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Abstract

Advances in medical science have led to diverse new therapeutic modalities, as well as enhanced 

understanding of the progression of various disease states. These findings facilitate the design and 

development of more customized and exquisite drug delivery systems that aim to improve 

therapeutic indices of drugs to treat a variety of conditions. Synthetic polymer-based drug carriers 

have often been the focus of such research. However, these structures suffer from challenges with 

heterogeneity of the starting material, limited chemical features, complex functionalization 

methods, and in some cases a lack of biocompatibility. Consequently, protein-based polymers have 

garnered much attention in recent years due to their monodisperse features, ease of production and 

functionalization, and biocompatibility. Genetic engineering techniques enable the advancement of 

protein-based drug delivery systems with finely tuned physicochemical properties, and thus an 

expanded level of customization unavailable with synthetic polymers. Of these genetically 

engineered proteins, elastin-like proteins (ELP), silk-like proteins (SLP), and silk-elastin-like 

proteins (SELP) provide a unique set of alternatives for designing drug delivery systems due to 

their inherent chemical and physical properties and ease of engineering afforded by recombinant 

DNA technologies. In this review we examine the advantages of genetically engineered drug 

delivery systems with emphasis on ELP and SLP constructions. Methods for fabrication and 

relevant biomedical applications will also be discussed.
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1. Introduction

Natural and synthetic drugs have been used for centuries to treat health disorders and 

prolong lives. Unfortunately, many drugs have serious side effects because of their inherent 

toxicity and absence of specificity, which leads to harm to healthy organs and tissues. Such 

side effects limit the ability to create optimal treatments for many diseases such as cancers, 

neurodegenerative diseases, and infectious diseases. To circumvent these issues, research has 

focused on the development of efficient drug delivery systems (DDS). Such systems can 

help regulate the drug release rate, as well as the location of release, thereby improving 

therapeutic outcomes and reducing toxicity, and may also involve enhancing hydrophilicity, 

extending circulation times, and protecting the drug from undesired degradation [1]. The 

stability and chemical compositions of polymers make them great candidates for DDS. 

Fabrication formats (e.g., films and hydrogels) also improve utility of polymer-based 

systems. For example, the high stability and tunability of polymeric particles make them 

great candidate for drug delivery as they have good biocompatibility and can be 

functionalized for active or passive targeted therapy, while properties of hydrogels such as 

their high swelling ratio, their porosity and their soft consistency mimicking natural living 

tissue make them ideal candidates for the use in tissue engineering [2-6]. For this reason, 

various synthetic polymers such as polyesters, polyorthoesters, polyphosphoesters, and 

polyanhydrides have been utilized for the delivery of therapeutics. However, these systems 

can present significant challenges in terms of polymer heterogeneity, biocompatibility, bulk 

hydrolysis, and acidic degradation products, and often require additional processing and 

purification for utility in DDS [7]. Consequently, research focused on natural polymers such 

as silk fibroin, albumin, and alginate has been of interest to overcome the above limitations 

[8-12].

In contrast to synthetic polymers, protein-based polymers consisting of repetitive natural or 

engineered amino acid sequences, have advantages of homogeneity when generated via 
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genetic engineering, biocompatibility, biodegradability without acidic degradation products, 

surface degradation due to enzymatic processes, aqueous and ambient processing of 

materials into delivery vehicles, and relative ease of scale-up and processing (Table 1) 

[7,13-17]. Additionally, as drugs become more complex and diverse, the control of drug 

delivery and release profiles becomes more demanding [1]. Thus, the properties necessary to 

match drug delivery demands require a level of customization that has not been attainable 

using synthetic polymer DDS [1,18]. The development of bioengineering methods facilitates 

the design and fabrication of biocompatible, responsive, and multi-faceted DDS (Figure 1A-

B). First, genetic engineering enables control of sequence, protein size, and homogeneity 

(theoretically, a polydispersity of one), thus, enabling more precise control of DDS assembly 

with material functions accurately tuned and controlled. This aids in the production of new 

tailor-made polymeric biomaterials with improved properties for specific biomedical needs 

[1,19-21]. Moreover, when recombinant protein polymers are synthesized in a biological 

system, such as bacteria, the final isolated protein is homogeneous with little variability in 

sequence, composition, or size, which improves batch-to-batch reproducibility for the 

pharmaceutical industry [1,21,22]. At the same time, unwanted bacterial remnants must be 

removed that can otherwise result in inflammatory reactions, such as LPS, which can 

increase the cost of production [23-25]. Protein-based materials are biodegradable and can 

be modified so degradation rates match the specific application [1,21]. Another advantage in 

the use of recombinant proteins is the ability to combine various domains (e.g., amino acid 

sequence modules) to generate libraries differing in amino acid composition more precise 

control of structure–function relationships [1,21,22]. The use of biopolymer derived 

constructions further facilitates tailoring of the final DDS to include stimuli-responsive 

features, tissue targeting components, and selective release properties, all of which enhance 

the selectivity, specificity, and therapeutic index of the drug being delivered. The potential to 

effectively modify sequence elements within the protein, and thus the resulting structure and 

function, lends protein-based DDS to many diverse therapeutic applications, including the 

delivery of small molecule drugs and biologics, as well as gene therapies and related topics. 

