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Abstract

Solid-state nanopore (SSN)-based analytical methods have found abundant use in genomics and 

proteomics with fledgling contributions to virology – a clinically critical field with emphasis on 

both infectious and designer-drug carriers. Here we demonstrate the ability of SSN to successfully 

discriminate adeno-associated viruses (AAVs) based on their genetic cargo [double-stranded DNA 

(AAVds-DNA), single-stranded DNA (AAVss-DNA) or none (AAVEmpty)], devoid of digestion steps, 

through nanopore-induced electro-deformation (characterized by relative current change; ΔI/I0). 

The deformation order was found to be AAVEmpty > AAVssDNA > AAVdsDNA. A deep learning 

algorithm was developed by integrating support vector machine with an existing neural network, 

which successfully classified AAVs from SSN resistive-pulses (characteristic of genetic cargo) 

with >95% accuracy – a potential tool for clinical and biomedical applications. Subsequently, the 

presence of AAVEmpty in spiked AAVds-DNA was flagged using the ΔI/I0 distribution 

characteristics of the two types for mixtures composed of ~75:25 and ~40:60 (in concentration) 

AAVEmpty: AAVds-DNA.
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Graphical Abstract

Solid-state nanopore based electro-deformation coupled with deep learning to distinguish AAV 

particles based on their cargo content
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INTRODUCTION

With over 200 clinical studies globally and the recent FDA approval of Luxturna – the first 

approved gene therapy in the United States to treat hereditary blindness1, 2 – adeno-

associated virus (AAV) vectors are gaining substantial traction in viral gene therapy. One 

considerable challenge in the translation of AAV vectors, once produced, is the difficulty of 

characterizing the vectors based on their transgene packaging. Key characterization metrics 

of AAV include titer (capsid and genome titers), exact genomic content [single-stranded 

(ssDNA) versus self-complementary double-stranded (dsDNA) and overall genome length], 

and heterogeneity of a vector preparation (empty versus full capsids). To obtain these 

metrics, a combination of multiple assays has to be performed, including quantitative 

polymerase chain reaction (qPCR) or droplet digital PCR (ddPCR) for genomic titer,3 

enzyme-linked immunosorbent assay (ELISA) for capsid titer, and analytical 

ultracentrifugation for vector prep composition.4 Alarmingly, the variability associated with 

vector characterization assays was revealed through a blind study in which AAV samples 

were sent to several groups for vector tittering using qPCR and ELISA. The mean and 
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standard deviation (SD) for genomic and capsid titer were 3.82×1010±2.97×1010 and 

9.43×1011±3.19×1011, respectively.5 These are highly concerning outcomes especially for 

dose-dependent therapeutics where overdosing, for example through underestimation of the 

empty capsids, could trigger unexpected immune responses. The genomic content could also 

be analyzed through alkaline gel assay or a Southern blot which, however, requires overnight 

runs and are semi-quantitative at best. In this study, we demonstrate the use of solid-state 

nanopores (SSNs) – low-cost, ostensibly simple, low-sample requiring, high sensing 

throughput, label-free single-molecule sensor class – to characterize each vector type based 

on electro-deformation, discriminate between the vectors, and flag the presence of empty 

capsid from a mixture (a critical development step towards quality assurance of AAV preps).

A solitary nano-scale aperture that spans an impervious membrane (biological or solid-state) 

separating two electrolyte reservoirs – a nanopore – has been used to characterize a myriad 

of biomolecules6–10 and particles11–14, nanoparticles15, 16 and synthetic polymers17 using a 

multitude of molecular level features6, 18, 19 and membrane mechanical properties (i.e., 

stiffness, deformability).20, 21 However, compared to the plethora of DNA and protein 

studies, the virus footprint in the nanopore community is surprisingly meager perhaps 

because nanopores were mostly recognized for small molecule analysis (driven by potential 

commercial interests) while studies on filamentous,22 rod-like,23, 24 and spherical 

viruses12, 25 have redrawn the boundaries of nanopore technology. With the emergence of 

new viral threats challenging the very fabric of human existence, the importance of 

developing low-cost, high throughput, portable technologies for diagnostic purposes has 

gained substantial focus with the dawn of 2020. While biological nanopores have been used 

to sequence the genome of viruses such as Zaire Ebola26 – emphasizing the clinical 

importance of this technology – our proposed method using SSN would analyze the virus 

particles, devoid of digestions steps, and would eventually pave the way for rapid assessment 

of the genetic cargo and the purity of an AAV prep. In this work, we designed and tested a 

silicon nitride (SixNy) based SSN device to characterize three AAV vector types – empty 

