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Abstract

The pathogenesis of Alzheimer’s disease (AD) remains largely unclear. Exploring the genetic/

epigenetic loci showing pleiotropic association with the neuropathologies of AD may greatly 

enhance understanding of the mechanisms underlying the development of AD. In this study, using 

data from the Religious Orders Study and the Rush Memory and Aging Project (ROSMAP), we 

undertook a Mendelian randomization (MR) approach integrating GWAS and DNA methylation 

quantitative trait loci (mQTL) data to explore pleiotropic epigenetic loci for AD neuropathologies, 
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including amyloid-β- (Aβ) load and tau-containing neurofibrillary tangle density. We performed 

GWAS of DNA methylation in brain tissues from 592 participants and mapped 60,595 cis-SNP-

CpG pairs after correction for multiple-testing. By linking cis- mQTL with GWAS results for Aβ 
load and Tau tangles, we identified 47 CpGs showing pleiotropic association with Aβ load by MR 

analysis. We then used gene expression data from 537 individuals and performed quantitative trait 

methylation (QTM) analysis. We found that 18 of the 47 CpGs were in cis associated with 25 

mRNAs/genes, comprising 41 unique CpG-mRNA/gene pairs. Our findings shed light on the role 

of DNA methylation in the pathogenesis of Aβ.
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Introduction

Alzheimer’s disease (AD), the most common neurodegenerative disease and a major cause 

of disability, affects patients’ quality of life and brings a tremendous economic burden to the 

society (Alzheimer’s Association, 2016; GBD 2017 DALYs and HALE Collaborators, 

2018). Neuropathologically, AD brains contain an extracellular buildup composed of 

amyloid-β peptide (Aβ) and intraneuronal accumulation of neurofibrillary tangles (NFTs) 

(Congdon and Sigurdsson, 2018; Ising and Heneka, 2018; Jansen et al., 2019; Kumar et al., 

2020). However, the exact neuropathogenesis of AD remains to be unclear. Therefore, it is 

important to further explore the pathological mechanisms underlying AD and identify 

genetic/epigenetic loci showing pleiotropic association of with AD neuropathologies.

Although genome-wide association studies (GWAS) have revealed the complex genetic 

architecture of AD (Jansen et al., 2019; Lambert et al., 2013), the identified genetic variants 

only accounted for a portion of the heritability (Escott-Price et al., 2017; Sims et al., 2020). 

DNA methylation is an epigenetic marker that has been reported to play a key role in many 

biological processes and diseases (Ahuja et al., 2016; Horvath, 2012; Klose and Bird, 2006). 

Previous methylome-wide association studies (MWASs) have been successful in identifying 

DNA methylation loci/regions associated with AD neuropathologies. For example, multiple 

differentially methylated probes (DMPs) in ABCA7, B1N1 and SORL1, differentially 

methylated regions (DMRs), and variably methylated regions (VMRs) were found to be 

associated with the burden of AD neuropathologies or pathological diagnosis of AD (De 

Jager et al., 2014; Huo et al., 2019; Lunnon et al., 2014; Smith et al., 2018; Watson et al., 

2016; Yu et al., 2015). However, these findings could be subject to confounding factors and 

reverse causation that might influence the results. As a result, more studies are needed to 

explore pleiotropic DNA methylation loci for AD neuropathologies.

It is a major public health goal to identify modifiable causes of a disease/disorder in order to 

develop effective interventions or therapeutic strategies. However, risk factors identified by 

conventional observational epidemiology studies were often found to be misleading because 

the findings were subject to confounding, reverse causation and selection bias (Lawlor et al., 

2004; Lawlor and Smith, 2006). Randomized controlled trials (RCTs) are often considered 
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to be the gold standard to make pleiotropic inferences as all the characteristics, except the 

exposure of interest, are comparable among the groups (Bhide et al., 2018). However, 

conduction of RCTs is time-consuming, expensive, and in some cases, the allocation of 

exposure is unethical or impractical.

