
Multivariate neural connectivity patterns in early infancy predict 
later autism symptoms.

Abigail Dickinson1, Manjari Daniel1, Andrew Marin2, Bilwaj Gaonkar3, Mirella Dapretto4, 
Nicole McDonald1, Shafali Jeste1

1.Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, 
University of California, Los Angeles, CA, USA

2.Department of Psychology, University of California, San Diego, CA, USA

3.Department of Neurosurgery, Ronald Reagan UCLA Medical Center, University of California, 
Los Angeles, CA, USA

4.Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, CA, USA

Abstract

BACKGROUND: Functional brain connectivity is altered in children and adults with autism 

spectrum disorder (ASD). Functional disruption during infancy could provide earlier markers of 

ASD, thus providing a crucial opportunity to improve developmental outcomes. Using a whole-

brain multivariate approach, here we asked whether electroencephalography (EEG) measures of 

neural connectivity at 3 months of age predict autism symptoms at 18 months.

METHODS: Spontaneous EEG data were collected from 65 infants with and without familial risk 

for ASD at 3 months of age. Neural connectivity patterns were quantified using phase coherence 

in the alpha range (6–12Hz). Support vector regression (SVR) analysis was used to predict ASD 

symptoms at age 18 months, with ASD symptoms quantified by the Autism Diagnostic 

Observation Schedule-Toddler Module.

RESULTS: ADOS scores predicted by SVR algorithms trained on 3-month EEG data correlated 

highly with ADOS scores measured at 18 months (r=0.76, p=0.02, root mean square error=2.38). 

Specifically, lower frontal connectivity and higher right temporo-parietal connectivity at 3 months 

predicted higher ASD symptoms at 18 months. The SVR model did not predict cognitive abilities 

at 18 months (r=0.15, p=0.36), suggesting specificity of these brain patterns to ASD.

CONCLUSIONS: Using a data-driven, unbiased analytic approach, neural connectivity across 

frontal and temporo-parietal regions at 3 months predicted ASD symptoms at 18 months. 

Identifying early neural differences that precede an ASD diagnosis could promote closer 
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monitoring of infants who show signs of neural risk and provide a crucial opportunity to mediate 

outcomes through early intervention.
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machine learning

Introduction

Autism is a disorder of early brain development that is diagnosed based on the presence of 

social-communication impairments and restricted, repetitive behaviors (1). The behavioral 

differences that define autism spectrum disorder (ASD) are typically identified after four 

years of age (2,3), preventing attempts to mediate outcomes before symptoms emerge. 

Mapping early markers of atypical brain development in ASD represents a promising 

opportunity to enhance objective and early detection. Identifying autism earlier in life 

would, in turn, allow interventions to target neurodevelopmental trajectories while they are 

most mutable, and before infant development is substantially impacted (4–7).

Neural differences in ASD affect how brain regions are structurally and functionally 

connected with one another (8–12). Social cognition and behavior depend on multiple 

distributed brain regions that interact in large-scale networks (13,14) by synchronizing their 

firing patterns (15–17). Microscopic neural changes in ASD are thought to disrupt the 

brain’s ability to generate and sustain coherent oscillatory activity, therefore impacting how 

information is communicated between neuronal populations. Evidence from postmortem 

studies supports the presence of fundamental network differences in ASD, demonstrated by 

changes in neuronal and axonal organization (18–22), myelination (23), and 

neurotransmitter receptor density (24,25). The large-scale oscillations that emerge from 

coherent neuronal activity can be measured non-invasively using EEG and fMRI. Direct 

(EEG) and indirect (fMRI) measures of oscillatory brain activity provide converging 

evidence that long-range functional connectivity is reduced across the lifespan in ASD (26–

32).

Although the majority of connectivity differences in ASD have been studied after a 

diagnosis is made, emerging evidence suggests that they originate much earlier. The 

neuronal and synaptic building blocks that scaffold large-scale networks are established 

during very early brain development. Human neural stem cell models (33) and postmortem 

studies (34,35) demonstrate that the initial stages of neuronal maturation and organization 

are abnormal in ASD. ASD-associated genes are also found to converge upon molecular 

processes that govern neuronal differentiation and synaptic development (36,37). If these 

early network differences are present in infants who later go on to develop ASD, they could 

potentially be captured using measures of oscillatory brain activity.