(AAVEmpty), AAV with ssDNA (AAVss-DNA) and AAV with dsDNA (AAVds-DNA) – using 

the demonstrated ability of SSN to estimate the electro-deformation of soft nanoparticles in 

response to an electric field11, 12 and numerical predictions to quantify the deformation. In 

addition, we used a deep convolutional neural network to classify AAVs based on their cargo 

from the resistive pulse data. Machine learning approaches have been shown to distinguish 

biomolecules using ionic current-time waveforms.27–29 The deep neural network used here 

was developed by modifying an existing residual neural network (ResNet50) with a support 

vector machine. The electro-deformation was apparent through the voltage trend of the 

relative-current change originating from particle transit (ΔI/I0) – a departure from the linear 

(Ohmic) nature was observed. The extent to which a given particle deforms is a function of 

its spring constant for which both membrane mechanical properties and intra-particle 

properties such as transgene packaging are paramount. For example, an AAVEmpty is 

expected to deform more than a cargo-carrying counterpart of the same serotype. Therefore, 

the deformation characteristics of the three AAV types are expected to be fundamentally 

different and we intend to use this property to discriminate each type. The expected 

deformation order is AAVEmpty > AAVssDNA > AAVdsDNA, which as will be shown later, 

agrees well with our obtained results. Such discrimination would be useful to flag the 
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presence of AAVEmpty in a sample consisting of genetic cargo-carrying AAV capsids. This is 

important as previous studies demonstrated that a high dose of AAV vector can cause severe 

toxicity which may be triggered by the high capsid dose or cargo expression.30, 31 Therefore, 

it is especially crucial in dose-dependent studies to know not only the AAV concentration 

but also the composition of the vector distribution to reduce the delivery of excessive AAV 

capsids.

RESULTS AND DISCUSSION

Basic operation principle of a nanopore is outlined in Figure 1a where the analyte (AAV in 

this case) is added to the cis side and a voltage (negative for AAV) is applied to the trans side 

to drive the analyte across the nanopore from the cis to the trans side. This perturbs the 

open-pore ionic current stamping particle specific information. All experiments were 

conducted with <10 nM AAV – this minimal sample usage complements the tedious AAV 

preparation methods. Given the AAV size (~25 nm in diameter), SSN is an obvious 

requirement since the narrowest constriction of ubiquitous biological nanopores such as α-

hemolysin and MspA are not wide enough for such a particle to transit. A rich blend of 

fabrication techniques are accessible to us, such as controlled dielectric breakdown 

(CDB)32, 33, focused ion beam (FIB)34, 35 and transmission electron microscope (TEM)36. 

Since it is difficult to fabricate larger diameter nanopores using CDB due to non-opening 

failure among other factors37, and preliminary studies with FIB fabricated pores produced 

poor event frequencies, we ultimately fabricated nanopores of ~100 nm in diameter through 

~12 nm thin free-standing SixNy on silicon using TEM (Figure S1a). Any pore showing 

significant current rectification was discarded and only those with rectification ~1 was used 

(Figure S1b). Although the nanopore devices are low-cost and high throughput sensors (in 

general), the fabrication method (both the membrane and the pore) would, to a large extent, 

govern the overall cost associated with the device. Since, TEM-based nanopore fabrication 

methods are not as high throughput as other methods such as controlled dielectric 

breakdown, we note, the workflow could be limited by the pore fabrication step. However, if 

this limitation could be overcome, the overall throughput (combination of the fabrication and 

sensing time scales) and cost of the nanopore device could be improved significantly. The 

voltage polarity used for AAV translocations herein (−20 mV to −175 mV; Figure 1b) has an 

added advantage of being immune to any DNA contaminations during AAV preparation (i.e., 

any DNA that did not get encapsidated) since DNA would only respond to a positive voltage 

bias at this operational electrolyte chemistry (2M LiCl buffered at pH~7). All experiments 

were in triplicate (unless otherwise noted) with unique nanopores of comparable size and 

each nanopore was discarded after running a given virus type to avoid any cross-

contamination. On average, a minimum of 500 resistive pulses were recorded at −20 mV 

whereas a minimum of 1000 resistive pulses were recorded at subsequent voltages.

The question that intrigued us was, can the resistive pulses (each resistive pulse corresponds 

to a single AAV particle translocating through the nanopore) shown in Figure 1b be used to 

characterize and distinguish each AAV class? For this, we used a deep neural network 

(DNN) framework initially which is based on an existing deep residual network (ResNet50 – 

an award-winning platform developed Microsoft for ImageNet38) as shown in Figure 1c. 

