps to allow for 

visual interpretation of the results.

4. Results

4.1. Synthetic data results

We illustrate the performance of the registration algorithms with the line plots in Fig. 2. The 

numerical results of the synthetic data experiments are summarized in Table 1. Before 

applying motion correction, the plots present clear discontinuities produced by sudden 

motion in the synthetic data. This can be observed in the discontinuities in the mask 

contours as well as the inconsistent behavior of the signal intensity of each voxel over time. 

After alignment, the discontinuities disappear for REFVOL and LiMo-MoCo. In those, the 

mask contours appear as an almost straight line and the signal intensity of the voxels 

matches the expected behavior of the contrast agent (i.e. sudden increase at the moment of 

injection and smooth washout thereafter). However, there were small deformations in the 

time instances before the introduction of contrast, characterized by small discontinuities in 

the mask contours for REFVOL. The normalized mean-squared error between the ground 

truth data and the registered volumes, shown in Fig. 3, was lowest for LiMo-Moco (1.514 ± 

0.097), compared to 1.519 ± 0.102 and 1.632 ± 0.049 for REFVOL and gPCA, respectively. 

As expected, the error was highest for No-MoCo with a value of 2.267 ± 0.053. The 

differences between LiMo-MoCo and gPCA or No-Moco were significant (p = 0.0015 and p 
= 8.07 · 10−10), however this was not the case between LiMo-MoCo and REFVOL (p = 

0.223).

Fig. 4 shows the consistency maps of three representative repetitions of the synthetic 

experiment. These show good agreement between the registered masks and the ground truth 

as well as high consistency over time. The discontinuities observed in Fig. 2, can be seen 

here as voxels with values greater than 0% but smaller than 100% outside of the ground truth 

mask.

Numerically, the misalignment with the ground truth resulted in a DICE value of 0.953 ± 

0.051 for LiMo-MoCo, 0.958 ± 0.056 for REFVOL, 0.523 ± 0.193 for gPCA and 0.803 ± 

0.295 No-Moco (Fig. 5). The DICE coefficient for LiMo-MoCo was higher than gPCA (p = 

7.3 · 10−8) and No-MoCo (5.15 · 10−3), but not REFVOL (p = 1.9 · 10−4). The voxels within 

the region of interest were selected as kidney 74.1% of the time in LiMo-MoCo, 71.8% in 

REFVOL (p = 1.58 · 10−4), 47.3% in gPCA (p = 1.57 · 10−12) and 54.8% in No-MoCo ( p = 

3.51 · 10−4). These results suggest that, both REFVOL and LiMo-MoCo achieved 

comparably accurate masks, but LiMo-Moco attained improved stability over time compared 

to REFVOL.
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To measure the effect of registration variability on the concentration curves, we plot the TV 

metric on the concentration curves in Fig. 6. On average, the TV metric was smaller for 

LiMo-MoCo (10.212 ± 1.5) compared to REFVOL (14.180 ± 2.5, p = 6.3 · 10−5), gPCA 

(11.205 ± 1.3, p = 0.24) and No-Moco (20.4 ± 2.920, p = 7.4 · 10−7). Further suggesting that 

LiMo-MoCo was more consistent over time than the other methods.

Finally, we report on the tracer kinetic fitting results. The parameter maps for FP and FT are 

shown in Fig. 7 alongside with the corresponding nRMSE of the fitting procedure. For all 

cases, the parameter maps for both filtration rates show a clear distinction between the 

cortex and the medulla, similar to the maps generated with the ground truth. The residual 

maps presented higher differences across registration methods. LiMo-MoCo and REFVOL 

attained lower error in the cortex although the residual in the medulla was higher.

The numerical results indicate that the proposed LiMo-MoCo method achived the lowest the 

average error in estimating the FP parameter (75.6 ± 94.3 [ml/100ml/min]) compared to No-

MoCo, REFVOL and gPCA techniques, which achieved an error of 79.7 ± 86.1, 94.3 ± 

122.0 and 94.6 ± 114.6, respectively. Similarly, the proposed LiMo-MoCo method achieved 

the lowest average error in estimating the FT parameter (70.6 ± 123.2) compared to No-

MoCo, REFVOL and gPCA techniques, which achieved an error of 94.7 ± 133.8, 72.5 ± 

125.9 and 109.3 ± 151.9, respectively. The differences were significant between LiMo-

MoCo and gPCA (p = 0.0033), but not for LiMo-MoCo and REFVOL (p = 0.183) or No-

MoCo (p = 0.0837).