Mendelian randomization (MR) refers to methods that use proxy of modifiable risk factors 

to examine the pleiotropic effect of these risk factors on diseases/disorders by utilizing data 

from observational epidemiology studies without the need of conducting a conventional 

RCT (Emdin et al., 2017). MR uses instrumental variables (IVs) as the proxy to mimic 

randomization of individual to an exposure to ensure comparability of individuals with 

respect to known/unknown confounding factors, thereby enabling the estimation of a 

pleiotropic association with an outcome (Lawlor et al., 2008). Genetic variants are often 

used as the IVs because random allocation of alleles of genetic variants occur during gamete 

formation, well before the exposure or outcome. Estimation of the pleiotropic association 

can be made because the inherited genetic variants are independent of potentially 

confounding factors.

Recently, a novel analytical framework was applied to evaluate the pleiotropic association 

between DNA methylation levels and diseases that could minimize confounding and reverse 

causation through an MR approach integrating cis- DNA methylation quantitative trait loci 

(cis-mQTL) and GWAS data (Hannon et al., 2018; Hannon et al., 2017; Huan et al., 2019; 

Richardson et al., 2018; Richardson et al., 2017). Here, we adopted this novel MR approach 

to search for DNA methylation loci showing pleiotropic association with AD 

neuropathologies and to explore functional mechanisms underlying the association of 

genetic variants with AD neuropathologies.

Materials and methods

Study participants

Data for the present study were drawn from the Religious Orders Study and the Rush 

Memory and Aging Project (ROSMAP), both of which are ongoing, prospective studies of 

brain aging and dementia in older individuals (Bennett et al., 2018; Bennett et al., 2012b). 

All participants were free of dementia at enrollment, and agreed to annual clinical 

evaluations and brain donation upon death. The clinical evaluation includes detailed 

neurologic examination and clinical classification of dementia and AD (Bennett et al., 

2018). Postmortem human dorsolateral prefrontal cortex (DLPFC) tissues were obtained 

from deceased participants to measure DNA methylation, gene expression and 

neuropathological protein. More details regarding the design of ROSMAP study can be 

found in previous publications (Bennett et al., 2018; Bennett et al., 2012a; Bennett et al., 

2012b).

Written informed consent was obtained from participants at the beginning of each study as 

was an Anatomical Gift Act. Participants also signed a repository consent to allow their data 

to be re-purposed. Both studies were approved by the Institutional Review Board of the 

Rush University Medical Center. The ethics approval was given in compliance with the 
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Declaration of Helsinki. The clinical data can be requested at https://www.radc.rush.edu/ and 

the omics data can be requested at https://www.synapse.org/.

Assessment of neuropathological phenotypes

All the data used in our analyses were collected by ROSMAP study. The collection of whole 

blood and brain tissues was described previously (Bennett et al., 2018). Detailed procedures 

for postmortem brain examination and neuropathological phenotyping have been described 

previously (Yu et al., 2015). In brief, neuropathological hallmarks including amyloid-β (Aβ) 

and tau-containing neurofibrillary tangles (NFTs) were quantified across the brain in both 

studies. Aβ protein was identified by molecularly-specific immunohistochemistry and 

quantified by imaging analysis, with values being summarized as percent area occupied by 

Aβ. Aβ scores in eight regions (i.e., hippocampus, entorhinal cortex, midfrontal cortex, 

inferior temporal, angular gyrus, calcarine cortex, anterior cingulate cortex and superior 

frontal cortex) were averaged. Tau protein was identified by molecularly specific 

immunohistochemistry (antibodies to abnormally phosphorylated Tau protein, AT8). 

Cortical density (per mm2) was determined using systematic sampling. Tau scores in the 

same eight regions were averaged. Both indices were square root transformed to approach a 

normal distribution. More information is available at https://www.radc.rush.edu.

Genotyping and genotype imputation

Genotyping was performed using the Affymetrix Genome-Wide Human SNP Array 6.0. 

Detailed information regarding the pipeline of quality control of the genotyping data was 

reported in a previous publication (De Jager et al., 2012; Ng et al., 2017). Dosages for all 

SNPs (>35 million) was imputed on the 1000 Genomes reference using BEAGLE 3.3.2. 

