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Abstract

Purpose of review—The increasing use of robaotics in urologic surgery facilitates collection of
“big data”. Machine learning (ML) enables computers to infer patterns from large datasets. This
review aims to highlight recent findings and applications of ML in robotic-assisted urologic
surgery.

Recent findings—ML has been used in surgical performance assessment and skill training,
surgical candidate selection, and autonomous surgery. Autonomous segmentation and
classification of surgical data have been explored, which serves as the stepping-stone for providing
real-time surgical assessment and ultimately, improve surgical safety and quality. Predictive ML
models have been created to guide appropriate surgical candidate selection, while intraoperative
ML algorithms have been designed to provide 3-D augmented reality and real-time surgical
margin checks. Reinforcement-learning strategies have been utilized in autonomous robotic
surgery, and the combination of expert demonstrations and trial-and-error learning by the robot
itself is a promising approach towards autonomy.

Summary—Robot-assisted urologic surgery coupled with machine learning is a burgeoning area
of study that demonstrates exciting potential. However, further validation and clinical trials are
required to ensure the safety and efficacy of incorporating ML into surgical practice.
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INTRODUCTION

As of 2019, 5,582 da Vinci® robotic surgical systems (Intuitive Surgical Inc., Sunnyvale,
CA, USA) have been installed around the world and approximately 1,229,000 robotic-
assisted surgeries (RAS) are completed by these systems in a single year [1]. Aside from
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urologic oncology, RAS have been used in urinary tract reconstruction, urolithiasis, and
benign prostate hyperplasia [2]. The tremendous amount of data generated from a single
RAS offers a unique opportunity to incorporate machine learning (ML) into surgical
practice. This review explores ML applications in surgical assessment and training,
preoperative treatment strategy, and autonomous robotic surgery, focusing on its advantages
over the conventional methods. Finally, we discuss current challenges and future directions
of ML in urologic surgery.

MACHINE LEARNING IN SURGICAL ASSESSMENT AND FEEDBACK

Surgical skills assessment has important implications for surgical training, accreditation, and
patient outcomes [3]. Historically, skill assessment methodology relied on subjective and
laborious evaluations prone to observer biases, making them impractical for timely delivery
of surgical feedback. The intersection of ML and instantaneous robotics-derived “big data”
is a rapidly evolving field that aims to objectively and efficiently evaluate surgical skill,
facilitating timely delivery of meaningful surgical feedback (Table 1).

While ML enables the analysis of large datasets, clinically relevant interpretation remains
difficult. Segmentation of surgical procedures at the step, task, and gesture level is one
strategy to interpret ML output and reveal clinical meaning. Zia et al. [4] applied ML-based
analysis of robot-assisted radical prostatectomy (RARP) to automate segmentation of the 12
RARP surgical steps. Compared to human segmentation, the ML-based model correctly
annotated most RARP step boundaries with <200 seconds error. ML has also been used to
recognize surgical tasks (i.e., knot tying, suturing, and needle passing) in a simulated lab
setting [5,6]. A prime example of ML application for surgical segmentation has been the
JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS), a robotic surgical dataset
collected through a collaboration between The Johns Hopkins University (JHU) and
Intuitive Surgical, Inc. (Sunnyvale, CA. ISI). The dataset was captured using the da Vinci®
surgical system (Intuitive Surgical Inc., Sunnyvale, CA, USA) from eight surgeons with
different levels of skill, performing five repetitions of three elementary surgical tasks on a
bench-top model: suturing, knot-tying and needle-passing, which are standard components
of most surgical skills training curricula. The JIGSAWS dataset consists of three
components: instrument kinematic data (Cartesian positions, orientations, velocities, angular
velocities and gripper angle describing the motion of the surgeons), video data (stereo video
captured from the endoscopic camera), and manual annotations including gesture (atomic
surgical activity segment labels) and skill (using modified Objective Structured Assessments
of Technical Skills). Khalid et al. [6] developed a ML model using the IGSAWS video data
to classify these surgical tasks and predict expertise and performance scores. ML analysis of
surgical video has shown potential in automatically recognizing more basic movements in
surgery, even those at the gesture level [7]. Such segmentation will allow for automation of
postoperative reports broken down by surgical steps with detailed metrics describing gesture
efficacy.