Characterizing early functional connectivity patterns in vivo relies on prospective studies of 

infants who have a heightened risk of developing ASD. The younger siblings of children 

with ASD (familial-risk infants) have an ASD recurrence risk of nearly 20% (39) with 

another 30% showing other types of atypical development including the broader autism 
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phenotype (38). Because these infants are identified based on family history, they can be 

studied from birth. MRI studies report early brain changes in familial-risk infants who later 

develop ASD. At 6 months of age, differences in structural brain development include 

atypical white matter integrity across distributed long-range tracts (40) and major tracts such 

as the corpus callosum (41,42). In the same sample of infants, fMRI patterns of atypical 

functional connectivity at 6 months are shown to predict later ASD diagnosis (43). However, 

as an indirect measure of neuronal activity, fMRI coactivation patterns cannot assay how 
specific neural communication mechanisms are altered. Direct measurement of patterns of 

functional connectivity using high temporal precision EEG can provide unique mechanistic 

insight, complementary to MRI techniques, into neural interactions in early infancy.

EEG is particularly well-suited to clinical screening, as it is portable, relatively low cost, and 

involves a lower testing burden than MRI (44). While EEG has been used to study early 

neural differences in ASD, there have been no multivariate studies that characterize cortex-

wide functional connectivity patterns in infancy that are associated with ASD. Here we aim 

to address this gap, employing one type of multivariate pattern analysis method, support 

vector regression. Multivariate pattern analysis broadly refers to data analysis methods that 

analyze patterns of activity that are based on multiple input features. Multivariate 

approaches are sensitive to information that is provided by spatial distribution and therefore 

represents a powerful way to leverage the rich data that is provided by neural time series 

data.

This study maps functional connectivity patterns at 3 months of age that are associated with 

later ASD symptoms. Functional connectivity is quantified using the phase coherence of 

alpha oscillations (6–12Hz) (45,46), as alpha coherence is highly sensitive to early neural 

changes that occur in the context of both typical (47,48) and atypical brain development 

(49). Further, alpha oscillations are specifically associated with the structural (50,51) and 

functional (52) properties of long-range connections, and may therefore capture earlier 

markers of the long-range connectivity differences described in children and adults with 

ASD. Based on previous findings implicating distributed structural and functional 

connectivity disruptions infancy in ASD (41,42), we hypothesized that similar patterns of 

reduced long-range alpha coherence would predict a higher level of ASD symptoms at 18 

months.

Methods and Materials

Sample

Participants in the present analyses were part of a larger ongoing study examining the 

development of infants with and without familial risk for ASD across the first 3 years of life. 

Exclusion criteria included evidence of a genetic condition or syndrome, gestational age<37 

weeks, and prenatal/perinatal complications. Familial-risk infants (N=36) had at least one 

older sibling with a confirmed ASD diagnosis. Initial parent reports of sibling diagnoses 

were confirmed by a review of documented evidence. Low-risk infants (N=29) had no 

reported family history of ASD or other neurodevelopmental disorders within first degree 

relatives.
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Infants were recruited from the community through the UCLA Center for Autism Research 

and Treatment (CART). Sixty-five infants completed an EEG recording session at 3 months 

and underwent behavioral assessment at 18 months. Demographic data describing the final 

65 participants are presented in Table 1. The study received ethical approval from the 

relevant institutional review board, and parents provided informed written consent on behalf 

of all infants in accordance with the Declaration of Helsinki.

ASD Assessment

A trained clinician administered the Toddler Module of the Autism Diagnostic Observation 

Schedule-Second Edition (ADOS-T) at 18 months (53,54). The ADOS-T is an assessment 

tool used by clinicians and researchers to assess social-communication and repetitive 

behaviors associated with ASD (53) in children under 30 months of age (54). ASD 

symptoms were quantified using dimensional ADOS-T algorithm scores (total score ranging 

from 0–18). ADOS-T scores ≥ 10 indicate a clinically relevant level of symptoms at 18 

months, and are highly indicative of ASD symptoms at later ages (measured using the 

ADOS) (55). Sample descriptions are provided according to both familial-risk status 

groupings and ADOS-T cut-off (ASD+ (ADOS-T ≥ 10) & ASD – (ADOS-T<10)) 

groupings. Of the infants considered ASD+ at 18 months, 11 had familial risk for ASD, and 

3 were at low risk.