Finally, the lower costs of larger-scale production in biological systems render recombinant 

protein polymers amenable to process scale-up. Industry favors recombinant protein 

expression systems that have a successful track record, in particular Chinese Hamster 

Ovarian (CHO) cells and Escherichia coli, usually with three goals: high quality, high yield, 

and low cost [26]. Although mammalian cells are favored for the production of complex 

proteins, prokaryotic cells are easier to handle and less expensive in terms of media 

requirements and for scale-up [27,28]. The development of efficient bioprocessing strategies 

is crucial for industrial production of recombinant proteins of therapeutic importance. 

Recent advances have been made in bioprocessing, including the use of high-throughput 

devices and of disposable systems, continuous upstream processing, continuous 

chromatography, integrated continuous bioprocessing and process analytical technologies to 

achieve quality products with higher yields [28].

As a result, the interest and implementation of recombinant protein-based biopolymers for 

drug delivery has increased in recent years, with examples focused on the use of silk-like 

(SLP), silk-elastin-like (SELP), and elastin-like protein (ELP) polymers as delivery systems. 

In this review, we will discuss genetically engineered ELPs, and SLPs for the development 
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of biopolymer-based DDS. Modifications to the original sequence, formulations, and current 

biomedical applications of these biomaterials will be reviewed, with emphasis on drug 

delivery.

2. Engineered Proteins

2.1 Silkworm silk-like-protein recombinant protein polymers.

Silks are naturally produced proteins, characterized as block copolymers with highly 

conserved repeats of short side-chain amino acids as hydrophobic blocks and short 

sequences of larger side-chain or charged amino acids as hydrophilic blocks [29-32]. Silk 

fibroin sequences derived from the cocoons of silkworm Bombyx mori are one the most 

studied recombinant sources of silk. Silk fibroin contains a heavy chain composed of glycine 

(G) and alanine (A) rich sequences of hexapeptides including: GAGAGS, GAGAGY, 

GAGAGA, or GAGYGA, where S is serine and Y is tyrosine. Additionally, domains based 

on the Anaphe panda silkworm silk utilize repeats of (AAG)6 or (AG)9 as their hydrophobic 

sequences [1,29,33-35].

One of the main features of silk proteins is the capability to self-assemble, due to the 

amphiphilic nature of the sequences, to form different structures. The self-assembly of SLPs 

into nanoparticles has for drug delivery is directly linked to the secondary structure. The 

secondary structure of silks allows SLPs to be produced to meet specific characteristics of 

solubility, mechanical strength, biodegradation rate, as well as drug release kinetics, and can 

be predesigned into the sequence [1].

Recombinant expression of SLPs for different applications, has been extensively reported in 

different hosts. Transgenic B. mori silkworms have been modified to produce full length silk 

fibroin with peptide fusions [33,36-38]. While transgenic species offer a unique approach to 

modifying protein structure and function, there are many drawbacks to harvesting from 

natural biomaterial sources, including impurities, batch-to-batch variation, or increased 

immune response [39]. To overcome these issues, SLPs expression and purification from 

bacterial sources has been optimized over the years, resulting in production levels of 500 

mg/L in batch cultures and up to 12.8 g/L in fed-batch systems [34,40-45]. These examples 

demonstrate how scale up production can be used to increase the yield of recombinant SLPs 

for use in DDS, with the benefit to tight control of the protein polymer versus the use of 

naturally-derived silk proteins from B. mori.

A major modification to silk sequences used in the design of DDS has been the addition of 

cell-binding motifs. Many peptides from extracellular matrix (ECM) proteins have been 

added to full length and core peptide sequences of silks in SLPs, such as RGD (i.e. arginine-

glycine-aspartic acid) or fibronectin (GAAVTGRGDSPASAAGYI) [34,36,40-42]. The main 

modification related to drug delivery applications is the addition of elastin domains to 

generate silk-elastin-like-proteins (SELPs). SELPs consist of blocks from the silkworm silk 

sequence [GAGAGS]n and mammalian tropoelastin sequence [GVGVP]n exploiting specific 

physicomechanical properties of each sequence. The silk-like block, from the core B. mori 
silk heavy chain sequence, tends to self-assemble into insoluble tightly packed secondary 

structures, β-sheets (crystals), to provide thermal and chemical stability, mechanical 
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tunability and physical crosslinking sites for the SELP polymeric systems [21,32,46,47]. The 

elastin-like block undergoes reversible structural transitions upon exposure to specific 

environmental stimuli, providing dynamic functions to the SELPs [46-49]. The most 

attractive features of SELPs for drug delivery comes from the biological and 

physicochemical properties, which can be tuned by: 1) varying the silk-elastin ratio; 2) 

modifying the second residue in the elastin sequence; 3) modifying the molecular weight; 

and 4) adding peptides to expand functions [1,19,33,42,46,49-52]. By varying the silk-

elastin ratio, the thermal responsive properties can be tuned, where an increase in the silk-

elastin ratio leads to a higher inverse temperature transition (Tt) [47]. By modifying the 

hydrophobicity of the second residue in the elastin block, SELPs become further responsive 

to various stimuli including temperature, pH, ionic strength, redox, enzymes and electric 

fields (Table 2) [53]. Finally, the inverse transition temperature is inversely correlated with 

the molecular weight [54].

2.2 Spider silk-like-proteins recombinant protein polymers.

The other extensively studied source of silk is from spiders. The suborder Araneomorphea 
produce orb webs, which function as an extension of their sensory system, catching prey and 

providing protection [55-58]. These species produce at least 7 different kinds of silk by 

specialized glands in the spider abdomen.