While these studies have made important contributions toward automation and analysis of
skills assessment, they do not yet provide objective evaluation that might be used for
surgeon feedback. Baghdadi et al. [8] described ML analysis of color and texture to
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recognize anatomical structures during pelvic lymph node dissection and predict dissection
quality. The automated skills assessment output from their model compares favorably with
manually scored expert ratings of lymph node dissection quality (83.3% accuracy), setting
the stage for further evaluation of these training tools.

ML analysis of surgical instrument kinematics offers another avenue for skills assessment
[9]. Fard et al. [10] use ML analysis of global movement features (summary data describing
raw kinematic tool movements, e.g., path length, speed, tortuosity) during knot tying and
suturing tasks to predict surgeon expertise with >90% accuracy within seconds after task
completion. Wang and Fey’s model [11] predicted surgeon expertise in these surgical task
with similar accuracy; however, their model only required 1-3 second windows for data
interpretation, making it especially useful for real-time feedback. Hung et al. [12] used ML
analysis of raw kinematic data collected during a virtual needle driving exercise to predict
virtual simulator scores and general surgical skills (e.g. needle targeting, instrument
collision). Ershad et al. [13] combined kinematic surgical motions (i.e. hand and arm
tracking) with evaluations of surgeons” movement style (e.g., viscous vs. fluid). In this study,
crowdsourced analysis of surgical video was used to create codebooks or ML-based
classifier models that assign stylistic behaviors (e.g. fluid vs viscous, relaxed vs. tense) to
surgical motion. The combination of these codebooks with kinematic data yielded a 68.5%
increase in surgeon expertise classification compared to utilizing only kinematic data. While
future work is required to assess the training implications of this automatic and rapid
stylistic analysis, the emphasis on interpretable feedback using commonly understood
adjectives makes this approach unique.

ML is compatible with diverse datasets, including biometric data (e.g., eye-tracking,
electroencephalogram). ML has been used to accurately predict cognitive workload [14] and
mentor’s trust level of a trainee [15]. Future integration of multimodal input with ML
algorithms will allow for robust and multi-faceted skills assessment and training feedback.

Current ML applications in robotic surgery suggest that objective and efficient technical
skills evaluation will be available in the near future. The efficiency with which ML can
process large data sets makes it uniquely suited to supply interactive feedback, allowing the
surgeon to refine skills in real-time. However, further work is required to show how these
assessment tools can be incorporated into live surgery.

MACHINE LEARNING ALGORITHMS FACILITATE SURGICAL CANDIDATE
SELECTION

With the abundance of information available from electronic health records and medical
imaging, ML algorithms can aid in surgical candidate selection by improving diagnosis and
disease characterization (Table 2). For example, ML analysis of computerized tomography
(CT) images can differentiate small (< 4 cm) fat-poor angiomyolipomas from renal cell
carcinomas (RCC) with 94% accuracy [16]. Furthermore, low- and high- Fuhrman nuclear
grade RCC can be distinguished by ML models with accuracies ranging from 60 to 80%
[17,18]. Such information would benefit both surgeons and patients for deciding on the best
treatment strategy.
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ML algorithms can also inform patient treatment strategies. Auffenberg et al. [19]
introduced a web-based platform to accurately predict management decisions (active
surveillance, radical prostatectomy, radiation therapy, and androgen deprivation therapy) of
newly diagnosed prostate cancer patients by comparing their demographic features and
clinicopathologic data to a similar patient cohort in a multicenter clinical registry. This tool
can potentially assist both patients and physicians in making appropriate, data-driven
decisions regarding surgical management.

Furthermore, ML models can predict postsurgical outcomes, an important variable for
surgical candidate selection. Klen et al. [20] introduced a ML model to identify preoperative
risk factors for postoperative mortality following radical cystectomy, which achieved an area
under the curve (AUC) of 0.73. Identifying high-risk surgical candidates allows physicians
to provide appropriate counseling when discussing surgery. While ML models can aid
physicians in making medical decisions, further work is needed to validate these models
before they can be implemented in a clinical setting.

INTRAOPERATIVE SUPPORT BY MACHINE LEARNING

ML has also been adopted to provide intraoperative support (Table 3).