Imputed SNPs were filtered based on minor allele frequency (MAF) > 0.01 and imputation 

INFO score> 0.3, yielding 7,321,515 imputed SNPs that were used for further cis-mQTL 

mapping.

DNA methylation profiling

DNA methylation data were generated using the 450K Illumina array from DLPFC, and 

quality control was conducted as described previously (Ng et al., 2017). A total of 420,131 

methylation sites (i.e., CpGs) remained after quality control, and all data had been adjusted 

for age at death, sex, and experimental batch (De Jager et al., 2014).

Gene expression data

Gene expression data were generated using RNA-seq from DLPFC at an average sequence 

depth of 90 million reads. Detailed description of the data generation and processing was 

described previously (Ng et al., 2017). Only highly expressed genes were kept (mean 

expression > 2log2(FPKM)), resulting in 55,889 mRNA and 50,999 expressed genes.

Statistical and bioinformatics analysis

Using data collected from ROSMAP study, we undertook an MR approach which included a 

series of analyses, as outlined below, to examine the pleiotropic association of DNA 

methylation with AD neuropathologies. We first performed a genome-wide mQTL analysis 
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to identify SNPs associated with DNA methylation in participants with both genetic and 

DNA methylation data. The cis-mQTL analysis followed a similar approach to the one 

described in a previous study (Hannon et al., 2018). In brief, linear regression was 

performed to test the association between each SNP and CpG, with each individual CpG as 

the dependent variable and each individual SNP as the independent variable, adjusted for the 

first three principal components. In total, 7,321,515 imputed genetic variants against each of 

the 420,131 eligible CpGs were tested by using the R package “MatrixEQTL”. SNPs within 

1 Mb of a CpG site showing significant association with the CpG (known as cis-mQTLs) 

were identified. We applied a conservative multiple testing correction to define cis-mQTLs 

(i.e., 0.05/number of SNP-CpG pairs=1.35×10−10) to reduce weak instrument bias in the MR 

analysis. In the case of multiple variants showing significant association with the same 

individual CpG, we chose the cis-mQTL variant with the smallest P-value as the 

instrumental variable (IV) for the CpG site. We then performed GWAS for AD 

neuropathologies, including amyloid-β- (Aβ) load and tau-containing neurofibrillary tangle 

density, adjusted for age at death, sex, education and the first three principal components. 

MR was undertaken with DNA methylation as the exposure, AD neuropathology as the 

outcome, and cis-mQTL as the IV. The analysis was done using the inverse-variance 

weighted (IVW) method as implemented in the mr_ivw function of the R package 

“MendelianRandomization” (Yavorska and Burgess, 2017). In the context of a single genetic 

variant as the IV, this is equivalent to a Wald ratio approach which allows distinct or 

overlapping samples to be used for the genetic association analysis in MR (Teumer, 2018). 

The weight was set to be delta to include the second-order term from the delta expansion in 

the calculation of the standard error of the estimate. We used the observed correlation 

between DNA methylation and the corresponding AD neuropathology to account for the 

correlation between genetic association with DNA methylation and genetic association AD 

neuropathologies due to sample overlap (Yavorska and Burgess, 2017) (see the 

supplementary file for the R and shell codes used for the analyses). We used false discovery 

rate (FDR) to adjust for multiple testing.

We performed the heterogeneity in dependent instruments (HEIDI) test, as provided in 

Summary-data-based Mendelian Randomization (SMR) (Zhu et al., 2016), to test the 

existence of linkage in the observed association. Rejection of the null hypothesis (i.e., 

PHEIDI<0.05) indicates that the observed association in MR might be due to two distinct 

genetic variants in high linkage disequilibrium with each other.