Dragline silk has attracted attention due to its impressive mechanical properties and 

promising use in DDS. Spider dragline silk consists mainly of two high molecular weight 

proteins that exhibit a periodic pattern [56,58,59]. Most DDS based on spider silks have 

focused on the major ampullate gland silks from Nephila clavipes spiders (MaSp1 and 

MaSp2) and Araneus diadematus (ADF4, ADF3) [56,59-61]. A specific feature of the 

repeats in these spidroins is the hydrophobic poly-Ala (poly-A) domain consisting of 4 to 9 

amino acid residues and a more hydrophilic Gly-enriched domain with GGX motifs for 

MaSp1 and GPGXX for MaSp2. Constructions mimicking the dragline core sequences from 

both MaSp and ADF have been studied as DDS using individual versions [19,62-64] or 

mixtures of spidroins [65]. Other DDS studies have also used other types of spider silks, 

including aciniform [50] and tubuliform [66].

The repetitive nature of the spider silk sequences, as well as the length, makes production 

and high yields in heterological expression systems challenging [56,58,60,67]. Spider silk 

expression in bacteria (E. coli), yeast Pichia pastoris [68] or Sacharomyces cerevisiae [69], 

animal cells [70], transgenic goats producing the proteins in their milk [71], plants (e.g. 
potato or tobacco), [72] or transgenic silkworms [52,73] have all been reported. 

Metabolically engineered E. coli generated the best yields, where the glycyl-tRNA pool was 

elevated [74,75].

An additional advantage of recombinant approaches to DDS is engineering in modifications 

to provide new properties to the recombinant proteins. An example is the addition of a 

glutamic acid to a silk variant based on core sequence of the MaSp2 protein from the spider 

N. clavipes; to modulate affinity of the engineered silk for drugs [76]. Another example 

demonstrated that engineering eADF4(C16) to incorporate a cysteine allowed the covalent 

coupling of peptides, enzymes or particles to the spider silk variant related to DDS [77]. 
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Further modifications to eADF4(C16), replacing the negatively charged amino acids 

(glutamic acids) with positively charged amino acids (lysines), supported the sequestration 

of negatively charged, high-molecular-weight payloads, such as nucleic acids, and low-

molecular-weight compounds [78]. Site specific modification with the replacement of 

methionine by L-azidohomoalanine (L-Aha) at the C-terminus of 4RepCT supported the 

chemical conjugation of different ligands (e.g., antibiotics, fluorophores) [79].

A critical challenge to efficacy of cancer chemotherapy concerns insufficient intracellular 

drug release. To improve cellular uptake and release, recombinant spider silk analogs were 

engineered to harbor poly-lysine/poly-arginine and cell penetrating peptides (CPPs) such as 

the Tat peptide (RKKRRQRRR) or the cell membrane-destabilizing peptide ppTG1 

(GLFKALLKLLKSLWKLLLKA) [32,80-83]. Coupling peptides to poly-lysine variants 

ECM proteins (e.g. RGD or IKVAV) further improved cellular uptake by enhancing 

adhesion of the spider silk recombinant analogs to cells [83,84]. Although the CPPs 

facilitate cellular internalization, they lack cell specificity. To achieve greater selectivity, 

peptides that recognize cell surface features can be fused to the silk; such as to target 

specific cancer cells. The F3 tumor-homing peptide 

(KDEPQRRSARLSAKPAPPKPEPKPKKAPAKK) binds specifically to nucleoin, expressed 

on the surface of some tumor cells, and the CGKRK peptide to heparan sulfate present in 

tumor vessels. Both peptides were successfully fused to a silk protein functionalized with a 

poly-lysine peptide for nucleic acid binding [85]. In another study, the F3 peptide and Lypl 

peptide (CGNKRTRGC) that targets lymphatic vessels of certain tumors, has been used to 

bioengineer a MaSp1-poly-lysine monomer to form nanocomplexes with plasmid DNA [86]. 

Modification of silk proteins that target human epidermal growth factor receptor 2 (Her2), 

overexpressed in 20–30% of invasive breast carcinomas, was also accomplished [65,87]. 

Two variants of tumor-homing peptides, H2.1 (MYWGDSHWLQYWYE) and H2.2 

(LTVSPWY), were evaluated as fusions at the N and C termini to functionalize both MaSp1 

and MaSp2 constructs [65,87]. Functionalization to impart mucoadhesive properties by the 

addition of Human Galectin-3 Carbohydrate Recognition Domain (hGal3), which 

specifically binds the mucin glycans Galβ1-3GlcNAc and Galβ1-4GlcNAc, produced silk 

materials that showed enhanced mucin binding properties compared to the wild-type [88]. 

One of the most complicated modifications described involves the delivery of DNA to the 

nucleus of stem cells. Variants based on MaSp1 spidroin contained a poly-lysine sequence, 

the nuclear localization sequence (NLS) of the large tumor (T) antigen of the Simian virus 

40 (SV40), an hMSC high affinity binding peptide (HAB), and a translocation motif (TLM) 

of the hepatitis-B virus surface protein (PreS2) [89]. Finally, modifications to optimize the 

electrostatic interaction of spheres for lysosomal drug delivery has also been pursued. Here, 

spider tubuliform silk proteins genetically engineered using a 5xHis Tag to modify the 

isoelectric point of the recombinant protein showed enhanced drug release [66].