Since ResNet50 is not trained for virus detection, we had to make necessary changes to our 

Karawdeniya et al. Page 4

Nanoscale. Author manuscript; available in PMC 2021 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



network by modifying the last few steps from the ResNet50. Therefore, the output features 

of fully connected layer (1000 1×1) of the ResNet50 are fed into a support vector machine 

(SVM) as shown in Figure 1c. Thus, based on the extracted features of the fully connected 

layer (fc1000) of ResNet50, we trained a multiclass SVM using the one-versus-one 

method39 for three different classes (see Deep Neural Network for Classification of Virus 

Cargoes from Electrical Signal Section under Methods for more details). Classification 

results obtained from our deep learning model are shown in Figures 1d–f for AAVs 

translocation data at voltage −175 mV, −150 mV and −100 mV (see SI Table S1 for the 

number of images used in each class for different time frames). Our results show that 

accuracy (Fig. 1d–f) can be improved by transforming (see Methods for transformation of 

data) the experimental data. Although maximum accuracy is sometimes higher for raw data 

than transformed data, the mean accuracy for any class (or any time frame) is always lower 

for raw data than that of transformed data (Figures 1d–f). The transformed data has always 

outperformed the raw data because distinct features of signals are more preserved in 

transformed data. Unlike classical machine learning problem, we used a few experimental 

data for training (for a given applied electric field), but segmentation of each experimental 

signal helped us to attain our desired goal in the data-driven classification. The accuracy of 

the prediction is improved significantly for 4 second time frame data, even though the 

number of images used to train the support vector machine is much smaller for 4 second 

case compared to 1 or 2 second cases. Further increase in the time frame window would 

probably help us to get a better prediction, but one must be mindful of the reduction in the 

training data with an increase in the time frame. Our model results show that as long as our 

deep learning algorithm is trained with the appropriate data, we can get accurate prediction 

despite the fact that data-based techniques such as machine learning is never 100% accurate. 

The reason for no false positive (or negative) in our proposed method is due to flexibility of 

testing multiple frames from a single experiment by segmenting resistive-pulse data into 

hundreds of smaller time frames. This comprehensive analysis indicates that our approach to 

identify AAVs based on electric current signal is robust, and this algorithm can be used to 

detect viruses quickly from SSN experiments.

After successfully identifying each AAV class using our DNN model, we then investigated 

the possibility of using relative current change (ΔI/I0) to discriminate each AAV type as this 

metric is dependent on the membrane rigidity.21, 40 The scatter plots of ΔI/I0 versus 

translocation time and histograms corresponding to ΔI/I0 are shown in Figures 2a–c. Each of 

the histograms were fitted with a single Gaussian function (see SI Section 1 for the 

histogram and fitting details). The behaviour of ΔI/I0 with voltage for each AAV class as 

shown in Figure 2d, is indicative of electro-deformation due to deviation from the Ohmic 

linear scaling (see the associated discussion of SI Section 5 for more details). A single AAV 

can only house a single DNA molecule.41, 42 Iodixanol ultracentrifugation can effectively 

separate the empty capsids formed during production,43, 44 thus reducing the complexity 

arising from the number of DNA copies inside an AAV– either a given particle will have a 

single copy of the intended genome package or it will not. The deformation profiles (ΔI/I0 

versus applied voltage) as seen in Figure 2d indicate that electro-deformation follow an 

inverse relationship with cargo content: lesser the void within the AAV (i.e., higher the 

volume occupied by the cargo material), lesser would be the deformation (AAVEmpty > 
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AAVssDNA > AAVdsDNA). At higher voltages, we see that the differences in the deformation 

profiles become less, and almost within error at ~−175 mV. If the trends of the deformation 

profiles seen in Figure 2d continue, one would pragmatically not expect to see any 

discernible differences between each virus type (based on the genetic cargo) at voltages >

−175 mV. We then plotted the percentage difference of the ΔI/I0 of each AAV type 

referenced to AAVempty (% ΔI/I0 empty, i , see SI Section 2 for the definition). The trends of 

Figure 2e show a sharp drop in % ΔI/I0 empty, i  at voltages above −125 mV. The 

AAVds-DNA and AAVss-DNA showcased an averaged % ΔI/I0 empty, i  of ~19.9±2.7% and 

~7.8±2.1%, respectively up to −125 mV. It is not surprising to see AAVds-DNA having the 

greatest difference with respect to AAVempty (i.e., highest % ΔI/I0 empty, i ) as it is expected 

to deform the least. It typically takes ~2 hours in total to acquire the minimum event count 

for all voltages noted previously (at least 500 for −20 mV and 1000 for the rest). Among 

these voltages, all AAV types showed >1 resistive pulses/s at ≥−50 mV. Taking the useful 

voltage regime for electro-deformation-based discrimination (≤−125 mV) and appreciable 

event frequency (≥−50 mV), one can bracket −50mV to −125 mV as the optimized voltage 

range for this study. Consequently, it merely takes ~30 minutes in total to acquire ~1000 

events for all voltages for this optimized voltage range – a testament to the sensing 

throughput of the nanopore platform.