Real-time Surgical Margin Confirmation

Ensuring negative surgical margins (SM) is important to achieve optimal oncological
outcomes. Conventionally, intraoperative frozen-section pathology has been used to
determine SM status; however, tissue processing can impede operating room efficiency. With
the application of ML and advancement in spectroscopy, there is a possibility to provide
real-time SM assessment. Haifler et al. [21] showed that ML analysis of short-wave Ramen
spectroscopy obtained from a benchtop workstation in the lab setting can differentiate renal
cell carcinoma from benign renal tissues with an accuracy, sensitivity, and specificity of
92.5%, 95.8%, and 88.8%, respectively. This process does not require special lighting
conditions, supporting the future possibility of real-time SM evaluation while in the
operation room [21].

Combination of Machine Learning and Augmented Reality

Augmented reality (AR), which overlays digital content onto the physical world, can be used
to superimpose preoperative images onto robotic console during surgery. The combination
of ML with AR can further enhance the safety and quality of surgery. Porpiglia et al. [22,23]
used magnetic resonance imaging (MRI) to create 3D prostate models, which enable
surgeons to visualize cancer features during prostatectomy, especially extracapsular
extension (ECE) conditions. After successfully merging the 3D models with the da Vinci ®
surgical console view (Intuitive Surgical Inc., Sunnyvale, CA, USA) in live surgeries, they
automated this process by developing a computer vision algorithm [24] to anchor the virtual
3D models to the live surgical view of the prostate. Based on these models, metallic clips
were placed on regions suspicious for ECE before removal of the neurovascular bundle.
Final pathological examination confirmed cancer presence in all clipped spots of pT3 cases
with a mean ECE length of 4mm [24]. A comparison between surgical teams with and

Curr Opin Urol. Author manuscript; available in PMC 2021 November 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ma et al.

Page 5

without 3D AR guidance revealed that the virtual reality model significantly increased ECE
identification (47.0% vs 100%, p = 0.002) [23]. The authors note that this technique can not
only be used in prostate surgery, but potentially also in robotic partial nephrectomy,
especially for endophytic or posteriorly located tumors. While further validation is required,
3D AR promises to advance intraoperative navigation and optimize the balance between
avoiding positive SM and maximizing functional preservation.

APPLICATION OF MACHINE LEARNING IN AUTONOMOUS SURGERIES

RAS systems provide an excellent platform for ML-guided autonomous surgery [25].
Autonomy of surgical robots ranges from no automation to full automation without the need
of human support [26] (Fig 1). In urology, RAS systems are currently at the stage of surgeon
assistance, as robots provide surgeons with magnified visualization, improved dexterity, and
mitigated instrument tremors. Ongoing work is exploring the feasibility of partial
automation, in which robots perform repetitive tasks (e.g. camera positioning and tissue
retraction), enabling surgeons to concentrate on the critical aspects of a procedure (Table 3).
ML can enhance RAS by using computer vision models to perceive surgical environments,
and reinforcement-learning methods to learn from a surgeon’s physical motions [27]. The
unique ability of ML to learn from prior experience enables robots to process novel data,
much like how a surgeon deals with different anatomical variances among patients.

Autonomous Camera Positioning

Three sources of data have been utilized by ML algorithms to achieve autonomous camera
positioning: instrument kinematics [28], laparoscopic video [29], and surgeon eye-tracking
[30].

By using kinematic data from surgical instruments, these algorithms will not be affected by
any visual occlusion in the operative field [28]. However, such algorithms require accurate
instrument positions, which is not feasible in traditional laparoscopic surgery or when
instrument coordinates cannot be obtained by the robotic system. These shortcomings can be
overcome by ML analysis of laparoscopic video. Blanco et al. [31] have designed a ML
algorithm that can utilize real-time surgical video to automatically orient the laparoscopic
camera. They have validated the feasibility of the algorithm in an in-vivo pig experiment.
Eye tracking is another technique to achieve camera automation. A new robotic system, the
Senhance®, uses an algorithm to center the image at the point of focus of the surgeon. The
initial clinical report suggests that the eye tracking feature requires 45-60 minutes of
training and a preoperative calibration to the surgeon’s eyes before each session [30,32].
After achieving proficiency in camera operation, this system facilitates the visual flow of the
procedure [30].