2.3 Elastin-like-protein recombinant protein polymers.

Elastin is an extracellular matrix (ECM) protein found in almost all higher animals with 

domains in various conformations bound through crosslinking [48]. The basic unit studied 

for drug delivery from ELP is a pentapeptide sequence -(GXGVP), where ‘X’ can be any 

amino acid except proline- derived from the elastomeric domain of mammalian tropoelastin 
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[90]. ELP sequences are generally tandem repeats of the pentapeptide which also contributes 

to the viscoelastic properties of elastin combined with dynamic properties depending on the 

amino acid in ‘X’ position. ELPs separate from aqueous solution above the Tt where the 

phase separation of the polymer occurs [48,90,91]. This Tt is dependent on ‘X’ as well as on 

molecular weight, where the Tt decreases with increasing molecular weight [92].

Successful expression and purification of ELPs has been demonstrated using P. pastoris 
[68,93], while bacteria (E. coli) is the preferred system [92,94-96].

Modifications to the pentapeptide at the ‘X’ position is most common, while amino acids at 

other positions have also been modified. For example, substitution of the glycine in the first 

position to alanine resulted in a change of mechanics from elastic to plastic [48]. In natural 

elastin, ‘X’ is frequently valine, alanine, or isoleucine. Replacing a valine residue with a 

residue containing a side chain with different properties introduces strong reactivity to 

specific stimuli, including to changes in pressure, salt, pH, and electrical current [92,97].

ELPs generation as multiblock elastin-like recombinant polymers have been utilized for drug 

delivery and medical applications [94,95,98]. These block copolymers have been 

constructed by genetically linking a hydrophobic and hydrophilic block (i.e., [VPGIG]n1-

[VPGSG]n2) or by adding a third hydrophobic end block.

ELPs have been engineered to incorporate peptides such as RGD [99] for cell binding or 

CPPs [100,101] to enhance endocytic uptake. CPPs peptides SynB1 [101], penetratin 

(RQIKIWFQNRRMKWKK), Tat (YGRKKRRQRRR), and MTS (AAVALLPAVLLALLA) 

[100] were fused to the N-terminus of ELPs. The penetratin-ELP fused peptide was further 

modified with the addition of a peptide derived from the cyclin-dependent kinase inhibitor 

p21 (WPGSGGRKRRQTSMTDFYHSKRRLIFSKRKP) [100]. Other modifications aimed 

to control physicochemical properties of the polymers like reducing aggregation of ELPs by 

adding polyaspartic chains [102], or modification of the degradation rate by adding 

sequences recognized by matrix metalloproteinases (MMPs) [103]. Further modifications 

include fusions of therapeutic peptides such as humanin [104], Vascular Endothelial Growth 

Factor [105], Bone Morphogenetic factor 2 [106], peptides that promote insulin release from 

pancreatic β-cells (glucagon-like peptide 1, GLP-1) [107], neuropeptide that promotes heart 

contractility and induces coronary vasodilation with therapeutic applications against 

hypertension (Vasoactive intestinal peptide, VIP) [108], and even a single-chain variable 

fragment [109]. To generate target-specific systems, ELPs have been functionalized with 

tissue specific peptides [105].

3. Drug delivery system

3.1. Particle systems

Microparticles diameters usually range between 0.1 and 100 μm, while nanoparticle 

diameters usually range from 1 to 500 nm. Microparticle and nanoparticle systems have 

been widely used for controlled drug delivery owing to their large surface area, enhanced 

permeability and targeting ability [13,110]. Utilization of nanosized constructs suggest that 

poorly water-soluble drugs can be better administered via encapsulation, and diseased 
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tissues can be targeted passively or actively[111,112]. Furthermore, with suitable targeting 

groups, macromolecular constructs can be delivered to intracellular sites of action. Targeting 

solid tumors using nanosized therapeutic constructs is often through the enhanced 

permeability and retention (EPR) effect. Due to the higher vascular density of tumor tissues 

and their lack of effective lymphatic drainage, macromolecular drugs can accumulate and be 

retained selectively without dispersing into healthy tissues [15,113-115]. The inverse 

temperature transition behavior of ELPs supports the retention of solubility in water under 

the critical transition temperature (Tt), while above the Tt, the polymeric chains 

hydrophobically fold and self-assemble into a more ordered structure suitable for drug 

delivery. Moreover, ELPs are biocompatible and do not generate immune responses as 

natural elastin analogs [116]. ELP nanoparticles were developed by thermo-responsive self-

assembly for the sustained release of bone morphogenetic protein-2 (BMP-2) and bone 

morphogenetic protein-14 (BMP-14) over two weeks [117]. The nanoparticles were 

obtained by incubating the polymer solution at 37°C to yield particles ~238 nm diameter. 

The thermodynamically driven inverse phase transition of ELPs was used to design particles 

(300-400 nm) for the delivery of doxorubicin. During electrospraying, the solvent (water) 

rapidly evaporated to yield dehydrated ELP nanoparticles that could be controlled in size 

and morphology by adjusting the concentration and molecular weight of the protein [118]. 

