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Abstract

Purpose of review—The increasing use of robotics in urologic surgery facilitates collection of 

“big data”. Machine learning (ML) enables computers to infer patterns from large datasets. This 

review aims to highlight recent findings and applications of ML in robotic-assisted urologic 

surgery.

Recent findings—ML has been used in surgical performance assessment and skill training, 

surgical candidate selection, and autonomous surgery. Autonomous segmentation and 

classification of surgical data have been explored, which serves as the stepping-stone for providing 

real-time surgical assessment and ultimately, improve surgical safety and quality. Predictive ML 

models have been created to guide appropriate surgical candidate selection, while intraoperative 

ML algorithms have been designed to provide 3-D augmented reality and real-time surgical 

margin checks. Reinforcement-learning strategies have been utilized in autonomous robotic 

surgery, and the combination of expert demonstrations and trial-and-error learning by the robot 

itself is a promising approach towards autonomy.

Summary—Robot-assisted urologic surgery coupled with machine learning is a burgeoning area 

of study that demonstrates exciting potential. However, further validation and clinical trials are 

required to ensure the safety and efficacy of incorporating ML into surgical practice.
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INTRODUCTION

As of 2019, 5,582 da Vinci® robotic surgical systems (Intuitive Surgical Inc., Sunnyvale, 

CA, USA) have been installed around the world and approximately 1,229,000 robotic-

assisted surgeries (RAS) are completed by these systems in a single year [1]. Aside from 
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urologic oncology, RAS have been used in urinary tract reconstruction, urolithiasis, and 

benign prostate hyperplasia [2]. The tremendous amount of data generated from a single 

RAS offers a unique opportunity to incorporate machine learning (ML) into surgical 

practice. This review explores ML applications in surgical assessment and training, 

preoperative treatment strategy, and autonomous robotic surgery, focusing on its advantages 

over the conventional methods. Finally, we discuss current challenges and future directions 

of ML in urologic surgery.

MACHINE LEARNING IN SURGICAL ASSESSMENT AND FEEDBACK

Surgical skills assessment has important implications for surgical training, accreditation, and 

patient outcomes [3]. Historically, skill assessment methodology relied on subjective and 

laborious evaluations prone to observer biases, making them impractical for timely delivery 

of surgical feedback. The intersection of ML and instantaneous robotics-derived “big data” 

is a rapidly evolving field that aims to objectively and efficiently evaluate surgical skill, 

facilitating timely delivery of meaningful surgical feedback (Table 1).

While ML enables the analysis of large datasets, clinically relevant interpretation remains 

difficult. Segmentation of surgical procedures at the step, task, and gesture level is one 

strategy to interpret ML output and reveal clinical meaning. Zia et al. [4] applied ML-based 

analysis of robot-assisted radical prostatectomy (RARP) to automate segmentation of the 12 

RARP surgical steps. Compared to human segmentation, the ML-based model correctly 

annotated most RARP step boundaries with <200 seconds error. ML has also been used to 

recognize surgical tasks (i.e., knot tying, suturing, and needle passing) in a simulated lab 

setting [5,6]. A prime example of ML application for surgical segmentation has been the 

JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS), a robotic surgical dataset 

collected through a collaboration between The Johns Hopkins University (JHU) and 

Intuitive Surgical, Inc. (Sunnyvale, CA. ISI). The dataset was captured using the da Vinci® 

surgical system (Intuitive Surgical Inc., Sunnyvale, CA, USA) from eight surgeons with 

different levels of skill, performing five repetitions of three elementary surgical tasks on a 

bench-top model: suturing, knot-tying and needle-passing, which are standard components 

of most surgical skills training curricula. The JIGSAWS dataset consists of three 

components: instrument kinematic data (Cartesian positions, orientations, velocities, angular 

velocities and gripper angle describing the motion of the surgeons), video data (stereo video 

captured from the endoscopic camera), and manual annotations including gesture (atomic 

surgical activity segment labels) and skill (using modified Objective Structured Assessments 

of Technical Skills). Khalid et al. [6] developed a ML model using the JIGSAWS video data 

to classify these surgical tasks and predict expertise and performance scores. ML analysis of 

surgical video has shown potential in automatically recognizing more basic movements in 

surgery, even those at the gesture level [7]. Such segmentation will allow for automation of 

postoperative reports broken down by surgical steps with detailed metrics describing gesture 

efficacy.

While these studies have made important contributions toward automation and analysis of 

skills assessment, they do not yet provide objective evaluation that might be used for 

surgeon feedback. Baghdadi et al. [8] described ML analysis of color and texture to 
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recognize anatomical structures during pelvic lymph node dissection and predict dissection 

quality. The automated skills assessment output from their model compares favorably with 

manually scored expert ratings of lymph node dissection quality (83.3% accuracy), setting 

the stage for further evaluation of these training tools.