Cognitive Assessment

Cognitive function was also assessed, in order to distinguish EEG patterns associated with 

ASD symptoms, rather than general developmental level. The Mullen Scales of Early 

Learning (MSEL) (56) were administered by trained clinicians at 18 months. The MSEL is a 

standardized measure of developmental abilities that yields scores five subscales (visual 

reception, fine motor skills, gross motor skills, receptive language, and expressive language). 

Subscale t-scores (M=50, SD=10) were used in analyses. Receptive language and expressive 

language subscale t-scores were averaged to calculate verbal cognition, and the t-scores from 

the visual reception and fine motor subscales were averaged to calculate non-verbal 

cognition.

EEG Acquisition

Spontaneous EEG data were recorded using a 129-channel Hydrocel (Electrical Geodesic 

Net Inc., Eugene, OR), in a dimly lit, sound-attenuated room. EEG was sampled at 500 Hz 

and referenced to vertex (Cz) at the time of recording. Four electrodes positioned to record 

electrooculogram (EOG) (located below and lateral to the eyes) were removed from the net 

to increase comfort for infants. Net Station 4.4.5 software was used to record from a Net 

Amps 300 amplifier with a low-pass analog filter cutoff frequency of 6 KHz. Data were 

sampled at 500 Hz and referenced to vertex (Cz) at the time of recording. Electrode 

impedances were kept below 100 KΩ. Infants were held in a caregiver’s lap throughout the 

recording while bubbles were blown by an unseen experimenter, consistent with widely used 

spontaneous recording conditions in infant populations (57). EEG data were acquired for at 

least 3 minutes, with the recording session extended up to 5 minutes if the infant remained 

calm.
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EEG Processing

All offline data processing and analyses were performed using EEGLAB (58) and in-house 

MATLAB scripts. The experimenter was blind to participant details (including risk status) 

throughout the data cleaning process. Data were high pass filtered to remove frequencies 

below 1 Hz and low pass filtered to remove frequencies above 90Hz, using a finite impulse 

response filter. Continuous data were then visually inspected, and any sections including 

excessive electromyogram or other non-stereotyped artifacts were removed. Artifact 

subspace reconstruction (ASR), a data cleaning method that uses sliding window principal 

component analysis, was then used to remove high amplitude artifacts, relative to artifact-

free reference data (59,60). ASR is especially useful for retaining maximum data in infants 

(where the length of EEG recordings is limited), as it allows artifacts to be removed while 

retaining the co-occurring EEG activity that is ‘clean’. The eeglab function clean_RawData 
was used to implement ASR, with default parameters and rejection threshold k=8 (59).

Following interpolation to the international 10–20 system 25 channel montage (61), 

independent component analysis (ICA) was used to decompose data into maximally 

independent components (IC) (62), and the power spectral distribution (PSD), scalp 

topography and time course of each IC were visually examined. IC’s that represented non-

neural activity (including EMG, EOG, heart artifact and line noise) were removed from the 

data.

ASR cleaning resulted in an average of 17 channels being removed, and 17.8% of data 

points being altered. The number of channels removed (P=.438), and data points changed 

(P=.398), did not vary between ASD outcome groups. The independent components 

removed during the second stage of cleaning averagely accounted for 24.7% of the EEG 

variance and did not vary between ASD outcome groups (P=.152). There was no difference 

between groups in the length of the EEG recording post-cleaning (M=139.54, P=.464).