To numerically model the deformation of each AAV type, we used an immersed interface 

method (IIM), which has been developed and validated earlier.45–47 The IIM can estimate 

the electric potential distribution inside the nanopore geometry, which is used to calculate 

electric current at any particular section using I = − σA ∇ϕ ⋅ η, where σ is the local 

conductivity, A is the cross-sectional area, and η is the direction vector normal to the 

particular section. To quantify the extent of deformation, we defined aspect ratio (α) of the 

virus as the ratio of its equatorial (along the electric field) length over the polar 

(perpendicular to the electric field) length. For a circular shape, α = 1.0, and it is greater 

than unity when the virus is deformed in the direction of the applied field46. As shown in 

Figures 3a–c, when the viruses are allowed to deform with an increasing electric field, we 

observe consistent nonlinear behavior in the ΔI/I0 due to competing electrostatic and 

electrophoretic forces on the virus capsid.40, 47 For a properly chosen set of conductivity 

ratios, the numerical predictions of ΔI/I0 (green circles) fall within the experimental bounds 

(blue limits) and reveal an interesting power-law like behavior (green dashed line, Figures 

3a–c) in all three cases. The corresponding change in the virus shape with increasing 

potential is presented in terms of the aspect ratio (red diamonds), which shows a linearly 

increasing behavior with increasing electric field. The slope of this aspect ratio vs. applied 

voltage plot was found to be decreasing with increasing conductivity ratio (λ) (red dashed 

line with slopes of 0.0358, 0.0276, and 0.0216 mV−1 for AAVempty, AAVss-DNA, and 

AAVds-DNA, respectively). The decrease in the slope also corresponds to a higher degree of 

deformation of the AAV samples. Hence, one can use the slope of the aspect ratio vs. 

applied voltage plot as a characteristic identifier of each virus type with its signature inner 

conductivity and deformation attributes.

We then ventured to mimic a sample of AAVds-DNA contaminated with AAVempty by spiking 

an AAVds-DNA aliquot with a significant amount of AAVempty (~75% AAVempty and ~25% 
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AAVds-DNA; AAV75:25%). Identification of AAVempty in vector batches is especially 

important for clinical studies to minimize adverse immune responses in patients. Since, in a 

real-world sample-scenario, the operator would not have pre-knowledge of such 

contamination, to stay true to such a situation, we fitted each ΔI/I0 profile with a single 

Gaussian rather than two or more Gaussians. Unlike the ΔI/I0 histograms of AAVds-DNA 

(Figure 2c), spiked mixtures (Figure 4b and 4c) cannot be well fitted with a single Gaussian 

– a clear population outside the Gaussian fit exist at higher ΔI/I0. The existence of an 

apparent outlying population compared to the one residing within the Gaussian fit may also 

serve as a visual and qualitative metric to qualify the presence of a significant AAVempty 

population in the sample. Thus, one can use the ratio of the population higher and lower than 

the mean of the Gaussian fit NG ≥ μ/NG ≤ μ  as a metric to flag the presence of AAVempty in 

each sample: a perfect fit would have a value of 1 for NG ≥ μ/NG ≤ μ. Looking at Figure 2a, 

it is evident that AAVempty has a broader distribution along the ΔI/I0 axis. The tail along the 

ΔI/I0 may indicate the presence of a secondary population, although not as prominent as the 

lower (ΔI/I0) and denser population (i.e., the ΔI/I0 distribution can be well fitted with a 

single Gaussian function). However, such a tail along the ΔI/I0 axis is absent in its cargo-

carrying counterparts. It could mean, the deformation is more restrictive in the presence of a 

cargo whereas it is more diverse in the absence of a cargo. Thus, it is not surprising to see 

AAVds-DNA having a NG ≥ μ/NG ≤ μ value closer to one (Figure 4d and 4e) whereas 

AAVEmpty deviating somewhat away from the ideal value. The mixture significantly 

deviated from the ideal value which could be inextricably linked to the presence of 

populations corresponding to both AAVds-DNA and AAVempty. It is evident from Figure 4d, 

the profiles corresponding to AAVds-DNA and AAV75:25% are well separated and indicative 

of a departure from a AAVds-DNA sample (i.e., presence of a contaminant). We were also 

able to flag the presence of AAVempty in the mixture using deformation profiles (ΔI/I0 vs 

voltage) as evident by Figure S4 (see SI Section 6 for more details). Using the 

NG ≥ μ/NG ≤ μ metric, we were able to flag the presence of AAVempty in a mixture of ~40% 