ELP nanoparticles for drug delivery also present challenges, including the tendency to 

aggregate leading to larger structures, and they can have a critical transition temperature that 

is too low, factors that can lead to cell and organ damage. To prevent aggregation and 

increase the critical transition temperature, poly(aspartic acid) chains have been added to 

ELPs to obtain amphiphilic diblock peptides under 100 nm in diameter, with an critical 

transition temperature of ~37°C [102]. Following the same strategy, paclitaxel-loaded ELP-

poly(aspartic acid) nanoparticles displaying EGF exhibiting active tumor-targeting 

capabilities were developed. The nanoparticles with a size of 30 nm successfully delivered 

the drug to HeLa cells, resulting in cell death[14]. To provide more control over the loading 

and the release of cargo, thermoresponsive crosslinked capsules were developed using 

microemulsion. The capsules, consisting of ELP and BSA, presented porous morphologies 

that could be tuned in terms of diameter and pore size by adjusting the ratio of ELP to BSA, 

with higher amounts of ELP leading to a more porous structures [119]. Porous structures of 

ELP microspheres were studied by adding albumin in different ratios and adjusting external 

stimuli; microspheres were obtained utilizing a water-in-oil emulsion and crosslinked with 

glutaraldehyde (Figure 2A) [120]. While the crosslinking provided control over the shape of 

the microspheres, the porosity of the structure was reversibly altered by changing the 

temperature and hence controlling the drug release profile. The size of the micropores was 

modified based on the mixing ratio of ELP. The thermo-responsiveness of the ELPs enabled 

pore opening and closing, whether the temperature was below or above its Tt, thus providing 

control over the release kinetics of drugs.

SLPs seek to build upon the strength and physicochemical properties found naturally in silk 

and further control those properties to achieve desirable performance in drug delivery. The 

most widely studied engineered SLP comes from either the B. mori silkworm or the spider 

N. clavipes. Engineered spider SLP complexes were designed with poly(L-lysine) domains 

to interact with plasmid DNA and and RGD to enhance cell binding. The size of the 
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nanocomplex was tuned by adjusting the ratio of polymer to pDNA or the molecular weight 

of the poly(L-lysine) domains [84]. Changing the length of the lysine domain changed the 

size of the nanoparticles from 310 to 435 nm [80]. Moreover, a higher content of tumor-

homing peptide was utilized to increase specificity and efficiency to home to tumor cells 

(MDA-MB-435 and MDA-MB-231), and smaller complexes ~90 nm diam. were obtained 

by changing the core recombinant silk domain to improve gene delivery (Figure 2A) [86].

SELPs consisting of a series of silk- and elastin-like proteins consist of a blend of 

mechanical and biological properties of both silk and elastin. While ELP offers elasticity, 

SLPs provide robust stability due to the crystalline β-sheets. This unique bifunctional class 

of protein is very useful for drug delivery as it is biocompatible, biodegradable and highly 

tunable in terms of mechanical properties and degradation lifetime, by changing the ratio of 

silk and elastin blocks [46]. Silk blocks tend to self-assemble into the core of micellar-like 

SELP nanoparticles, and the radius can be tuned by adjusting the ratio of silk to elastin 

[121]. Three different SELPs were generated to form doxorubicin-loaded micellar-like 

nanoparticles with radii between 50 to 142 nm, and they were uptaken up by HeLa cells 

(Figure 2A) [122]. Furthermore, by modifying the primary sequence of the SELPs, micellar-

like nanoparticles (73-206 nm) with enhanced mucoadhesive properties for transmucosal 

drug delivery were achieved [123].

3.2. Gel systems

Cross-linked, 3D hydrophilic polymeric networks or hydrogels are potential candidates in 

tissue engineering, drug delivery, and for implant materials [125-127]. Interest in hydrogels 

arises from their facile fabrication, potential for injectability for noninvasive delivery, and 

useful interactions with biological materials. Properties of hydrogels such as high swelling 

ratios, porosity and soft consistency render them similar to natural living tissue, and thus 

good candidates for biomedical applications [128]. While naturally derived biomaterials can 

produce inconsistent or unwanted biological responses, the use of bioengineered proteins 

allows for tuning of mechanical and stimuli responsive properties, along with high purity 

and consistent molecular weight, avoiding negative outcomes. The crosslinking of hydrogels 

ensures these scaffolds are self-supporting and provide similar properties as the extracellular 

matrix (ECM) environment to support cell adhesion and gene expression. Hydrogels that are 

chemically crosslinked offer more mechanically robust and materials. Further, physically 

crosslinked hydrogels provide stimuli-responsive materials sensitive to environmental 

changes, including temperature, pH, and ionic strength.

ELP hydrogels also display mechanical properties similar to natural elastin, thus useful for 

tissue engineering. Moreover, utilizing ELPs for the formation of hydrogels provides 

thermo-responsive materials with tunable drug release due to the changes in structure by 

cycling the temperature above and below the Tt of the hydrogel. For example, reversible 

chemically crosslinked ELP hydrogels were obtained by introducing cysteine residues in the 

sequence and adding oxidative agents (e.g. ,hydrogen peroxide) to initiate disulfide 

crosslinking [129]. Adjusting the amount of cysteine provided control over the structure and 

thermal properties of the gels by altering crosslinking density and the Tt. ELP hydrogels 

were also prepared using ultrasonication to induce physical crosslinking without the use of 
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chemicals, and the release of doxycycline at two different temperatures was demonstrated 

[130]. A higher release could be observed at the higher temperature (37 °C) compared to the 

lower temperature (25 °C) due to the change in porosity of the scaffold.