Alpha Phase Coherence

Cleaned data were transformed to current source density (CSD) estimates, in order to 

mitigate the effects of volume conduction (46,63). Spherical spline Laplacian transforms 

were conducted using realistic head geometry, with head radius set at 7cm (representing the 

average head radius of 3-month-old infants), and flexibility constant m = 3. CSD data were 

separated into 3-second epochs to obtain coherence metrics. To retain consistent data length 

across all participants, the first 75 seconds of data were used in all further analyses 

(representing the minimum data length available across the sample). The newcrossf function 

provided by eeglab (58) was used to compute phase coherence (ERPCOH) from the 

aforementioned resting state epochs (for each frequency bin):

ERPCOHa, b f,t = 1
n ∑

k = 1

n Fk
a f, t Fk

b f, t *

Fk
a f, t Fk

b f, t

where Fk
a f, t  represents the spectral estimate of channel a in epoch k at frequency f and 

time t. Fk
b f, t * is the complex conjugate of Fk

b f, t  (58). For each channel pair, ERPCOH 
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was averaged across all frequency bins encompassed by alpha band (6–12Hz), resulting in 

300 values that represented alpha phase coherence between every possible electrode pair.

Model Fitting

Prediction models were used to assess the relationship between 3-month coherence and 18-

month ASD symptoms (ADOS-T total score), with all 300 alpha phase coherence values 

serving as the initial feature set. A “nested” leave-one-out cross validation (LOOCV) 

procedure was used to predict the ADOS score of each participant. A nested procedure 

includes an outer loop that is used to predict N=1, with the remaining N=64 being entered 

into an inner loop where predictive features are tuned using LOOCV (see Figure 1). 

Selecting features for each fold with the data of the test subject remaining entirely unseen 

ensured that feature model performance was not falsely inflated through circularity bias 

(64).

Model Fitting: Feature Selection

A LOOCV regularized regression approach with an elastic net penalty was used to select a 

subset of functional connections within each fold. Elastic net regularization is a hybrid 

approach combining both the ℓ1 penalty of lasso, and the ℓ2 penalty of ridge regression 

(65,66), and it is well suited to remove redundant variables and prevent model overfitting for 

high dimensional data (67). There are two parameters that impact penalized regression, α 
and λ. α regulates the degree of mixing between ℓ1 and ℓ2 penalties, and effectively 

determines the compromise between lasso (least absolute shrinkage and selection operator) 

and ridge regression techniques. Here we implemented α=0.5 to represent an equal balance 

between ℓ1 and ℓ2 penalties. λ is the penalty term and defines the strength of regularization. 

A geometric sequence of λ values were trialed to determine the λ value that minimized 

model deviance (mean squared error; MSE), with the final values across all folds averaged to 

provide a consistent value (λ=1). The lasso function in MATLAB was used to implement 

the regression procedure, and all predictor variables were centered and standardized.

Model Fitting: Support Vector Regression

After conducting feature selection within each inner fold, linear-kernel support vector 

regression (SVR) models were trained using the default parameters of the fitrsvm function in 

MATLAB. In addition to the advantages of binary classification offered by traditional SVM, 

support vector machines for regression (SVR) offer an opportunity to assess the value of 

functional connections for predicting ASD behaviors dimensionally (68). The resulting 

model was used to estimate the ADOS-T score of the N=1 participant who was left out of 

the outer loop (validation sample). The procedure was then repeated N=65 times.

Predictive capabilities were examined through the relationship between observed and 

predicted ADOS-T score. The statistical significance of all LOOCV results was determined 

using a permutation testing approach (69,70). The null distribution of R2 was estimated by 

repeating the entire model fitting procedure (including feature selection within each fold) 

using 1000 surrogate datasets that were generated under the null hypothesis that there is no 

relation between 3-month EEG and 18-month ADOS. The final statistical significance of the 

model was determined by calculating the percentage of null-models that yielded symptom 
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estimates better than the final model. The reported permutation p values therefore represent 

the probability of observing the reported R2 values by chance.

Predictive Model Features

A major benefit of multivariate pattern analysis is the ability to examine the features that 

drive the predictive capability of the SVR algorithm. We analyzed the final consensus 

feature set that consisted of 22 functional connections that had non-zero coefficients in 

100% of folds (69,71), extracting the weight value assigned to each feature. Interpreting the 

weights from linear models in terms of neural activity patterns can be misleading (72,73). To 

allow neurophysiological interpretation of individual features in the model, SVR weights 

were transformed into activation patterns using the method described by Haufe and 

colleagues (73). Specifically, the activations are derived by,

A = ∑x W ∑S
−1

where Σx denotes the covariance of the data, W represents the regression weights, and Σs
−1 

is the inverse covariance of the latent factor.