ML analysis of surgical instrument kinematics offers another avenue for skills assessment 

[9]. Fard et al. [10] use ML analysis of global movement features (summary data describing 

raw kinematic tool movements, e.g., path length, speed, tortuosity) during knot tying and 

suturing tasks to predict surgeon expertise with >90% accuracy within seconds after task 

completion. Wang and Fey’s model [11] predicted surgeon expertise in these surgical task 

with similar accuracy; however, their model only required 1–3 second windows for data 

interpretation, making it especially useful for real-time feedback. Hung et al. [12] used ML 

analysis of raw kinematic data collected during a virtual needle driving exercise to predict 

virtual simulator scores and general surgical skills (e.g. needle targeting, instrument 

collision). Ershad et al. [13] combined kinematic surgical motions (i.e. hand and arm 

tracking) with evaluations of surgeons’ movement style (e.g., viscous vs. fluid). In this study, 

crowdsourced analysis of surgical video was used to create codebooks or ML-based 

classifier models that assign stylistic behaviors (e.g. fluid vs viscous, relaxed vs. tense) to 

surgical motion. The combination of these codebooks with kinematic data yielded a 68.5% 

increase in surgeon expertise classification compared to utilizing only kinematic data. While 

future work is required to assess the training implications of this automatic and rapid 

stylistic analysis, the emphasis on interpretable feedback using commonly understood 

adjectives makes this approach unique.

ML is compatible with diverse datasets, including biometric data (e.g., eye-tracking, 

electroencephalogram). ML has been used to accurately predict cognitive workload [14] and 

mentor’s trust level of a trainee [15]. Future integration of multimodal input with ML 

algorithms will allow for robust and multi-faceted skills assessment and training feedback.

Current ML applications in robotic surgery suggest that objective and efficient technical 

skills evaluation will be available in the near future. The efficiency with which ML can 

process large data sets makes it uniquely suited to supply interactive feedback, allowing the 

surgeon to refine skills in real-time. However, further work is required to show how these 

assessment tools can be incorporated into live surgery.

MACHINE LEARNING ALGORITHMS FACILITATE SURGICAL CANDIDATE 

SELECTION

With the abundance of information available from electronic health records and medical 

imaging, ML algorithms can aid in surgical candidate selection by improving diagnosis and 

disease characterization (Table 2). For example, ML analysis of computerized tomography 

(CT) images can differentiate small (≤ 4 cm) fat-poor angiomyolipomas from renal cell 

carcinomas (RCC) with 94% accuracy [16]. Furthermore, low- and high- Fuhrman nuclear 

grade RCC can be distinguished by ML models with accuracies ranging from 60 to 80% 

[17,18]. Such information would benefit both surgeons and patients for deciding on the best 

treatment strategy.
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ML algorithms can also inform patient treatment strategies. Auffenberg et al. [19] 

introduced a web-based platform to accurately predict management decisions (active 

surveillance, radical prostatectomy, radiation therapy, and androgen deprivation therapy) of 

newly diagnosed prostate cancer patients by comparing their demographic features and 

clinicopathologic data to a similar patient cohort in a multicenter clinical registry. This tool 

can potentially assist both patients and physicians in making appropriate, data-driven 

decisions regarding surgical management.

Furthermore, ML models can predict postsurgical outcomes, an important variable for 

surgical candidate selection. Klen et al. [20] introduced a ML model to identify preoperative 

risk factors for postoperative mortality following radical cystectomy, which achieved an area 

under the curve (AUC) of 0.73. Identifying high-risk surgical candidates allows physicians 

to provide appropriate counseling when discussing surgery. While ML models can aid 

physicians in making medical decisions, further work is needed to validate these models 

before they can be implemented in a clinical setting.

INTRAOPERATIVE SUPPORT BY MACHINE LEARNING

ML has also been adopted to provide intraoperative support (Table 3).

Real-time Surgical Margin Confirmation

Ensuring negative surgical margins (SM) is important to achieve optimal oncological 

outcomes. Conventionally, intraoperative frozen-section pathology has been used to 

determine SM status; however, tissue processing can impede operating room efficiency. With 

the application of ML and advancement in spectroscopy, there is a possibility to provide 

real-time SM assessment. Haifler et al. [21] showed that ML analysis of short-wave Ramen 

spectroscopy obtained from a benchtop workstation in the lab setting can differentiate renal 

cell carcinoma from benign renal tissues with an accuracy, sensitivity, and specificity of 

92.5%, 95.8%, and 88.8%, respectively. This process does not require special lighting 

conditions, supporting the future possibility of real-time SM evaluation while in the 

operation room [21].