In addition, a cis- mRNA- quantitative trait methylation (QTM) analysis was performed to 

explore the association between the identified CpGs and gene expression in participants with 

both DNA methylation and gene expression data. A cis-CpG-mRNA pair was defined as the 

target CpG residing in ± 10 kb of the corresponding gene encoding the mRNA (FDR 

P<0.05). In brief, linear regression was performed to test the association between each CpG 

and mRNA, with each individual mRNA as the dependent variable and each individual CpG 

as the independent variable, adjusted for age at death, sex, education and postmortem 

interval.

The annotations of transcripts were based on the Affymetrix exon array S1.0 platforms. To 

functionally annotate putative transcripts, we conducted functional enrichment analysis 
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using the functional annotation tool “Metascape” (Zhou et al., 2019) and the gene concept 

network analysis using the R package “clusterProfiler” (Yu et al., 2012) for the genes 

harboring the identified CpGs and the cis-associated genes, separately. Gene symbols 

corresponding to putative genes (P<0.05) were used as the input of the gene ontology (GO) 

and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis.

Data cleaning and statistical/bioinformatical analysis was performed using SAS version 9.4 

(SAS Institute, Chicago, IL, USA), R version 4.0.0 (https://www.r-project.org/), PLINK 1.9 

(https://www.cog-genomics.org/plink/1.9/) and SMR (https://cnsgenomics.com/

software/smr/).

Results

The characteristics of the included participants

Fig. 1 is the flow chart showing the different stages of our analysis. Among the 1,708 

participants who had genetic data, 1312 died during follow up (mean age at death: 

89.61±6.42; male: 33.1%), and 1168 participants had brain neuropathology data, of whom 

764 (65.4%) were diagnosed as having pathological AD. A total of 740 participants had 

methylation data and 542 participants had gene expression data. Pairwise association 

analyses between genetic variants and DNA methylation were performed for 592 

participants who had both genotype and methylation data (mean age at death: 88.26±6.47; 

male: 36.4%) for further cis-mQTLs mapping and MR analysis. The cis paired association 

tests of the identified pleiotropic CpGs with mRNAs were performed in 537 participants 

(mean age at death: 88.44±6.70; male: 36.9%).

Putative pleiotropic CpGs for AD neuropathology

We identified more than 370 million cis- mQTL SNPs at P < 0.05 and found that 60,595 

CpGs had at least one cis-mQTL SNP (P<1.35×10−10; Fig. 2). We therefore selected the cis-

mQTL variant with the smallest P-value as the IV for each CpG in the MR testing.

We undertook 60,595 tests to evaluate the pleiotropic associations between genetically 

determined DNA methylation and AD neuropathologies to explore putative pleiotropic 

effect of DNA methylation on AD neuropathology. MR analysis identified 47 pleiotropic 

associations between genetically determined CpGs and Aβ load, including 44 positive 

associations and 3 negative associations with Aβ load, but no significant pleiotropic 

association between genetically determined CpGs and Tau tangles (Table 1, Supplementary 

Table 1 and Fig. 3).

Of the 47 identified CpGs, 26 were located in the intragenic region with approximately 70% 

located in gene body (including 5’UTR, coding sequence [CDS], intron and 3’UTR) and 

30% in the transcription start site (TSS), and the remaining 21 in intergenic regions 

(Supplementary Table 2). Examination by chromatin states revealed that most of the 

identified CpGs were in strong transcription and promoter sites. More information of the 

pleiotropic CpGs can be found in Supplementary Table 2.
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Association of the pleiotropic CpGs with mRNAs

To further dissect the relationship between DNA methylation and Aβ load, we evaluated the 

influence of the methylation levels on gene expression. We identified 774 CpG-mRNA pairs 

using cis- mRNA-QTM analysis. Among the 47 CpGs, 18 CpGs were in cis associated with 

25 mRNAs involved in 25 genes comprising 41 CpG-mRNA/gene pairs (Table 2). We found 

that 24 CpGs were positively associated with mRNAs, and 17 CpGs negatively associated 

with mRNAs.