Results

Model Performance

Alpha phase coherence at 3 months predicted ADOS-T scores. Specifically, the SVR model 

estimated ADOS-T total scores that significantly correlated with actual ADOS-T scores 

measured at 18 months (Pearson’s r = 0.76; R2 = 0.58; p = 0.02; see Figure 2). Reported 

significance values were corrected to represent permutation testing (described in methods 

section). The average root mean square error across the sample was 2.38 (SD=2.08). 

Independent t-tests indicated that prediction errors did not vary according to familial-risk 

group (p = 0.20), ADOS outcome group (p=.19), or sex (p = 0.16).

To determine its specificity, we assessed the ability of the model to estimate cognitive 

function. Trained on the same input features, the SVR model was unable to predict verbal 

and non-verbal cognitive scores at 18 months. While there was a stronger relationship with 

verbal cognitive abilities (Pearson’s r =0.31, p =0.01, corrected p =0.91) than non-verbal 

cognitive abilities (Pearson’s r = 0.15; p =0.36, corrected p=0.99), neither of these 

relationships were significant.

Feature Activations

As described above, the contribution of individual functional connections to the SVR model 

was quantified using activation patterns, which are defined as transformed SVR weights that 

allow neurophysiological interpretation (but do not represent activation patterns as 

conventionally described in MRI work). Functional connections that contributed to the SVR 

model represented a mix of positive and negative features (See Figure 3 & 4).
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Discussion

The present study characterizes functional connectivity patterns during early infancy that 

predict individual differences in later ASD symptoms. Early connectivity differences that 

predicted ASD symptoms were multivariate, highlighting the importance of studying 

patterns of activity rather than specific functional connections. The regional distribution of 

predictive connections shows that decreased connectivity across frontal connections and 

increased connectivity across temporo-parietal areas are associated with a higher level of 

ASD symptoms at 18 months. Due to the limited spatial resolution of EEG, the precise 

cerebral structures driving these results cannot be determined. However, guided by an infant 

EEG-MRI localization study, we can consider general structures that underlie electrode 

locations (75).

Decreased frontal alpha phase coherence

Decreased alpha phase coherence across fronto-frontal, fronto-temporal and fronto-parietal 

connections predicted higher ASD symptoms. Early disruptions in frontal connectivity are 

particularly relevant, given the extensive previous literature that implicates frontal 

neuropathology in ASD. At a cellular level, postmortem studies show disruptions in 

neuronal (22,34,76), axonal (23), laminar (35), and minicolumn (18,77) organization in the 

frontal cortex of individuals with ASD. Differences in large scale frontal connectivity (often 

fronto-posterior hypoconnectivity) are also highly supported by EEG and fMRI studies of 

children and adults with ASD (30,78–83). We extend these findings to show that frontal 

disruptions occur prior to behavioral symptoms, suggesting that they represent core 

pathophysiology of the disorder, and not simply a consequence of ASD symptoms.

Frontal cortex may be particularly vulnerable to connectivity disruptions in ASD for several 

reasons, especially given its protracted development (84). For instance, ASD-associated risk 

genes are shown to converge upon co-expression networks in frontal cortex during fetal 

brain development (36). By disrupting key neurobiological processes (such as neuronal 

migration, synaptogenesis, and myelination) in frontal cortex, ASD-risk genes may 

particularly impact frontal functional connectivity (85). Further evidence linking ASD-risk 

genes to specific frontal disruptions comes from copy number variations and single gene 

disorders that confer susceptibility for ASD and are also associated with decreased fronto-

temporal and fronto-parietal connectivity (86–91). The present data suggest that, in addition 

to the changes seen in syndromic ASD (91), early frontal dysconnectivity arising from 

familial risk may similarly predispose infants to the emergence of later ASD symptoms.

Increased temporo-parietal alpha phase coherence

Positively weighted predictors describe connections for which increased coherence is 

associated with higher levels of ASD symptoms at 18 months. These connections mainly 

bridged temporal and parietal areas in the right hemisphere and were localized above brain 

structures that subserve social information processing (13), including the superior temporal 

sulcus, as well as postcentral, supramarginal, temporal and angular gyri (75). These results 

implicate the right temporoparietal junction (rTPJ) (92), a social hub (93) that coordinates 

social information processing (94,95), and shows atypical function in ASD (96). Alpha 
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phase coherence differences in these regions may reflect the network inefficiencies (40) and 

structural differences in temporal and parietal white matter tracts that have been identified at 

6 months of age in ASD (41), especially given that white matter integrity is associated with 

alpha phase coherence (97).