Autonomous Tissue Dissection, Suturing, and Knot Tying

Compared to autonomous camera positioning, other automatic surgical tasks are more
difficult to achieve, such as suturing, knot tying, and tissue dissection. A robot must “see”,
“think”, and “act” in order to autonomously complete these tasks [33].
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The first step is to “see” — vision recognition. One advantage of ML is it can process optical
signals that the human eye and brain are not capable of processing. Samiei et al. [34]
adopted a computer vision model to process data collected by a molecular chemical imaging
endoscope, a novel technique which combines molecular spectroscopy and digital imaging
in real-time. The system successfully identified anatomical structures such as the ureter,
lymph node, blood vessels, and nerve bundles versus tissue background, with an AUC >
0.90 in live porcine models. This technique has the potential to supplement a surgeon’s
conventional view, avoid iatrogenic injury and shed light on a new method that can facilitate
autonomous surgery design.

The second step is to “think” — task planning. Osa et al. [35] designed an algorithm which
can plan instrument trajectories based on human demonstrations in dissection, suturing, and
knot-tying tasks. They validated its ability to fulfill predefined tasks under dynamic
conditions in a lab setting. Baek et al. [36] utilized the reinforcement-learning model to
effectively avoid instrument - tissue collisions during automatic trajectory planning phase.

The final step is to “act” — task execution. Delicate and pliable human tissue requires
complex models to employ appropriate force, especially during tissue retractions.
Thananjeyan et al. [37] adopted a deep reinforcement learning model, namely trust region
policy optimization (TRPO), to control the retraction tension during dissection process. The
new model outperformed conventional models (i.e., fixed and analytic approach) in
simulated cutting tasks. Another group [38] further developed this algorithm by allowing a
multipoint retraction, rather than single-point, and improved both accuracy and reliability.
On the other hand, Alambeigi et al. [39] focused on tissue retraction during cryoablation of
kidney masses. By using a vision-based optimization framework, they successfully
manipulated the tissue to predefined cryoablation-needle insertion locations in an ex vivo
lamb Kkidney. Their algorithm can estimate tissue deformation in real-time, thus is useful
when handling tissues with unknown physical properties. Despite tremendous improvement
in modeling and programming technology in recent years, these retraction models are
limited to computer simulation or controlled lab settings. While further testing on animal
models is required, these prototypes may inspire even more powerful algorithms capable of
being incorporated into the live surgical setting.

Training Machine Learning Models

Much like training a surgeon, the process of training a ML model is important for its surgical
performance. Reinforcement learning is the most frequently applied ML strategy in
autonomous surgery. These algorithms can learn through expert demonstration, through
trial-and-error, or through a hybrid approach [27]. Shin et al. [40] found that ML models
with expert surgical demonstration learned faster than models that are purely data-driven,
highlighting the importance of expert experience in guiding the model’s learning process.
Another study from Pedram et al. [41] combined these two methods together, and found that
with a careful initial selection of simple and intuitive features instructed by surgeons, the
mixed ML algorithm can be trained successfully in multiple tissue dynamic circumstances.
This method may serve as an efficient model to balance the time of a surgeon training the
algorithm and the best learning effect of it.
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Current Products and Future Directions

A number of studies have attempted to combine all aforementioned aspects to produce a
final product. In 2016, Shademan et al. developed an anastomosis robot (STAR) system to
automatically perform end-to-end intestinal anastomosis with the help of a human retraction
assistant in the open surgical setting [42]. The team updated STAR in recent years by
adopting a new 3D imaging endoscope and a suturing planning strategy. It outperformed
manual suturing on the consistency of suture bite and number of suture repositioning [43].

CHALLENGES AND LIMITATIONS

Despite the promise of ML, there are formidable obstacles and limitations. One of the
overriding problems involves data availability. In order to train ML models, large-scale and
high-quality surgical data must be manually collected in the clinical setting, a task which is
rarely completed outside of research settings currently. Another challenge involves the
security of high-volume surgical data. Safety protocols must be designed to process sensitive
patient information without violating patient privacy regulations. Finally, closes
collaboration between surgeons and engineers is required. The best ML strategy for
autonomous surgery now is learning from both expert demonstrations and trial-and-error.
Thus, only by intimate interdisciplinary collaboration, such a learning method can be
realized [44].