Pathway analysis/Functional informatics

GO enrichment analysis of biological process, molecular function, and cellular component 

pathways showed that the genes harboring the identified CpGs were involved in four GO 

terms, including nervous system development (R-HSA-9675108), forebrain development 

(GO:0030900), signaling by TGF-beta Receptor complex (R-HSA-170834), and stress-

activated MAPK cascade (GO:0051403; Figure 4A). Concept network analysis of genes 

harboring the identified CpGs revealed multiple domains related with neuron generation, 

development and differentiation (Fig. 4B). GO enrichment analysis of cis-associated genes 

identified only one significant GO term of Golgi vesicle transport (GO:0048193; Fig. 4C). 

Concept network analysis of cis-associated genes revealed domains associated with 

leukocyte deregulation and DNA damage recognition (Fig. 4D). More information can be 

found in Figure 4 and Supplementary Table 3–4.

Discussion

In this study, we integrated GWAS and mQTL data in MR analysis to explore putative 

pleiotropic DNA methylation loci for AD neuropathology. We identified 47 pleiotropic DNA 

methylation loci for Aβ load. Among the 47 CpGs, 18 CpGs were associated in cis with 25 

mRNAs involved in 25 genes comprising 41 CpG-mRNA/gene pairs. To the best of our 

knowledge, this is the first study to examine putative pleiotropic epigenetic loci for AD 

neuropathology through an MR approach.

Evidence is accumulating that DNA methylation is related to AD (De Jager et al., 2014; Huo 

et al., 2019; Lunnon et al., 2014; Smith et al., 2018; Yu et al., 2015). However, previous 

studies focusing on exploring the association between differential DNA methylation and AD 

are prone to confounding and reverse causation (Dekkers et al., 2016; Huo et al., 2019; Wahl 

et al., 2017). As a result, some disease-associated CpGs from MWAS may reflect the 

influence of the diseases on DNA methylation rather than the pleiotropic effects of DNA 

methylation on the diseases. By contrast, MR incorporates cis-mQTL information into 

GWAS analyses and has the potential to increase the power of GWAS in identifying 

pleiotropic loci associated with complex diseases (Hannon et al., 2018; Hannon et al., 2017; 

Richardson et al., 2017). This novel analytical framework that integrates GWAS and mQTL 

data in MR analysis enabled us to identify multiple epigenetic loci that showed pleiotropic 

relationship with Aβ load, indicating that DNA methylation resides along the pleiotropic 

pathway linking genetic variants with AD neuropathology.
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Some of the casual CpGs identified in our study have been reported to be associated with Aβ 
load or AD related risk factors. For example, the epigenetic locus cg24523650 in EIF2AK2 
was associated with Aβ load by a previous EWAS study of AD neuropathology (Huo et al., 

2019). Two other methylation loci, cg08152546 and cg13180678 which reside in or are 

close to CENPV, were associated with aging (Florath et al., 2014; Weidner et al., 2014), a 

major risk factor for AD. In addition, we identified several pleiotropic epigenetic loci, such 

as cg00473245 in RAB20 and cg27036936 in KIAA1462, that were associated with 

metabolism-related disorders such as metabolic syndrome, obesity and diabetes (Akinyemiju 

et al., 2018; Nilsson et al., 2014). Increasing evidence suggests epidemiological and 

pathological links between AD and metabolic traits (Jansen et al., 2019; Sims et al., 2020). 

Previous research identified common genetic architectures shared between AD and 

metabolic traits, and shed light on molecular mechanisms underlying the association 

between AD and metabolic dysregulation (Zhu et al., 2019). Whether and how these 

identified epigenetic loci affect the risk of AD via metabolic pathways warrants further 

investigation.

Some of the genes harboring the identified CpGs were reported to be involved in the 

development of the nervous system or AD neuropathologies. For example, we identified 

cg20829347 in SOX1 as a pleiotropic epigenetic site for Aβ load. SOX1 encodes a member 

of the SOX (SRY-related HMG-box) family of transcription factors, and was reported to be 

involved in the regulation of embryonic development and in the determination of cell fate 

(Berger et al., 2016). SOX1 plays an important role in regulating neurogenesis in the 

nervous system (Kan et al., 2004). In addition, we found cg05090851 in UBB as a 

pleiotropic epigenetic site for Aβ load. UBB encodes ubiquitin, which has a major role in 

targeting cellular proteins for degradation and is also involved in the maintenance of 

chromatin structure, regulation of gene expression, and stress response (Grumati and Dikic, 

2018). An aberrant form of ubiquitin was found to be accumulated in brain tissues of AD 

patients (Munari et al., 2018).