In addition to revealing early connectivity differences during infancy, increased alpha phase 

coherence in temporal parietal areas may shed mechanistic insight into reports of 

hypoconnectivity that are observed following infancy in ASD. The deleterious effects of 

increased regional connectivity are well-described in neurocognitive disorders, where 

periods of increased connectivity are shown to precede decreased connectivity, a 

pathological process described as hub-overload (98). Increased alpha phase coherence may 

lead to hub-overload in ASD (99), and could underlie the transition from over- to under-

connectivity that is seen in both alpha phase coherence and white matter integrity from 

around 2 years of age in ASD (41) (27), as well as widely described reductions in rTPJ 

activation and connectivity (31,96,100–106).

Scalability

EEG measures of early brain network function can serve as scalable and clinically 

actionable predictors of ASD in early infancy, at a time when behavioral signs of atypical 

development remain unclear. The portability, relatively low cost and low testing burden of 

EEG renders it practical for community screening in large populations (44). To translate 

laboratory-based EEG studies to community settings, a neural signal of interest must be 

accurately measured under task-free conditions in less controlled environments. Alpha phase 

coherence, in particular, represents a highly scalable metric. Alpha oscillations are dominant 

in spontaneous brain activity and are less susceptible to biological and environmental 

artifacts (107,108), thus facilitating its measurement in larger, clinical or community 

samples (109).

Early Identification & Intervention

Behavioral features that can consistently predict later ASD diagnosis have not been 

identified in the first year of life, and predominantly emerge after 12 months of age (110–

115). Although EEG is not intended to replace behavioral assessment of ASD, EEG markers 

are uniquely positioned to elucidate individual differences that confer neural risk for ASD. 

By examining dimensional risk (rather that binary diagnostic labels), the present study 

highlights that early network disruptions in ASD occur along a continuum. This approach 

will facilitate the identification of neural risk associated with milder/borderline ASD 

symptoms, a clinical group that elude early behavioral identification (3), but may be 

particularly responsive to prompt intervention (116,117).

Early disruptions in brain activity may also impact how an infant responds to their 

environment, causing a cascading brain-behavior-environment interaction (76,118–122) that 

will further impact brain development (123,124). Identifying individuals using objective 

EEG markers will facilitate a shift from reactionary interventions that focus on modifying 

established behaviors, towards preemptive interventions that may mitigate the effects of 

early disruptions (125,126).
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Strengths, Limitations & Future Directions

The present study leveraged the benefits of machine learning to model multivariate data. 

However, in order to retain interpretable links between neurobiology and behavior 

(127,128), we employed a hypothesis-driven modelling approach that reflects our 

prioritization of interpretability over prediction. For instance, although the inclusion of 

additional EEG features may capture interactions leading to better model prediction, by 

focusing on one neurobiologically- and clinically-relevant EEG metric (alpha phase 

coherence), we retain the ability to map predictive model features back on to EEG data 

(129). These links were also preserved through the use of linear modelling, as well as 

forward modelling transformations (73,130). These steps allow us to understand very early 

brain differences that precede ASD, and ultimately optimize the translatable clinical utility 

of machine learning methods in ASD.

As with many prior EEG studies of familial-risk infants, a relatively small sample size and 

lack of independent validation limits the generalizability of this study. To determine if alpha 

phase coherence patterns can provide a clinically applicable biological marker of risk, we 

need studies in diverse participant samples representing wider etiological factors beyond 

familial risk, such as infants with known genetic syndromes or preterm infants, as well as a 

community screened cohort. Although the patterns of functional connectivity described here 

were not associated with later verbal cognition, it may be the case that they are predictors of 

general language delays that are not specific to ASD. In order to ascertain the specificity of 

the present findings to ASD, future studies will examine social communication impairments 

and restricted repetitive behaviors using separate assessments. Disentangling ASD symptom 

domains will elucidate whether the patterns described here are equally predictive of 

restricted and repetitive behaviors and social communication impairments.