SELPs are capable of transitioning from aqueous solution to a physically crosslinked 

hydrogel using increased temperature based on the ratio of silk to elastin. While some 

SELPs are liquid at room temperature, they can form into hydrogels at body temperature. 

The effect of shear stress on SELPs demonstrated that more robust gel networks formed 

when compared to those not subjected to shear stress [131]. The shear stress created 

disruptions in secondary and tertiary structure from decreased intramolecular interactions 

and favoring more intermolecular bonds, hence to a stronger scaffold [132]. SELP hydrogels 

sensitive to MMPs for enhanced degradation in tumor environments were also developed 

[103]. Degradation rate was dictated by the location of the MMP-responsive sequence, thus 

useful for localized gene delivery. Mild oxidative conditions can also be used for the 

formation of chemically crosslinked SELP hydrogels with cysteine residues in the elastin 

blocks and disulfide crosslinking in the presence of hydrogen peroxide (Figure 2B). The 

release kinetics of those gels were tuned by the addition of a reducing agent (dithiothreitol) 

[124].

3.2. Solid formats

Solid carrier systems including films, wafers, reservoirs, foams and microneedles have been 

used for local and transdermal delivery due to the ease of modifications in terms of release 

kinetics, mechanical strength and size [18]. While bioengineered proteins are suitable 

starting materials for the fabrication of modular, solid delivery systems, limited use of 

protein-based materials has been developed to date. Thin films can be used on implanted 

devices to modify surface properties and facilitate integration with living tissues. For 

example, ELPs thin films containing sRGD were pH and thermo-responsive to provide 

tunable surface properties like wettability and topography [99]. Thin films are also ideal for 

optical applications for sustained drug delivery and bioavailability [133]. Chemically 

crosslinked films using glutaraldehyde were initially developed, but the transmittance of 

visible light was only 77%, while 95% was achieved with methanol induced physical 

crosslinking (Figure 3A) [134]. These SELP-based thin films were also used for the delivery 

of ciprofloxacin related to crystallization and kinetic release profiles. The films treated with 

methanol had slower release compared to ethanol due to the increased physical crosslinking 

density and enhanced stability [133].

Electrospun fibers are attractive for biomedical applications as they have similar 

morphological features as the ECM. The fibers can be used in wound dressings, as 

antibacterial materials and for drug delivery [135]. Using bioengineered proteins allows 

aqueous processing and simplifies the manufacturing while diminishing possible toxicity 

from residual solvent [136]. SELP-based fibers in aqueous solution without the addition of 

any surface modifying agents resulted in the formation of ribbon-like morphologies with 

self-standing and non-woven fiber meshes (Figure 3B) [137]. The diameter of the fibers 

ranged from 25 nm to 1.8 cm by varying the concentration of the SELP solution prior to 

electrospinning.
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4. Biomedical Applications.

DDS that can improve the therapeutic index for a drug will ultimately lead to better patient 

outcomes. Recombinant proteins provide an excellent option for the development of DDS 

due to their precise molecular structure, tunability, and the range of physicochemical 

properties. SLPs [34,82,84,87,88,138,139], ELPs [140-146], and SELPs [51,147-152] have 

been utilized as drug carriers in many successful applications. The ability to finely tailor the 

protein structure and chemical composition makes them amenable for a variety of 

therapeutic options including small molecule drugs [153-157], biologics [158-162], and 

gene therapy systems [32,86,163-165].

ELPs were used for treatment of glioblastomas, an especially aggressive form of cancer 

[101]. Despite numerous efforts to develop DDS targeted to this cancer, patient outcomes 

remain dire. ELP systems that killed glioblastoma cells selectively and effectively were 

developed using temperature-responsive properties for the aggregation and accumulation of 

the DDS in tumor cells at a specific temperature above physiological condition. 

Additionally, a cell penetrating peptide (CPP) was incorporated into the ELP to facilitate 

efficient uptake of the DDS into the cell. Finally, an acid sensitive linker was used to 

conjugate doxorubicin (Dox) to the carrier (Figure 4). This permits selective release of Dox 

once the DDS enters tumor cells and is exposed to decreased pH. The CPP was integrated 

into the ELP carrier via genetic fusion, removing the need for further functionalization or 

chemical conjugation. Additionally, the incorporation of the acid sensitive linker and the 

drug molecule was achieved in a highly selective and predictable manner by thiol-maleimide 

coupling to three cysteine residues on the ELP. This precise stoichiometric control enables a 

reliable and quantifiable measure of drug conjugation. A composite material formed from 

hyaluronic acid (HA) and dendritic ELP was also shown to release drug in a controlled 

fashion [16]. In this example, lysine terminated dendritic ELPs formed hydrogels via HA 

crosslinking using EDC coupling. The selective crosslinking sites provided by the ELPs 

allowed for control over crosslink density and enabled the controlled uptake and release of 

the model drug system dependent on hydrogel composition. SELP drug carriers were also 

designed using a block copolymer system that facilitated efficient micelle formation upon 

addition of a hydrophobic drug, while simultaneously enabling enhanced loading of the drug 

into the micelle core [166]. Using recombinantly produced constructs, varying SELP ratios 

were efficiently tested to determine the optimal composition for drug uptake and controlled 

micelle formation. Doxorubicin was used to trigger SELP micelle formation, and effective 

cell uptake and apoptosis was observed in HeLa cells indicating a promising system for 

tumor treatment and therapeutic delivery. Each of these examples demonstrates the 

advantages of recombinant polypeptide structures for drug carrier development.