Combination of Machine Learning and Augmented Reality

Augmented reality (AR), which overlays digital content onto the physical world, can be used 

to superimpose preoperative images onto robotic console during surgery. The combination 

of ML with AR can further enhance the safety and quality of surgery. Porpiglia et al. [22,23] 

used magnetic resonance imaging (MRI) to create 3D prostate models, which enable 

surgeons to visualize cancer features during prostatectomy, especially extracapsular 

extension (ECE) conditions. After successfully merging the 3D models with the da Vinci ® 

surgical console view (Intuitive Surgical Inc., Sunnyvale, CA, USA) in live surgeries, they 

automated this process by developing a computer vision algorithm [24] to anchor the virtual 

3D models to the live surgical view of the prostate. Based on these models, metallic clips 

were placed on regions suspicious for ECE before removal of the neurovascular bundle. 

Final pathological examination confirmed cancer presence in all clipped spots of pT3 cases 

with a mean ECE length of 4mm [24]. A comparison between surgical teams with and 
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without 3D AR guidance revealed that the virtual reality model significantly increased ECE 

identification (47.0% vs 100%, p = 0.002) [23]. The authors note that this technique can not 

only be used in prostate surgery, but potentially also in robotic partial nephrectomy, 

especially for endophytic or posteriorly located tumors. While further validation is required, 

3D AR promises to advance intraoperative navigation and optimize the balance between 

avoiding positive SM and maximizing functional preservation.

APPLICATION OF MACHINE LEARNING IN AUTONOMOUS SURGERIES

RAS systems provide an excellent platform for ML-guided autonomous surgery [25]. 

Autonomy of surgical robots ranges from no automation to full automation without the need 

of human support [26] (Fig 1). In urology, RAS systems are currently at the stage of surgeon 
assistance, as robots provide surgeons with magnified visualization, improved dexterity, and 

mitigated instrument tremors. Ongoing work is exploring the feasibility of partial 

automation, in which robots perform repetitive tasks (e.g. camera positioning and tissue 

retraction), enabling surgeons to concentrate on the critical aspects of a procedure (Table 3). 

ML can enhance RAS by using computer vision models to perceive surgical environments, 

and reinforcement-learning methods to learn from a surgeon’s physical motions [27]. The 

unique ability of ML to learn from prior experience enables robots to process novel data, 

much like how a surgeon deals with different anatomical variances among patients.

Autonomous Camera Positioning

Three sources of data have been utilized by ML algorithms to achieve autonomous camera 

positioning: instrument kinematics [28], laparoscopic video [29], and surgeon eye-tracking 

[30].

By using kinematic data from surgical instruments, these algorithms will not be affected by 

any visual occlusion in the operative field [28]. However, such algorithms require accurate 

instrument positions, which is not feasible in traditional laparoscopic surgery or when 

instrument coordinates cannot be obtained by the robotic system. These shortcomings can be 

overcome by ML analysis of laparoscopic video. Blanco et al. [31] have designed a ML 

algorithm that can utilize real-time surgical video to automatically orient the laparoscopic 

camera. They have validated the feasibility of the algorithm in an in-vivo pig experiment. 

Eye tracking is another technique to achieve camera automation. A new robotic system, the 

Senhance®, uses an algorithm to center the image at the point of focus of the surgeon. The 

initial clinical report suggests that the eye tracking feature requires 45–60 minutes of 

training and a preoperative calibration to the surgeon’s eyes before each session [30,32]. 

After achieving proficiency in camera operation, this system facilitates the visual flow of the 

procedure [30].

Autonomous Tissue Dissection, Suturing, and Knot Tying

Compared to autonomous camera positioning, other automatic surgical tasks are more 

difficult to achieve, such as suturing, knot tying, and tissue dissection. A robot must “see”, 

“think”, and “act” in order to autonomously complete these tasks [33].
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The first step is to “see” – vision recognition. One advantage of ML is it can process optical 

signals that the human eye and brain are not capable of processing. Samiei et al. [34] 

adopted a computer vision model to process data collected by a molecular chemical imaging 

endoscope, a novel technique which combines molecular spectroscopy and digital imaging 

in real-time. The system successfully identified anatomical structures such as the ureter, 

lymph node, blood vessels, and nerve bundles versus tissue background, with an AUC ≥ 

0.90 in live porcine models. This technique has the potential to supplement a surgeon’s 

conventional view, avoid iatrogenic injury and shed light on a new method that can facilitate 

autonomous surgery design.