The present study also focused on one measurement technique. Since EEG and fMRI 

provide complementary information about brain function (131), a recently initiated study by 

our group integrates both methods to examine how the timing of structural and functional 

brain changes are related to one another during the first year of life in ASD. Finally, 

longitudinal monitoring of behavior, environment, and brain development will broaden our 

understanding of dynamic early changes in ASD and inform decisions around the exact 

timing and targets of preventative interventions to ultimately improve developmental 

outcomes.
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Figure 1. 
A schematic representation of the machine learning approach used to predict ASD 

symptoms at 18 months.

Dickinson et al. Page 18

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Correlation between actual ADOS-score (X axis), and the predicted ADOS score (Y axis) 

for each participant, with 95% confidence intervals.
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Figure 3. 
Mean feature activations for each of the 22 predictive function connections that defined the 

consensus feature set. Red lines represent a positive activation value (higher alpha phase 

coherence = higher ADOS-T score), and blue lines represent a negative activation value 

(lower alpha phase coherence = higher ADOS-T score). Wider lines indicating a larger 

contribution to the model (greater absolute activation strength). Graphical representations 

indicate the location of each measurement channel. White-gray shading of electrode labels 

indicates the anterior (white) – posterior (gray) location of each channel.

Dickinson et al. Page 20

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
(A) Mean alpha phase coherence for each of the 22 predictive function connections that 

defined the consensus feature set for ASD+ (red) and ASD- (blue) groups. Shaded regions 

represent SD. (B) Individual alpha phase coherence values (z scores) for each participant 

(arranged from low to high ADOS score) for each predictive function connection (with 

activation patterns arranged from negative to positive).
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Table 1.

Demographic participant details grouped by familial risk status, and ASD symptoms at 18 months.

Familial Risk 
(N=36) Low Risk (N=29) P Value

a ASD+ (N=14) ASD− (N=51) P Value
a

Sex 13 f 11 f
.54

2 22
0.60

n female (% female) (36.1%) (37.9%) (14.3%) (43.1%)

Race n (%)

White 21 (58.3%) 18 (62.1%)

.21

4 (28.6%) 35 (68.6%)

.01*More than one race 9 (25%) 10 (34.5%) 6 (42.9%) 13 (25.5%)

Asian/Black/Pacific Islander 6 (16.7%) 1 (3.4%) 4 (28.6%) 3 (5.9%)

Ethnicity n (%)

Hispanic 16 (44.4%) 4 (13.8%)
.01*

5 (35.7%) 15 (29.4%)
.65

Non-Hispanic 20 (55.6%) 25 (86.2%) 9 (64.3%) 36 (70.6%)

Maternal Education n (%)

Some college or less 2 (6.9%) 2 (6.9%)

.756

2 (14.3%) 2 (3.9%)

.20College Degree and above 28 (77.8%) 24 (82.8%) 9 (64.3%) 43 (84.3%)

Unreported 6 (16.7%) 3 (10.3%) 3 (21.4%) 6 (11.8%)

Precise 3 Month EEG age
Mean (SD), Range

3.18 (0.35), 2.57–
3.90

3.17 (0.32), 2.63–
4.13 .87 3.05 (.23), 2.57–

3.43
3.21 (.36), 2.63–

4.13 .117

18 Month MSEL Verbal T-
score
Mean (SD), Range

43.39 (9.61), 21–
63.5

49.07 (10.63), 
25–66 .030* 31.75 (5.82), 21–

40.50
49.95 (7.43), 

35.5–66 <.001*

18 Month MSEL Non-verbal 
T-score.
Mean (SD), Range

46.07 (7.51), 24.5–
64

51.54 (9.08), 25–
66 .011* 40.96 (9.70), 

24.5–59.5
50.65 (7.02), 34–

66 <.001*

18 Month ADOS-T Total 
Score
Mean (SD), Range

7.17 (5.12), 1–18 5.21 (4.44), 0–18 .11 14.28 (2.67), 10–
18 4.09 (2.46), 0–9 <.001*

18Month ADOS-T Total 
Score >10
n >10 (%>10)

11 (30.6%) 3 (10.3%) .07

a
Group differences assessed using independent samples t-tests or chi-square analyses.
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