On average, the nRMSE of the proposed LiMo-MoCo approach was smallest, with values of 

0.065 ± 0.016 compared to 0.283 ± 0.082 for No-MoCo, 0.079 ± 0.009 for REFVOL and 

0.249 ± 0.053 for gPCA. Here, the differences in nRMSE were statistically significant 

between LiMo-MoCo and gPCA, as well as between LiMo-Moco and No-MoCo (with p-

values 1.54 · 10−6 and 1.76 · 10−5), but not for REFVOL (with p = 0.025).

4.2. Real data results

We first show the line plots from three sample subjects in Fig. 8. The plots correspond to a 

subject who presented small but continuous motion (A), a subject who showed larger and 

continuous motion at the start of the scan (B) and a subject who showed large sudden bulk 

motion at discrete instances of time (C). Broadly, all plots show the temporal evolution of 

each voxel undergoing the changes of intensity expected from the contrast agent intake with 

some discontinuities and distortions due to motion. However, there are some differences 

compared to the synthetic data experiments that must be addressed. Due to the nature of the 

MRI data acquisition, the reconstructed volumes present streaking artifacts and increased 

noise during motion events. In some cases, rapid bulk motion events result in signal dropout, 

which creates sudden outliers in time. These are particularly evident in the line plots of 

subject (C).

All registration methods were capable of aligning the volumes and correcting the majority of 

discontinuities and distortions from the original No-MoCo cases. However, some small 

errors remained, particularly in areas with continued motion and increased noise. These are 

indicated in Fig. 2 with red arrows and appear as small discontinuities in the contrast lines. 
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One particular alignment error that remained for gPCA were the sudden changes in position 

observed in subject (C). These, combined with the lower performance of gPCA in the 

synthetic data experiments, suggest that this method is insensitive to rapid bulk motion 

events and is better suited to correct for smooth motion such as respiration.

Fig. 9 illustrates the temporal behavior of the DCE signal in time before and after 

registration. Before motion correction, the volumes in the first part of the sequence (t1 and 

t2) were misaligned with the last section (t4). Moreover, the volume acquired during motion 

(t3) was corrupted and presented large signal dropout. Consequently, the corresponding 

intensity curves presented large discontinuities and signal dropout. The LTI model could 

capture the temporal behavior despite the motion artifacts and the proposed LiMo-MoCo 

method successfully aligned the volumes and could effectively interpolate those corrupted 

with signal dropout due to motion. The resulting curves after motion correction were 

smoother and had lower TV metric compared to those obtained with No-MoCo. The 

concentration curves obtained with the LiMo-MoCo results were smoother (0.244 ± 0.126) 

than those obtained with REFVOL (0.728 ± 1.831), gPCA (0.258 ± 0.170) and No-MoCo 

(0.295 ± 0.220). These differences were not statistically significant when averaged over all 

subjects (REFVOL p = 0.281, gPCA p = 0.389 and No-MoCo p = 0.091), but for subjects 

that presented motion (such as the ones shown in the Figures), the proposed technique 

significantly improved the performance.

Fig. 10 shows the estimated parameter maps of each example subject. After registration the 

parameter maps were less noisy and the cortex and medulla structures could be 

differentiated. This was particularly clear for subject C, whose medulla was not visible in the 

No-Moco results, but appeared after motion correction. Moreover, the parameters estimated 

on the cortex matched those previously reported in the literature (e.g. FT ∼ 40 – 100 ml/

100ml/min and FP ∼ 200 – 800ml/100ml/min). Similarly, the residual error of the tracer 

kinetic model fit was reduced after motion correction. This was particularly evident in the 

areas near edges of the tissue. For example, in the areas of transition between medulla and 

cortex (e.g. subject A), and at the boundaries of the kidney (e.g. subject B). In the case of 

subject C, the original error was high throughout the kidney (∼ 0.01) and motion-correction 

showed minor improvement.

All registration methods improved the goodness of fit of the tracer kinetic model but LiMo-

MoCo performed best. The median nRMSE was 0.109 ± 0.184 for LiMo-MoCo, 0.117 ± 

0.227 for REFVOL, 0.111 ± 0.184 for gPCA and 0.143 ± 0.185 for No-MoCo. Only the 

difference between LiMo-MoCo and No-MoCo were statistically significant (0.35 for 

REFVOL, 0.94 for gPCA and 0.038 for No-MoCo).