Although it is widely hypothesized that DNA methylation could influence gene expression, 

its relationship with transcriptional activity in influencing AD neuropathology is not fully 

understood. We found that two of the identified CpGs (cg18975376 and cg03325931) were 

associated with the expression of BAMBI which encodes a transmembrane glycoprotein 

related to transforming growth factor beta type I (TGF-β1) family (Bai et al., 2017). It was 

found that impairment of TGF-β1 signaling was associated with exacerbated Aβ deposition 

and neurofibrillary tangle formation (Estrada et al., 2018). In addition, many of the identified 

pleiotropic CpGs for Aβ load showed in cis association with genes that might be involved in 

AD neuropathologies. For example, cg04480325, cg04521224 and cg06480171, located in 

the intergenic region, were associated in cis with the expression of QPCT which encodes 

human pituitary glutaminyl cyclase and is responsible for the presence of pyroglutamyl 

residues in many neuroendocrine peptides. It was found that lowering QPCT expression 

could reduce the amount of pyroglutamate-amyloid-β, a major constituent of Aβ deposits in 

human AD (Alexandru et al., 2011).

We also found that some of identified pleiotropic CpGs were in cis associated with genes 

which have not been reported to be involved in the pathogenesis of AD. For example, 
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cg20577663 in CDRT4 was in cis associated with the expression of ADORA2B which 

encodes an adenosine receptor. Adenosine receptor signaling plays important roles in normal 

physiology, and was reported to be involved in cardiovascular diseases (Geldenhuys et al., 

2017; Gile and Eckle, 2016; Novotný, 2015). In addition, cg24523650 in EIF2AK2 was in 

cis associated with the expression of STRN which encodes striatin, a cell–cell junctional 

protein involved in maintaining correct cell adhesion (Lahav-Ariel et al., 2019). More 

studies are needed to reveal the exact function of these genes in the development of AD 

neuropathology.

Our study has some strengths. The Religious Orders Study and the Rush Memory and Aging 

projects have similar procedures in the collection of ‘omics’ data and pathologic data, which 

allows various types of data to be merged for analyses that may have small to moderate 

effects. The MR approach greatly reduced confounding bias and reverse causation. 

Therefore, the identified DNA methylation loci likely represent some ‘true’ pleiotropic 

epigenetic markers for AD neuropathology. The ROSMAP studies have a very high rate of 

participation in the follow up and autopsy, which reduced bias from selective attrition. We 

only included study participants of European ancestry in our analyses and controlled for the 

first three principal components the cis-mQTL analysis; therefore, population stratification 

is less likely to be a problem.

Our study also has some limitations. Our MR analysis was based on the following four 

assumptions: 1) the genotype is associated with DNA methylation; 2) the genotype is not 

associated with confounding factors that bias the associations between DNA methylation 

and amyloid-β load; 3) the genotype is related to amyloid-β load only via its association 

with DNA methylation; and 4) all the associations are linear and unaffected by statistical 

interaction. In the cis-mQTL analysis, we filtered genetic variants with conservative multiple 

testing, and chose the genetic variant with the smallest P-value for each CpG, minimizing 

the concern of weak IV (assumption 1). Non-association of genotype with confounders is 

often based on the biological belief that the genotype will not be associated with 

socioeconomic and behavioral characteristics that commonly confound the effects of 

exposure (i.e., DNA methylation) on the outcome (i.e., amyloid-β load) (Lawlor et al., 