CONCLUSIONS

The intersection of ML and robotics-derived “big data” is a rapidly evolving area of study,
harboring the potential to optimize surgical safety and quality. Multiple studies have utilized
ML models to provide objective and efficient surgical assessment, with the ultimate goal of
providing timely and meaningful surgical feedback intraoperatively to prevent adverse
events. Predictive ML models have been used to guide surgical patient selection. Finally, ML
empowers surgical robots to learn procedures autonomously through expert demonstrations,
trial-and-error, or a hybrid of these two approaches. With the rapid development of computer
science and surgical techniques, the narrative of applying ML in the surgical field has just
begun.

FINANCIAL SUPPORT AND SPONSORSHIP

Supported in part by the National Institute Of Biomedical Imaging And Bioengineering of the National Institutes of
Health under Award Number K23EB026493

REFERENCES AND RECOMMENDED READING

Papers of particular interest, published within the annual period of review, have been
highlighted as:

* of special interest
** of outstanding interest

1. Intuitive Surgical: 2019 Annual Report. 2020.

Curr Opin Urol. Author manuscript; available in PMC 2021 November 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ma et al.

Page 8

2. Navaratnam A, Abdul-Muhsin H, Humphreys M: Updates in Urologic Robot Assisted Surgery.
F1000Res 2018, 7:1948.

3. Palagonia E, Mazzone E, De Naeyer G, D’Hondt F, Collins J, Wisz P, van Leeuwen FWB, Van Der
Poel H, Schatteman P, Mottrie A, et al.: The safety of urologic robotic surgery depends on the skills
of the surgeon. World J Urol 2020, 38:1373-1383. [PubMed: 31428847]

*4. Zia A, Guo L, Zhou L, Essa I, Jarc A: Novel evaluation of surgical activity recognition models
using task-based efficiency metrics. Int J Comput Assist Radiol Surg 2019, 14:2155-2163.
[PubMed: 31267333] Autonomous segmentation of robotic-assisted radical prostatectomy videos
into 12 steps, suggesting the possibility of real-time efficiency reports broken down at the step
level.

5. Funke I, Mees ST, Weitz J, Speidel S: Video-based surgical skill assessment using 3D convolutional

neural networks. Int J Comput Assist Radiol Surg 2019, 14:1217-1225. [PubMed: 31104257]

** 6. Khalid S, Goldenberg M, Grantcharov T, Taati B, Rudzicz F: Evaluation of Deep Learning
Models for Identifying Surgical Actions and Measuring Performance. JAMA Netw Open 2020,
3:6201664-e201664. [PubMed: 32227178] This study pioneered models processing raw video
footage to accurately detect surgical actions (needle passing, suturing, knot tying) and predict
performance levels (novice, intermediate, expert).

7. Hung A, Aastha, Nguyen J, Aron K, Damerla V, Liu Y: DEEP-LEARNING BASED COMPUTER
VISION TO AUTOMATE IDENTIFICATION OF SUTURING GESTURES. The Journal of
Urology 2020, 203:e506.

* 8. Baghdadi A, Hussein AA, Ahmed Y, Cavuoto LA, Guru KA: A computer vision technique for
automated assessment of surgical performance using surgeons’ console-feed videos. Int J
Comput Assist Radiol Surg 2019, 14:697-707. [PubMed: 30460490] The machine learning
model can provide prostatectomy assessment and competency evaluation (PACE) scores with
high accuracy.

** 9. Hung AJ, Chen J, Gill IS: Automated Performance Metrics and Machine Learning Algorithms to
Measure Surgeon Performance and Anticipate Clinical Outcomes in Robotic Surgery. JAMA
Surg 2018, 153:770-771. [PubMed: 29926095] One of the pioneered studies that adopted
machine learning models to link surgeon performance with patient outcomes, suggesting an
outcome-based assessment method.

10. Fard MJ, Ameri S, Ellis RD, Chinnam RB, Pandya AK, Klein MD: Automated robot-assisted
surgical skill evaluation: Predictive analytics approach. The International Journal of Medical
Robotics and Computer Assisted Surgery 2018, 14:e1850.