AAVempty and ~60% AAVds-DNA (Figure 4e) through the visual separation of the mixture 

similar to above. The second mixture was deliberately limited to three voltages (−50 to −75 

mV) as these three yielded the greatest separation of NG ≥ μ/NG ≤ μ in the ~75:25% mixture 

evident from Figure 4d. It is worthwhile noting, the error associated with the profile of 

AAVds-DNA is much lower compared to the rest, which could also serve as a visual clue to 

the purity of the sample under investigation. One could potentially expand this study to 

cover a range of AAVds-DNA:AAVempty ratios and develop a correlation between the 

AAVempty percentage and NG ≥ μ/NG ≤ μ as a function of voltage.

CONCLUSIONS

We have demonstrated the ability of solid-state nanopores of ~100 nm diameter, fabricated 

using TEM through nominally ~12 nm SixNy membranes, to discriminate AAV based on 

their genetic cargo (i.e., single-stranded DNA, self-complementary DNA or none). All 

experiments were conducted using negative voltages and translocations were recorded from 

~−20 mV to ~−175 mV in sufficiently small voltage increments. A deep neural network 

platform, developed based on ResNet50 with appropriate modifications by support vector 

Karawdeniya et al. Page 7

Nanoscale. Author manuscript; available in PMC 2021 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



machine, were used to identify the current profiles of each AAV type. The accuracy of the 

machine learning prediction can be improved significantly by segmenting each experimental 

resistive-pulse signal into hundreds of data and running the model for tens of data sets from 

each experiment. More importantly, the prediction accuracy increases with the length of the 

time frame (1 sec versus 2 sec versus 4 sec) of experimental data. For transformed data, the 

mean accuracy of the network was always 90% or higher for any class regardless of the 

voltage bias or time frame. The electro-deformation was numerically modelled using an 

immersed interface approach. The model results indicated a power-law behavior for the 

nondimensional current drop (ΔI/I0) with applied potential for all three cases. Interestingly, 

The ΔI/I0 profiles with voltage clearly showed distinct deformation patterns for each AAV 

type with deformation being more prominent as the internal cavity of AAV is less occupied 

by its cargo: AAVempty > AAVss−DNA > AAVds−DNA. The average percentage ΔI/I0 with 

respect to AAVempty % ΔI/I0 empty, i  was, as expected, higher for AAVds−DNA than 

AAVss−DNA with the two having an averaged value of ~19.9±2.7% and ~7.8±2.1% 

respectively, up to −125 mV. Since AAVds−DNA displayed the highest difference, we 

ventured to see if AAVempty could be flagged from a mixture of AAVds−DNA and AAVempty. 

Other than the difference associated with % ΔI/I0 empty, i  another significant difference in 

the distribution of ΔI/I0 is AAVds−DNA being more Gaussian than AAVempty with the latter 

having a tail along higher ΔI/I0 values. This feature was used to successfully flag the 

presence of AAVempty in mixtures of ~75% AAVempty and ~25% AAVds-DNA and ~40% 

AAVempty and ~60% AAVds-DNA. Taken together, SSN platforms along with their 

advantages such as low cost and sample requirement, rapid analysis, user friendliness with 

minimal training requirement (as seen with other nanopore technologies) could potentially 

transform the method discussed herein to a widely accessible tool to profile and discriminate 

each AAV class and to flag the presence of AAVempty which could be crucial for minimizing 

safety issues with human gene therapy.

METHODS

AAV Production

AAV particles were produced using HEK293T cells (ATCC) using 25 kDa linear 

polyethylenimine (PEI, Thermo) mediated triple transfection48. Briefly, HEK293T cells 

were cultured to 70% confluency on 15cm poly-L-lysine coated cell-culture plates using 

DMEM (LONZA) with 10% FBS (Atlanta Biologics) and 1% penicillin-streptomycin 

(Gibco). Adenovirus helper genes (pXX6–80), AAV9 rep-cap (pAAV2/9), and a transgene 

cassette plasmid (self-complement or single-stranded GFP) were mixed in a 1:1:1 molar 

ratio with the PEI transfection mix and allowed to incubate at room temperature for 30 

minutes before adding to cells. The cell pellet was harvested 48 hours after transfection and 

underwent three cycles of freeze-thaw followed by benzonase treatment before purification 

using iodixanol (OptiPrep) step gradient (15%, 25%, 40%, 54%) ultracentrifugation. The 