The second step is to “think” – task planning. Osa et al. [35] designed an algorithm which 

can plan instrument trajectories based on human demonstrations in dissection, suturing, and 

knot-tying tasks. They validated its ability to fulfill predefined tasks under dynamic 

conditions in a lab setting. Baek et al. [36] utilized the reinforcement-learning model to 

effectively avoid instrument - tissue collisions during automatic trajectory planning phase.

The final step is to “act” – task execution. Delicate and pliable human tissue requires 

complex models to employ appropriate force, especially during tissue retractions. 

Thananjeyan et al. [37] adopted a deep reinforcement learning model, namely trust region 

policy optimization (TRPO), to control the retraction tension during dissection process. The 

new model outperformed conventional models (i.e., fixed and analytic approach) in 

simulated cutting tasks. Another group [38] further developed this algorithm by allowing a 

multipoint retraction, rather than single-point, and improved both accuracy and reliability. 

On the other hand, Alambeigi et al. [39] focused on tissue retraction during cryoablation of 

kidney masses. By using a vision-based optimization framework, they successfully 

manipulated the tissue to predefined cryoablation-needle insertion locations in an ex vivo 
lamb kidney. Their algorithm can estimate tissue deformation in real-time, thus is useful 

when handling tissues with unknown physical properties. Despite tremendous improvement 

in modeling and programming technology in recent years, these retraction models are 

limited to computer simulation or controlled lab settings. While further testing on animal 

models is required, these prototypes may inspire even more powerful algorithms capable of 

being incorporated into the live surgical setting.

Training Machine Learning Models

Much like training a surgeon, the process of training a ML model is important for its surgical 

performance. Reinforcement learning is the most frequently applied ML strategy in 

autonomous surgery. These algorithms can learn through expert demonstration, through 

trial-and-error, or through a hybrid approach [27]. Shin et al. [40] found that ML models 

with expert surgical demonstration learned faster than models that are purely data-driven, 

highlighting the importance of expert experience in guiding the model’s learning process. 

Another study from Pedram et al. [41] combined these two methods together, and found that 

with a careful initial selection of simple and intuitive features instructed by surgeons, the 

mixed ML algorithm can be trained successfully in multiple tissue dynamic circumstances. 

This method may serve as an efficient model to balance the time of a surgeon training the 

algorithm and the best learning effect of it.
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Current Products and Future Directions

A number of studies have attempted to combine all aforementioned aspects to produce a 

final product. In 2016, Shademan et al. developed an anastomosis robot (STAR) system to 

automatically perform end-to-end intestinal anastomosis with the help of a human retraction 

assistant in the open surgical setting [42]. The team updated STAR in recent years by 

adopting a new 3D imaging endoscope and a suturing planning strategy. It outperformed 

manual suturing on the consistency of suture bite and number of suture repositioning [43].

CHALLENGES AND LIMITATIONS

Despite the promise of ML, there are formidable obstacles and limitations. One of the 

overriding problems involves data availability. In order to train ML models, large-scale and 

high-quality surgical data must be manually collected in the clinical setting, a task which is 

rarely completed outside of research settings currently. Another challenge involves the 

security of high-volume surgical data. Safety protocols must be designed to process sensitive 

patient information without violating patient privacy regulations. Finally, closes 

collaboration between surgeons and engineers is required. The best ML strategy for 

autonomous surgery now is learning from both expert demonstrations and trial-and-error. 

Thus, only by intimate interdisciplinary collaboration, such a learning method can be 

realized [44].

CONCLUSIONS

The intersection of ML and robotics-derived “big data” is a rapidly evolving area of study, 

harboring the potential to optimize surgical safety and quality. Multiple studies have utilized 

ML models to provide objective and efficient surgical assessment, with the ultimate goal of 

providing timely and meaningful surgical feedback intraoperatively to prevent adverse 

events. Predictive ML models have been used to guide surgical patient selection. Finally, ML 

empowers surgical robots to learn procedures autonomously through expert demonstrations, 

trial-and-error, or a hybrid of these two approaches. With the rapid development of computer 

science and surgical techniques, the narrative of applying ML in the surgical field has just 

begun.
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KEY POINTS

• The intersection of machine learning (ML) and robotics-derived “big data” is 

a rapidly evolving field.

• ML has the potential to provide objective, efficient, and scalable surgical 

assessment.

• ML can accurately make preoperative diagnoses and surgical risk assessments 

to optimize surgical candidate selection.

• ML allows robots to learn surgical procedures autonomously through either 

expert demonstration, trial-and-error, or both.

• Future applications of ML require secure and robust surgical data acquisition 

with close collaboration between surgeons and engineers.

Ma et al. Page 11

Curr Opin Urol. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Applications of machine learning in urologic surgery
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