*11. Wang Z, Majewicz Fey A: Deep learning with convolutional neural network for objective skill
evaluation in robot-assisted surgery. Int J Comput Assist Radiol Surg 2018, 13:1959-1970.
[PubMed: 30255463] A fast processing machine learning model was designed, potentializing
real-time surgical skill assessment.

12. Hung A, Aastha JN, Liu Y: DEEP LEARNING MODELS TO PREDICT PSYCHOMOTOR
ERRORS USING RAW KINEMATIC DATA FROM VIRTUAL REALITY SIMULATOR. The
Journal of Urology 2020, 203:691.

13. Ershad M, Rege R, Majewicz Fey A: Automatic and near real-time stylistic behavior assessment in
robotic surgery. Int J Comput Assist Radiol Surg 2019, 14:635-643. [PubMed: 30779023]

14. Wu C, Cha J, Sulek J, Zhou T, Sundaram CP, Wachs J, Yu D: Eye-Tracking Metrics Predict
Perceived Workload in Robotic Surgical Skills Training. Hum Factors 2019,
57:18720819874544.Eye-tracking metrics was used in this study, suggesting machine learning is
compatible with multimodal datasets.

* 15. Shafiei SB, Hussein AA, Muldoon SF, Guru KA: Functional Brain States Measure Mentor-
Trainee Trust during Robot-Assisted Surgery. Sci Rep 2018, 8:3667-12. [PubMed: 29483564]
Electroencephalogram waveforms were used in this study, suggesting machine learning is
compatible with multimodal datasets.

*16. Feng Z, Rong P, Cao P, Zhou Q, Zhu W, Yan Z, Liu Q, Wang W: Machine learning-based
quantitative texture analysis of CT images of small renal masses: Differentiation of
angiomyolipoma without visible fat from renal cell carcinoma. Eur Radiol 2018, 28:1625-1633.
[PubMed: 29134348] This article belongs to computer vision, one of the most rapid-growing
areas in recent years.

Curr Opin Urol. Author manuscript; available in PMC 2021 November 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ma et al.

Page 9

17. Kocak B, Durmaz ES, Ates E, Kaya OK, Kilickesmez O: Unenhanced CT Texture Analysis of
Clear Cell Renal Cell Carcinomas: A Machine Learning-Based Study for Predicting
Histopathologic Nuclear Grade. AJR Am J Roentgenol 2019, 212:W1-W8. [PubMed: 30403531]

18. Lin F, Cui E-M, Lei Y, Luo L-P: CT-based machine learning model to predict the Fuhrman nuclear
grade of clear cell renal cell carcinoma. Abdom Radiol (NY) 2019, 44:2528-2534. [PubMed:
30919041]

**19. Auffenberg GB, Ghani KR, Ramani S, Usoro E, Denton B, Rogers C, Stockton B, Miller DC,
Singh K, Michigan Urological Surgery Improvement Collaborative: askMUSIC: Leveraging a
Clinical Registry to Develop a New Machine Learning Model to Inform Patients of Prostate
Cancer Treatments Chosen by Similar Men. Eur. Urol 2019, 75:901-907. [PubMed: 30318331]
One of the works by Michigan Urological Surgery Improvement Collaborative (MUSIC),
highlights the function of machine learning in informing patient of treatment options.

20. Klén R, Salminen AP, Mahmoudian M, Syvénen KT, Elo LL, Bostrom PJ: Prediction of
complication related death after radical cystectomy for bladder cancer with machine learning
methodology. Scand J Urol 2019, 53:325-331. [PubMed: 31552774]

21. Haifler M, Pence I, Sun Y, Kutikov A, Uzzo RG, Mahadevan-Jansen A, Patil CA: Discrimination
of malignant and normal kidney tissue with short wave infrared dispersive Raman spectroscopy.
Journal of Biophotonics 2018, 11:€201700188. [PubMed: 29411949]