2008). Moreover, we used data from the same studies in obtaining both genotype-DNA 

methylation and genotype- amyloid-β load estimates, further alleviating the concern about 

violation of assumption 2 (Lawlor et al., 2008). Regarding assumption 3, we acknowledge 

that with the use of single-variant-based MR method, we could not rule out the possibility of 

horizontal pleiotropy which could distort the MR results. A recent study found that 

horizontal pleiotropy was detectable in approximately 50% of significant causal 

relationships in MR, and could induce severe distortions in MR estimates as well as around 

10% of false positive causal relationships (Verbanck et al., 2018). We performed HEIDI test 

and found that of the 47 identified CpGs, the test was available for 16 CpGs. The HEIDI test 

was not significant for most CpGs except one (cg03671802 in RAX; Supplementary Table 

1), indicating that these observed associations were less likely subject to horizontal 

pleiotropy. However, caution should still be executed in interpreting the MR results because 

the HEIDI test was not feasible for the remaining identified CpGs. It is often difficult to 

validate the linearity assumption (Lawlor et al., 2008). Violation of the assumption is not 

essential when the purpose is to test the null hypothesis of no effect of the exposure (e.g., 
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DNA methylation) on the outcome (e.g., amyloid-β load), but can cause problems when the 

purpose is to estimate the size of the effect. We adopted correction for multiple testing to 

reduce false positive rate; however, we may have missed important SNPs or methylation 

loci. Moreover, our pathway analysis only included pleiotropic methylation loci in 

association with gene expression, and we did not consider other methylation loci that could 

also affect the development of Aβ. More studies are needed to systematically explore the 

role of DNA methylation in influencing transcriptional activity in the neuropathogenesis of 

AD.

In conclusion, by performing multi-stage analyses incorporating GWAS and mQTL data 

through an MR approach, we identified multiple pleiotropic DNA methylation loci for Aβ 
load. Our findings shed light on the role of DNA methylation in the pathogenesis of Aβ 
load. Future studies are needed to validate our findings and elucidate the exact functions of 

the identified epigenetic loci and the associated genes in the development of AD 

neuropathology.
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Highlights

• We aimed to search for pleiotropic DNA methylation loci for 

neuropathologies of AD.

• We adopted a Mendelian randomization approach integrating GWAS and 

DNA methylation quantitative trait loci data.

• We identified 47 pleiotropic CpGs for Aβ load but none for neurofibrillary 

tangles.

• Some CpGs were found related with Aβ load and others represent novel 

epigenetic loci.

• Many identified CpGs were associated in cis with mRNAs involved in 

nervous system or AD neuropathologies.
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Figure 1. The flow chart of bioinformatical/statistical analysis.
ROS, Religious Orders Study; MAP, Rush Memory and Aging Project; SNP, single-

nucleotide polymorphism; mQTL, DNA methylation quantitative trait loci; FDR, false 

discovery rate; MR, Mendelian randomization.
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Figure 2. Chicago plot for the association between cis-mQTLs and DNA methylation.
We identified a total of 370,257,499 cis- mQTL SNPs at P < 0.05 using the R package 

“MatrixEQTL”. In the plot, we only kept the cis- mQTL SNP having the smallest P-value 

for a CpG in the cases of multiple SNPs associated with the same CpG. Each point 

represents the association of a cis- mQTL SNP. The horizontal coordinate represents the 

location of a CpG within the chromosome, and the vertical coordinate is –log10 (P-value) if 

the association is positive and log10 (P-value) if the association is negative. The dashed line 

corresponds to the significance level using Bonferroni correction (1.35×10−10).
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Figure 3. Forest plot for the estimated MR effects and 95% confidence intervals for the casual 
associations of CpGs with Aβ load.
Analyses were performed using the R package “MendelianRandomization”, and multiple 

testings were adjusted using false discovery rate.

MR, Mendelian randomization; CI, confidence interval
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Figure 4. Functional enrichment and gene concept network analysis.
A) Enriched GO terms based on genes harboring the identified CpGs; B) Concept network 

analysis of the genes harboring the identified CpGs; C) Enriched GO terms based on cis-

associated genes; and D) Concept network analysis of the cis associated genes.

GO, gene ontology
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