40% fraction was extracted, followed by concentration and buffer exchange using Amicon 

150 kDa MWCO filtration unit (Millipore-Sigma) into GB-buffer (50mM Tris, pH 7.6, 

150mM NaCl, 10mM MgCl2). Concentration of virus particles was established using qPCR 

using primers against cytomegalovirus (CMV) promoter (forward: 
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TCACGGGGATTTCCAAGTCTC, reverse: AATGGGGCGGAGTTGTTACGAC) on the 

transgene cassette. The empty capsids were collected from the layer between the 25% and 

40% fraction of the iodixanol column, and concentration was measured using western blot 

with B1 antibodies against a standard of AAV9 particles.

Nanopore Electrical Measurements

All electrical measurements were conducted using Ag/AgCl electrodes connected to an 

Axopatch 200B (Molecular Devices LLC, USA). The data were acquired at 250 kHz (except 

I-V measurements which were done at 10 kHz), filtered using the inbuilt 4-pole Bessel low-

pass filter at 10 kHz setting and digitized either using a BNC 2110 connector block 

(National Instruments, USA) or 1440A Digitizer (Molecular Devices LLC, USA). For pore 

diameter measurements the former was used and for other temporal acquisitions, the latter 

was used. When the BNC 2110 was used, the instrument control was done using custom-

coded LabVIEW scripts and pClamp (version 10.6, Molecular Devices LLC., USA) was 

used otherwise. Before each measurement, the pipette offset setting of the Axopatch 200B 

was used to nullify the zero-voltage current. The electrodes were prepared in the following 

manner: a ~2-inch-long Ag wire was sanded to remove any oxide residuals and 

contaminants on the surface. Then it was dipped in a bleach solution (425044, Sigma 

Aldrich) for at least one hour (preferably overnight) until the electrode turns black. It is then 

soldered to a TE connectivity contact gold pin and connected to the head stage of the 

Axopatch 200B system. The electrodes were checked after each experiment to see whether it 

has retained its color or whether it has turned white. The latter indicates that the electrode 

needs to be sanded down and put in the bleach solution for it to function as a reversible 

electrode.

Nanopore Fabrication

Nanopores were fabricated through as supplied silicon nitride chips (NBPX5001Z-HR, 

Norcada, Canada) that are nominally ~12 nm thick using TEM (JEM-2100F, JEOL, Japan) 

at 200 keV as described previously (see Figure S1 for a representative TEM image of a pore 

and its current-voltage curve).49 The size was initially validated through TEM as shown in 

Figure S1 and subsequently crosschecked with Equation 1.

Nanopore Characterization

The fabricated nanopore chips were mounted between two Teflon half cells using PDMS 

gaskets to be watertight. Each chamber can hold ~450 µL of electrolyte. The schematic 

diagram of the cell is shown in Figure S2. The chambers were initially filled with ethanol 

(A4094, Fisher Scientific), placed in a vacuum desiccator and connected to a mechanical 

pump to remove the air bubbles along the channel connecting the chip and the electrolyte 

reservoir. Upon the appearance of bubbles from both the channels, the pump was 

disconnected, and the system was brought to atmospheric pressure gently to avoid re-entry 

of air bubbles. The content was then thoroughly exchanged with ultra-pure water followed 

by 1 M KCl (P9333, Sigma-Aldrich, USA) buffered at pH~7 (phosphate buffer saline, 

P5493, Sigma-Aldrich, USA). A voltage ramp of +200 mV to −200 mV is then applied to 

acquire a current-voltage (I-V) curve. The I-V curve was then linearly fitted and the slope 

(G) was used to estimate the nanopore size using,
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G = σ 4L
πD2 + 1

D
−1

(1)

where G, σ, L and D are the ionic conductance, electrolyte conductivity, nanopore length, 

and diameter, respectively. If the pore is not properly wet, the I-V curve would either 

showcase a significantly less than the expected G value. Thus, all pores, before usage were 

subjected to a 2-second +8 V pulse to ensure proper-wetting.

Nanopore Electrolyte Preparation

All electrolytes including LiCl (L4408, Sigma-Aldrich, USA) and KCl were dissolved in 

ultra-pure water (ARS-102 Aries high purity water systems) with ~18 MΩ∙cm resistivity. 