Proteins and peptide therapeutics often prove challenging to deliver due to their size and 

stability, complex structures, and susceptibility to enzymatic degradation. However, several 

examples of recombinant protein-based systems have been presented showing successful 

delivery of key protein therapeutics. For example, protein fusions for delivery of humanin, a 

crucial peptide required in the protection of human retinal pigment (RPE) cells in diseases 

such as macular degeneration, was demonstrated [104]. A temperature responsive ELP was 

fused to humanin to generate a stable DDS that showed binding to RPE cells under 
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physiological conditions and demonstrated protection against oxidative stress that otherwise 

leads to apoptosis. In a similar fashion, a SELP fusion system was developed for the delivery 

of vascular endothelial growth factor (VEGF) a widely employed treatment of kidney 

disease [105]. To further functionalize the drug delivery system, a kidney targeting peptide 

was added, creating a chimeric protein to improve uptake in kidney tissue and reduce 

unwanted tissue accumulation. The DDS showed increased localization to the kidneys and 

decreased off target tissue deposition compared to the ELP construct without the targeting 

peptide (Figure 5A-B). This system successfully maintained the therapeutic efficacy of 

VEGF while facilitating renal tissue deposition. An ELP fusion delivery system was also 

generated for bone regeneration applications [106]. Bone morphogenic protein 2 (BMP2) 

was genetically incorporated into an ELP sequence resulting in a stable construct that 

retained the therapeutic efficacy of BMP2, as well as the temperature responsive features of 

the ELP. Testing of this ELP system in a mesenchymal stem cell model resulted in 

osteogenic differentiation, indicating the potential for use in bone healing. Nanoworm 

complexes consisting of an ELP domain functionalized with a single chain variable fragment 

(scFv) of the antibody therapeutic Rituximab were developed [109]. The use of the ELP 

fusion enabled an increase of therapeutic efficacy compared to the antibody alone due to the 

multivalent nanostructures which bind efficiently to CD20 receptors on two different B-cell 

lymphoma cell lines and induce apoptosis. In vivo experiments also showed an increase in 

efficacy of the protein polymer hybrid structures compared to the antibody drug alone. The 

utility of recombinant engineering is seen in this method, as the antibody structure was 

efficiently incorporated into the nanoparticle system without the need for typical 

bioconjugation strategies requiring additional chemistry and purification steps.

Another rapidly evolving area of therapeutic development is gene therapy. Recombinant 

protein-base DDSs provide a novel approach to generate non-viral vectors for the delivery of 

genetic material. One such example can be seen in a nanoparticle delivery system developed 

with low immunogenicity to enable prolonged circulation and ultimately improve tissue 

uptake and therapeutic efficacy of plasmid DNA [167]. ELP constructs functionalized with a 

DNA condensing domain (RH3), which facilitates efficient packaging of plasmid molecules 

with the ELP chains, were applied to fabricated nanosized particles. When compared to 

pegylated delivery methods, the ELP nanoparticles showed significantly decreased immune 

responses and increased efficiency of plasmid delivery. This example highlights the 

biocompatibility of protein-based DDS, as well as the facile functionalization afforded by 

genetic engineering. In an elegant design of SELPs modified with matrix metalloproteinase 

(MMP) responsive sequences, the controlled delivery of viral particles for cancer therapy 

was validated [103]. Through addition of MMP cleavable domains along the protein 

backbone, degradation of the SELPs could be tightly controlled. Tunable degradation rates 

dependent on location of the MMP sites were demonstrated, and this feature was further 

illustrated in in vivo mouse models of head and neck squamous cell carcinoma where the 

SELP DDS significantly improved delivery of adenoviral vectors (Figure 6A-B). The 

usefulness of genetically engineered non-viral vectors was further established in a design of 

elastin-like recombiners (ELRs) for gene delivery [164]. ELR fusions incorporating 

penatratin and LAEL fusogenic peptide sequences (i.e. domains of Leu, Ala, Glu, and Leu) 

to facilitate cell uptake of the DDS and increased transfection levels of plasmid DNA were 
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created using ELRs with cationic backbones for efficient complexation of plasmid DNA 

resulting in stable polyplexes. This was accomplished through modification of the elastin 

variable position to contain lysine residues. Peptide sequences were added using recursive 

ligation, which allows for control over the resulting polymer structure, size, and charge. In 

C6 rat glioma cells the constructions with the LAEL motif showed the highest transfection 

efficiency. Further application of SELPs as DNA carriers was also exemplified in SELP 

hydrogel systems [168]. Hydrogels fabricated from SELPs, generated with tunable 

degradation properties and temperature-responsive gelation at 37°C, displayed precise 

spatial and temporal control over adenovirus delivery indicating potential utility in head and 

neck cancer therapies. The SELP hydrogel demonstrated a 10-fold increase in gene 

expression upon intratumoral injection compared to the viral injection alone.

5. Conclusions

The need for new and refined therapeutics has led to the development of polymeric drug 

delivery systems to improve the therapeutic outcomes and diminish unwanted side effects. 