Computationally, REFVOL was the fastest algorithm with an average compute time of 22.5 

± 8.7 min, LiMo-MoCo was second with a compute time of 132.9 ± 26.8 min and gPCA last 

with 1.1 ± 0.23 days. The LiMo-MoCo algorithm was implemented in python and the 

registration time accounted for ∼ 22 min (same as the REFVOL results) while the LTI model 

fit added 75.9 ± 17.9 per iteration.
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5. Conclusions and discussion

We presented an LTI model based motion correction (LiMo-MoCo) approach for DCE-MR 

images of the kidneys. Our approach characterizes the DCE-MRI data over time as the 

response of an LTI system to the injection of the contrast agent into the blood stream. Our 

results suggest that this method provides a more consistent registration of volumes over the 

time and it helps improve the accuracy of the tracer kinetic model fitting. The results 

indicate that all registration methods improved alignment although each method had 

different weaknesses. REFVOL provided the most accurate registration of the masks, but at 

the cost of increased variability over time, which reduced the accuracy of the tracer kinetic 

model fitting. GPCA performed well to register patient DCE-MRI data. Its metric, which 

measures the variance of the volumes in time, is well suited to characterize small and 

repeated motion such as respiration. However, it might not be sensitive to sudden bulk 

motion events –e.g. rapid changes in position of the subject. LiMo-MoCo performed 

consistently well for all types of motion and presented reduced variability in time compared 

to REFVOL.

LiMo-Moco is a model-based approach to registration and is similar to other model based 

approaches developed for DCE-MRI Buonaccorsi et al. (2007). However, the tracer kinetic 

models used in previous work are sensitive to the underlying tissue type and require pre-

defining a region of interest to which they can be reliably fitted. Instead, the LTI model used 

in LiMo-MoCo allows to characterize each voxel in the field of view from different tissue 

types, and can perform well even in the presence of streaking artifacts and low signal-to-

noise ratio, which reduce the quality of images and complicates the registration. Note that 

the algorithm used to fit the proposed LTI model based registration is essential to be robust 

to motion and streaking artifacts. Recent work proposed using TK models instead of an LTI 

model to perform joint parameter estimation and registration Dikaios (2020) using a data 

driven optimization scheme. Because a single TK model does not fit to all tissues types, they 

used a model selection step to determine which model is best suited for each different tissue 

type. It would be interesting to incorporate the proposed optimization scheme into our 

proposed motion compensation framework in future work.

In this work, we used non-rigid registration with the aim of correcting for non-rigid motion 

such as pulsatile motion and non-rigid deformations of the other organs and especially aorta, 

which is important to accurately measure to generate an accurate AIF. However, our 

approach can be readily modified to register each kidney with rigid alignment.

Beyond registration, the presented LTI model has been used to recover and reconstruct 

corrupted volumes acquired during the motion events. It also has several other applications. 

The template volumes of the entire field of view generated with the LTI model can be used 

as a denoising technique Gal et al. (2010). Here, the algorithm would solve an optimization 

problem similar to Total-Variation denoising, but with a regularization term enforcing 

similarity to the template volumes. Similarly, the LTI model could be used to regularize 

sparse image reconstruction methods from sparse k-space data acquired with radial or 

cartesian sampling schemes Ippoliti et al. (2019); Hausmann et al. (2019). For both 

applications, the LTI model would serve as a parsimonious representation of the temporal 
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dynamics of the data. Moreover, since the optimization of the LTI model parameters is 

robust to artifacts it could be applied even in applications where the noise is not Gaussian.

The main limitation of this work, as for all studies evaluating motion compensation 

techniques, is the lack of an established validation standard for registration. To overcome 

this limitation, we assessed the results with a variety of metrics including those assessing 

properties of the geometry (DICE score and consistency), as well as the TK model fit (TV 

and nRMSE), whose improvement is the ultimate goal of this work. However, without a 

consensus on what are the best metrics for validation, any combination of metrics will be 

limited Zöllner et al. (2019). The lack of ground truth for the real data is also a limitation of 

this study. We tried addressing this issue by using a synthetic model, for which we have 

ground truth. Future work with synthetic models should incorporate more realistic 

characterizations of the various kinds of motion and apply them to data before image 

reconstruction to simulate both realistic motion and undersampling artifacts in the simulated 

images.
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Fig. 1. 
Visual abstract depicting the basic principles of this work. The DCE-MRI data acquired 

from the patients is misaligned due to motion and corrupted when acquired during motion 

events. Aligning the dynamic sequence of volumes is challenging due to differences in 

contrast between volumes and the presence of artifacts lowering the quality of each image. 

Our approach fits an LTI model to the data and reconstructs a noise and motion free 

sequence of dynamic template volumes. The method then registers every volume to its 

template with matched contrast and interpolates the outlier volumes corrupted by motion.
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Fig. 2. 
Line of voxels plotted over time for a sample repetition of the synthetic data experiment. 