Each solution contains 10 mM of either tris buffer (J61036, Fisher Scientific, USA) or 

phosphate buffer saline (P5493, Sigma-Aldrich, USA). The former was used for 

translocation experiments whereas the latter was used to acquire current-voltage (I-V) curves 

for pore-diameter estimation. The solutions were then filtered using a filtration system with 

a Polyethersulfone membrane (S2VPU02RE, Fisher Scientific). Caution: dissolving LiCl in 

water is an exothermic process. After the electrolyte solution reached the room temperature, 

the pH was adjusted by adding HCl (H1758, Sigma-Aldrich, USA) or KOH (306568, 

Sigma-Aldrich, USA) dropwise while gently stirring the electrolyte solution continuously. 

Caution: these are concentrated solutions and should only be open inside a properly 

functioning fume hood. Both pH and conductivity of the electrolyte solutions were measured 

and typically, a 2M LiCl solution at pH ~7 would have a conductivity of ~12 S/m whereas a 

1 M KCl solution at pH~7 would have a conductivity of ~11 S/m.

Event Characterization

A custom MATLAB (version 9.4, USA) script was used, where events were characterized as 

perturbations at least 5 times the standard deviation of the open-pore current. In brief, the 

code scans through the open-pore current using custom moving windows. This ensures any 

subtle variations in the open-pore current of a given window is independent of the rest. The 

window size is typically set as 1/10th the acquisition frequency (100 ms long window). 

Although larger windows can be used, we have observed the translocation times are mostly 

<1 ms, thus justifying the moving window size. This is also evident from the scatter plots 

shown in Figure 2. The average of the data points in the window is then used to calculate a 

preliminary baseline, and any perturbation that is 5 times the standard deviation of the 

baseline is flagged and assigned temporarily the value of the baseline. Then using the new 

values, a secondary baseline is calculated and used as the open-pore baseline of that window. 

After detecting an event, its duration (Δt), maximum depth (ΔI) and the local baseline (I0) to 

perform analysis shown in the manuscript.

Image Preparation for Deep Neural Network: Due to the unavailability of large 

training data (from experiments), we have segmented the electrical (resistive-pulse) signals 

of each experiment into 4N, 2N, and N number of images (graphs) depending on the time 

frames (1, 2, or 4 sec). While it is possible to maintain the x-axis length constant in each 

image for a particular time frame, keeping the same scale range (the difference between the 
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upper and lower bound of current) was challenging for the y-axis (Fig. 1b) during the auto 

plotting of graphs. Thus, we have trained and validated the model with two sets of images. 

The first set of images are plotted (aka raw data) automatically, while the y-axis of the 

second set was transformed as

Iup = Ilow + ΔI (2)

where Iup and Ilow are upper bound and lower bound of current values, respectively and ΔI
is the current change. In other words, the second set of graphs (termed as transformed data) 

are plotted by considering a fixed current change (ΔI) in the vertical axis for all three classes.

Deep Neural Network for Classification of Virus Cargoes from Electrical Signal

We have developed a deep neural network algorithm by modifying last couple of layers of 

the ResNet50 – a residual deep neural network developed by Microsoft research team. The 

ResNet50 has been trained for 1000 different classes with 13,000,000 natural images, and it 

requires a 224×224×3 color image as input for proper identification within its database. 

However, for our classification problem, we have only three classes based on the cargo 

inside AAVs: empty, single stranded DNA, and double stranded DNA. Thus, from the 

extracted features of the fully connected layer (fc1000) of ResNet50, we have trained a 

multiclass support vector machine (SVM) using the one-versus-one method39 for three 

different classes. For the three class scenario, the one-versus-one method yields three binary 

classifiers where each one is trained on data from two classes. For example, to train data 

from the ith and the jth classes, we solved an optimization problem as

min
wij, bij, ξij

1
2 wij Twij + C∑tξt

ij
(3)

where w, b, ξ, and C are the weight, bias, slack variable, and the penalty parameter, 

respectively. Eq. (3) is subjected to the following constraints

wij Tφ xt + bij ≥ 1 − ξt
ij, if yt = i

wij Tφ xt + bij ≤ − 1 + ξt
ij, if yt = j

ξt
ij ≥ 0

(4)

where xt is the training data and yt is the class of xt. The function φ maps the training data xt

to a higher dimensional space. In Eq. (3), the penalty (second) term C∑tξt
ij is used to reduce 

the number of training errors in case the data are not linearly separable, while optimization 

of the regularization (first) term 1
2 wij Twij provides the maximum margin between two 

classes of data. Thus, the basic concept behind SVM is to find a balance between the 

regularization term and the training errors.