While much research has been focused on synthetic polymers, their limitations in terms of 

chemistry, tunable control of structure and mechanics, limited aqueous processing, bulk 

hydrolysis and production of acidic byproducts has drawn more attention toward natural 

polymers. Naturals proteins have been engineered to provide tunable features rendering 

them stimuli-responsive or allowing for the fabrication of disease-targeted DDS. ELP and 

SLP recombinant protein systems and their implementation in the field of drug delivery, as 

reviewed, are summarized in Table 3. Such bioengineered protein polymer systems offer 

precise tailoring and control that is useful in envisioning future needs with specialized or 

selective DDS. In particular, compatibility with complex proteins, peptides, and assemblies, 

tunable features related to targeting, degradation and stability, biocompatibility and safe 

degradation products, are some of the key values of these systems that can be achieved while 

maintaining the mechanical value of elasticity of natural elastin and robustness of natural 

silk. When combined with options to directly encode target sequences, therapeutics and 

related control points during design and fabrication of DDS, new avenues are realized for 

bioengineering protein polymers in the field of DDS. The high customization level and 

attractive physicochemical properties of such engineered proteins make them suitable 

candidates for drug and gene delivery. Despite the numerous advantages of engineered 

proteins, challenges remain with clinical translation. No ELP or SLP carrier has yet received 

clinical approval for drug delivery. Nevertheless, various ELP fusions have successfully 

completed phase I and II clinical trials: VIP-ELP (Vasomera™) for the treatment of 

pulmonary arterial hypertension, cardiomyopathies and cystic fibrosis completed phase I; 

and GLP1-ELP (Glymera™), for the treatment of type II diabetes completed phase IIB. 

These clinical trials demonstrate that ELPs are tolerated in humans and do not induce a 

significant immune response [169-171]. With the advent of personalized therapeutic 

modalities, recombinant protein systems, such as those presented in this review, should 

continue to grow in importance and implementation in the field, providing an advanced 

platform for modulating DDS to optimize patient outcomes.
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Figure 1. 
A) Recombinant proteins used as biomaterials for drug delivery applications. Recombinant 

proteins produced in host organisms for subsequent fabrications into a range of different 

material formats for a wide range of applications in the drug delivery field. B) Routes of 

administration of the different formats of DDS.
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Figure 2. 
A) SEM of particles, i) ELP [120], ii) SLP [86], iii) Representative cryogenic scanning 

electron microscope (cryo-SEM) of Dox-loaded SE8Y nanoparticles [122]. B) SEM images 

of the lyophilized hydrogels fabricated with 4.05% (w/v) protein and 0.05% (w/v) H2O2 at 

37 °C [124]. Figures reproduced with permission from the cited articles.
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Fig. 3. 
A) Transmittance of non- (▽), MeOH- (○), and MeOH-GTA-treated (◊)SELP-47 Kdry 

films of 30 μm thickness. Measurements were done in triplicate. Insert: photo images of 

SELP- 47 K films cast on coverslips [131]., B) FESEM images of nanoribbons obtained by 

electrospinning from aqueous solution at various concentrations of SELP47K 6% (a), 9% 

(b), 12% (c), 15%(d), 18% (e) (w/w) and low magnification image at 15% (f), other 

electrospinning conditions were kept at a constant applied voltage (20 KV), collecting 

distance (15 cm) and flow rate (0.1 mL/h). (Scale bar – a–e: 1 μm, f: 25 μm) [134]. Figures 

were reproduced with permission from the cited articles.
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Figure 4. 
Schematic of ELP construction. An ELP of 60 kDa was fused to a cell penetrating peptide 

(SynB1) and chemically coupled to doxorubicin (DOXO) [101]. Figure is available for 
reproduction through MDPI open access policy.
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Figure 5. 
Biodistribution analysis from mice following intravenous injection of ELP-VEGF 

constructs. A) Representative images from each treatment group showing uptake in each 

tissue. B) Quantified distribution via mean fluorescence intensity [105]. Figure is available 
for reproduction through MDPI open access policy.
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Figure 6. 
In vivo evaluation of matrix metalloproteinase responsive SELPs. A) Amino acid sequences 

of SELP815K, SELP815K-RS1, SELP815K-RS2, and SELP815K-RS5 showing insertion 

sites of matrix metalloproteinase responsive sequences for SELP815K monomer B) Post 

necropsy histological evaluation of SELP constructs by hematoxylin and eosin staining after 

50 days of implantation. White arrows indicate vascular infiltration of the hydrogels. S: 

SELP hydrogel, T: tumor tissue. All images captured at 100 × magnification using a light 

microscope [103]. Figure reproduced with permission from Elsevier.
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Table 1.

Advantages of ELP and SLP as engineered protein for drug delivery.

ELASTIN LIKE PROTEIN SILK LIKE PROTEIN

• Inverse temperature transition behavior

• Elasticity

• Amphiphilic, self-assembly behavior

• Stabilization by physical crosslinks

• Higher Mechanical Strength (robustness)

COMMON ADVANTAGES

• Biodegradable with controlled rates of degradation by enzymes

• Biocompatible

• Tunable chemistry and material properties

• Tight control of sequence and size; homogeneity in polymers and materials

• Tailorable drug loading and release kinetics

• Relatively low cost production and scale up
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Table 2.

Stimuli responsive features of SELP-based dynamic proteins.

Second residue in elastin block
GXGVP

Stimuli Ref.

Val, Phe, Ile, Tyr, Gly Temperature Ionic strength [46,47,53,54]

Glu, Lys pH Electrical field [53,54]

Cys Redox [51,53]

RGYSLG Phospho/dephosphorylation [53]
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