22. Porpiglia F, Checcucci E, Amparore D, Autorino R, Piana A, Bellin A, Piazzolla P, Massa F,
Bollito E, Gned D, et al.: Augmented-reality robot-assisted radical prostatectomy using hyper-
accuracy three-dimensional reconstruction (HA3D ™) technology: a radiological and pathological
study. BJU Int. 2019, 123:834-845. [PubMed: 30246936]

23. Porpiglia F, Checcucci E, Amparore D, Manfredi M, Massa F, Piazzolla P, Manfrin D, Piana A,
Tota D, Bollito E, et al.: Three-dimensional Elastic Augmented-reality Robot-assisted Radical
Prostatectomy Using Hyperaccuracy Three-dimensional Reconstruction Technology: A Step
Further in the Identification of Capsular Involvement. Eur. Urol 2019, doi:10.1016/
j.eururo.2019.03.037.

24. Porpiglia F, Checcucci E, Amparore D, Piana A, Piramide F, Volpi G, De Cillis S, Manfredi M,
Fiori C, Pietro Piazzolla, et al.: EXTRACAPSULAR EXTENSION ON NEUROVASCULAR
BUNDLES DURING ROBOT-ASSISTED RADICAL PROSTATECTOMY PRECISELY
LOCALIZED BY 3D AUTOMATIC AUGMENTED-REALITY RENDERING. The Journal of
Urology 2020, 203:e1297.

25. Goldenberg SL, Nir G, Salcudean SE: A new era: artificial intelligence and machine learning in
prostate cancer. Nat Rev Urol 2019, 16:391-403. [PubMed: 31092914]

26. Topol EJ: High-performance medicine: the convergence of human and artificial intelligence. Nat.
Med 2019, 25:44-56. [PubMed: 30617339]

27. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, Cui C, Corrado G, Thrun
S, Dean J: A guide to deep learning in healthcare. Nat. Med 2019, 25:24-29. [PubMed: 30617335]

28. Wang Z, Zi B, Ding H, You W, Yu L: Hybrid grey prediction model-based autotracking algorithm
for the laparoscopic visual window of surgical robot. Mechanism and Machine Theory 2018,
123:107-123.

29. Sun'Y, Pan B, Fu Y, Cao F: Development of a novel intelligent laparoscope system for semi-
automatic minimally invasive surgery. The International Journal of Medical Robotics and
Computer Assisted Surgery 2020, 16:879.

30. deBeche-Adams T, Eubanks WS, la Fuente de SG: Early experience with the Senhance®-
laparoscopic/robotic platform in the US. Journal of Robotic Surgery 2019, 13:357-359. [PubMed:
30426353]

* 31. Rivas-Blanco I, Lépez-Casado C, Pérez-del-Pulgar CJ, Garcia-Vacas F, Fraile JC, Mufioz VF:
Smart Cable-Driven Camera Robotic Assistant. IEEE Transactions on Human-Machine Systems
2018, 48:183-196.This study has innovations in both hardware and software in order to automate
camera positioning; has the potential to be used in clinical settings after robust validation.

32. Cadeddu JA: Re: Early Experience with the Senhance®-Laparoscopic/Robotic Platform in the US.
The Journal of Urology 2019, 202:642-643.

Curr Opin Urol. Author manuscript; available in PMC 2021 November 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ma et al.

Page 10

33. Panesar S, Cagle Y, Chander D, Morey J, Fernandez-Miranda J, Kliot M: Artificial Intelligence and
the Future of Surgical Robotics. Ann. Surg 2019, 270:223-226. [PubMed: 30907754]

34. Samiei A, Miller R, Lyne J, Smith A, Stewart S, Gomer H, Treado P, Cohen J: MOLECULAR
CHEMICAL IMAGING ENDOSCOPE, AN INNOVATIVE IMAGING MODALITY FOR
ENHANCING THE SURGEON’S VIEW DURING LAPAROSCOPIC PROCEDURES. The
Journal of Urology 2019, 201.

** 35. Osa T, Sugita N, Mitsuishi M: Online Trajectory Planning and Force Control for Automation of
Surgical Tasks. IEEE Transactions on Automation Science and Engineering 2018, 15:675-
691.This study shows that instrument trajectory plan and real-time force control can be achieved
during dynamic conditions. A video of this study can be accessed by: https://www.youtube.com/
watch?v=7J8aUSVUP58

36. Baek D, Hwang M, Kim H, Kwon D: Path Planning for Automation of Surgery Robot based on
Probabilistic Roadmap and Reinforcement Learning 2018 15th International Conference on
Ubiquitous Robots (UR), Honolulu, HI, 2018, pp. 342-347, doi: 10.1109/URAI.2018.8441801.