Left, coronal reference image showing the line of voxels and the mask contour in red. Right, 

line of voxels over time for all registration methods (REFVOL, LiMo-MoCo, gPCA and No-

MoCo). Overlaid, the section of the mask that corresponds to the voxels plotted. The No-

MoCo panels present sharp discontinuities at the instances of motion that are corrected by 

the registration methods. Both REFVOL and LiMo-MoCo correctly align all the volumes, 

but REFVOL presents somewhat increased variability at the beginning of the sequence.
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Fig. 3. 
Box plot of the nRMSE between registered and ground truth volumes in the synthetic data 

experiments. The mean error due to alignment before registration is 2.67 in normalized 

units. Registration reduces the difference to 1.514 for LiMo-MoCo, 1.519 for REFVOL and 

1.632 for gPCA. Both LiMo-MoCo and REFVOL attained the smallest nRMSE of the 

registered images.
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Fig. 4. 
Consistency maps with the contours of the true kidney masks for three representative 

repetitions of the synthetic data experiment. The maps indicate the percentage of time that a 

voxel has been classified as kidney for each experiment. Voxels with values ∼ 100% indicate 

that these were consistently classified as kidney, while voxels with values between 0% and 

100% shifted classification during the sequence. The masks registered with the different 

algorithms present good alignment with the ground truth masks. However, most algorithms 

present shifts in position of the mask in 10% of the time. LiMo-MoCo was the most 

consistent method in time while attaining similar accuracy values with the other competing 

methods (DICE coefficient 0.953).
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Fig. 5. 
Top: Box plots with the DICE measure between the true mask and the masks aligned using 

the registration transforms. Bottom: Box plots of the average consistency of the registered 

masks. Both LiMo-MoCo and REFVOl attained the highest DICE coefficient (0.953 and 

0.958), however, the masks registered with LiMo-MoCo were more self-consistent than the 

rest of the algorithms.
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Fig. 6. 
Total Variation metric applied to the concentration curves after registration of the synthetic 

data experiments. The metric computes the difference in absolute value between the 

concentration curves before and after applying Gaussian smoothing. LiMo-MoCo presented 

the smallest variability of all registration methods, indicating that it reduced the 

discontinuities created by motion.
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Fig. 7. 
Parameter maps obtained after fitting the tracer kinetic model to the registered data and 

ground truth in one repetition of the synthetic experiment. The maps show the perfusion FP, 

the tubular flow FT and the nRMSE of the model fit (i.e. the goodness of fit). The parameter 

maps obtained with LiMo-MoCo present the highest similarity with the ground truth 

(average error in FT = 66 ± 125 and FP = 48 ± 62). Moreover, the residual error achieved 

with the proposed LiMo-MoCo was the smallest compared to other competing methods 

(0.94 ± 4.86).
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Fig. 8. 
Line of voxels plotted over time for example subjects in the patient data experiments. Left, 

coronal reference image showing the line of voxels in red. Right, line of plots for all 

registration methods and the No-MoCo baseline. Before registration, the voxel intensities 

present small oscillations, sharp discontinuities and outliers (indicated with red arrows). All 

registration methods corrected the small oscillations and most discontinuities. The “Total 

Variation” metric for the three subjects was (0.456, 0.232 and 0.354) for LiMo-MoCo, 

(0.498, 0.284 and 0.420) for REFVOL, (0.469, 0.261 and0.407) for gPCA and (0.451, 0.311 

and 0.419) for No-MoCo. LiMo-MoCo consistently aligned the volumes in time and 

corrected the volumes corrupted by motion with the LTI model.
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Fig. 9. 
Illustration of the temporal behavior before and after registration of a subject. Panels (a) and 

(b) illustrate coronal images for No-MoCo and after applying LiMo-MoCo, respectively. 

Panel (c) shows the signal intensity of a single voxel for No-MoCo, LiMo-MoCo and the 

LTI model. The position of the voxel is indicated with the red star in the coronal images and 

the dashed lines in panel (c) indicate the times at which the volumes in panels (a) and (b) 

were acquired. Before registration, the subject changes position between frames t2 and t4. 

During the motion event, the images become corrupted and all the signal is lost. LiMo-

MoCo correctly aligns the sequence of volumes and inpaints the corrupted volume with the 

LTI model. The Total Variation metric after registration was 0.35 compared to 0.42 in the 

No-MoCo case.
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Fig. 10. 
Results of the tracer kinetic fit. Comparison between LiMo-MoCo and No-Moco of three 

representative subjects of the patient data experiments. Left and middle columns correspond 

to the filtration parameters (FP and FT) and right column corresponds to the nRMSE of the 

model fit. The nRMSE for the three subjects was (0.172, 0.102 and 0.105) for LiMo-MoCo, 

(0.236, 0.010 and 0.107) for REFVOL, (0.175, 0.123 and 0.128) for gPCA, (0.241, 0.147 

and 0.151) for No-MoCo.After registration with LiMo-MoCo, the residual is reduced and 

the parameter maps allow to distinguish the cortex from the medulla of each subject.
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