Based on the optimized weight and bias, scores are calculated for each class from an unseen 

test/validation image, and the highest score is used for classification of that image. If fij is 
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the classifier to distinguish a pair of classes i (positive examples) and j (negative examples), 

the classification criteria for a new image x

f x = argmax
i ∑jfij x (5)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
(a) A schematic representation of a typical nanopore setup where the analyte is driven across 

the nanopore in response to an applied electric field stamping analyte-specific resistive-

pulses as shown in (b). (b) Representative 10 second current traces corresponding to the 

translocation of “AAVEmpty (left column)”, “AAVssDNA (middle column)” and, “AAVdsDNA 

(right column)” at −20 mV (magenta), −30 mV (green), −40 mV (blue), −50 mV (brown), 

−60 mV (red), −75 mV (orange), −100 mV (cyan), −125 mV (purple), −150 mV (gray) and 

−175 mV (pink). (c) Architecture of the deep convolutional neural network used for the 

classification of AAVs based on the genetic cargo. All current signals (images) obtained 

from solid-state nanopore experiments were segmented based on time frames (1, 2, or 4 sec) 

and resized to have the dimensions of 224×224×3 to comply with ResNet50 requirements 

before those images are inputted into the network. Both raw data as well as transformed data 

was used for the classification, where the Conv: convolutional block; BN: batch 

normalization; ReLU: rectified linear activation unit; Max Pooling: maximum pooling; FC: 

fully connected layer; SVM: support vector machine; Avg Pooling: average pooling. 

Efficacy of deep convolutional neural networks in classification of AAVs from nanopore 

experimental data was obtained for the applied bias voltages of (d) −175 mV, (e) −150 mV 

and (f) −100 mV using 1 sec, 2 sec and 4 sec frames. For a particular class, 80% of the data 

were randomly selected from all images of that class for training the network, while the rest 

of the images of that class were used for validation. Mean and error bars were obtained from 

training and validation of the model by randomly selecting the training and validation data 

set for 10 times.
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Figure 1: OriginLab 2018b, TecPlot 9.0, GIMP 2.10.8
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Figure 2: 
Scatter plots of change in relative current change (ΔI/I0) versus translocation time and, 

corresponding histograms to the ΔI/I0 (right column) of (a) AAVEmpty, (b) AAVssDNA, (c) 
AAVdsDNA at −20 mV (magenta), −30 mV (green), −40 mV (blue), −50 mV (brown), −60 

mV (red), −75 mV (orange), −100 mV (cyan), −125 mV (purple), −150 mV (gray) and −175 

mV (pink). The histograms were fitted with a single Gaussian function (see SI Section 1 for 

the histogram and fitting details). (d) ΔI/I0 vs voltage corresponding to AAVds-DNA (black), 

AAVss-DNA (red) and AAVempty (blue). (e) Percentage ΔI/I0 difference of AAV 

encapsulating dsDNA (black) and ssDNA (red) with respect to AAVempty (% ΔI/I0 empty, i , 

calculated using Equation S2). All experiments were in triplicate with unique nanopores and 

performed using ~98 ± 5 nm diameter nanopores in 2M LiCl (buffered at pH~7 using 10 

mM Tris buffer).

Figure 2: OriginLab 2018b, GIMP 2.10.8
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Figure 3: 
Nondimensional current drop ratio (ΔI/I0) and corresponding aspect ratio (α) with negative 

applied voltage (ϕ) corresponding to (a) AAVempty, (b) AAVss-DNA and (c) AAVds-DNA. The 

numerically calculated relative current drop data (green circle) are fitted with a power-law 

curve drawn in green lines while the estimated aspect ratio data (red diamonds) are fitted 

with a straight line (red dashed lines). Three sets of independent experimental data are used 

to calculate the bounding upper and lower values (blue bounding bars) for ΔI/I0.

Figure 3: TecPlot 9.0
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Figure 4: 
(a) 5-second representative current traces corresponding to a 75:25% molar mixture of 

AAVEmpty and AAVds-DNA in response to −50 mV (brown), −60 mV (red), −75 mV 

(orange), −100 mV (cyan), −125 mV (purple), −150 mV (gray) and −175 mV (pink). (b) 
The corresponding scattered plots and histograms. (c) The scattered plots and histograms of 

40:60% molar mixture of AAVEmpty and AAVds-DNA in response to −50 mV, −60 mV, −75 

mV. (d)-(e) The ratio of the population above and below the mean of each Gaussian fit 

corresponding of ΔI/I0 NG ≥ μ/NG ≤ μ  histograms at each applied voltage corresponding to 

AAVds-DNA (black), AAVempty (green) and mixtures (magenta) of (d) 75:25% and (e) 
40:60% (in molar concentration) of AAVEmpty and AAVds-DNA. Each mixture was measured 

in duplicate using unique nanopores.

Figure 4: OriginLab 2018b, GIMP 2.10.8
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