37. Thananjeyan B, Garg A, Krishnan S, Chen C, Miller L, Goldberg K: Multilateral surgical pattern
cutting in 2D orthotropic gauze with deep reinforcement learning policies for tensioning 2017
IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017, pp. 2371-
2378, doi: 10.1109/ICRA.2017.7989275.

* 38. Nguyen T, Nguyen ND, Bello F, Nahavandi S: A New Tensioning Method using Deep
Reinforcement Learning for Surgical Pattern Cutting. 2019 IEEE International Conference on
Industrial Technology (ICIT) 2019, doi:10.1109/icit.2019.8755235.This study used a multipoint
retraction strategy which outperformed state-of-the-art algorithms, thus is a promising direction
for further study.

*39. Alambeigi F, Wang Z, Liu Y-H, Taylor RH, Armand M: Toward Semi-autonomous Cryoablation
of Kidney Tumors via Model-Independent Deformable Tissue Manipulation Technique. Annals
of Biomedical Engineering 2018, 46:1650-1662. [PubMed: 29922956] The algorithm can
manipulate tissue to a predefined point, suggests extensive applications in surgical tasks. A video
about this study can be accessed by: https://link.springer.com/article/10.1007/s10439-018-2074-
y#citeas

* 40. Shin C, Ferguson PW, Pedram SA, Ma J, Dutson EP, Rosen J: Autonomous Tissue Manipulation
via Surgical Robot Using Learning Based Model Predictive Control 2019 International
Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 2019, pp. 3875-3881,
doi: 10.1109/ICRA.2019.8794159.This study shows that the model learning from surgeon
demonstration was faster than models that are purely data-driven, highlighting the importance of
expert experience in guiding the learning process.

* 41. Aghajani Pedram S, Walker Ferguson P, Shin C, Mehta A, Dutson EP, Alambeigi F, Rosen J:
Toward Synergic Learning for Autonomous Manipulation of Deformable Tissues via Surgical
Robots: An Approximate Q-Learning Approach. arXiv 2019, arXiv:1910.03398.This study
shows that a combination learning-strategy from both surgeon-demonstration and trial-and-error
had the best performance, shedding lights on how to improve model’s learning efficiency.

42. Shademan A, Decker RS, Opfermann JD, Leonard S, Krieger A, Kim PCW: Supervised

autonomous robotic soft tissue surgery. Sci Transl Med 2016, 8:337ra64—-337ra64.

43. Saeidi H, Le HND, Opfermann JD, Leonard S, Kim A, Hsieh MH, Kang JU, Krieger A:
Autonomous Laparoscopic Robotic Suturing with a Novel Actuated Suturing Tool and 3D
Endoscope 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC,
Canada, 2019, pp. 1541-1547, doi: 10.1109/ICRA.2019.8794306.

44. He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K: The practical implementation of artificial
intelligence technologies in medicine. Nat. Med 2019, 25:30-36. [PubMed: 30617336]

Curr Opin Urol. Author manuscript; available in PMC 2021 November 01.


https://www.youtube.com/watch?v=7J8aUSVUP58
https://www.youtube.com/watch?v=7J8aUSVUP58
https://link.springer.com/article/10.1007/s10439-018-2074-y#citeas
https://link.springer.com/article/10.1007/s10439-018-2074-y#citeas

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Ma et al.

Page 11

KEY POINTS
. The intersection of machine learning (ML) and robotics-derived “big data” is
a rapidly evolving field.
. ML has the potential to provide objective, efficient, and scalable surgical
assessment.
. ML can accurately make preoperative diagnoses and surgical risk assessments

to optimize surgical candidate selection.

. ML allows robots to learn surgical procedures autonomously through either
expert demonstration, trial-and-error, or both.

. Future applications of ML require secure and robust surgical data acquisition
with close collaboration between surgeons and engineers.
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Figure 1.
Applications of machine learning in urologic surgery
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