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Abstract

Developmental brain disorders (DBD), including autism spectrum disorder, intellectual disability, 

and schizophrenia, are clinically-defined and etiologically-heterogeneous conditions with a wide 

range of outcomes. Rare pathogenic copy number and single nucleotide genomic variants are 

among the most common known etiologies, with diagnostic yields approaching 50% for some 

DBD cohorts. Incorporating genetic testing into the care of adult patients with DBD, paired with 

targeted genetic counseling and family cascade testing, may increase self-advocacy and decrease 

stigma. In the long-term, breakthroughs in the understanding of DBD pathophysiology will hinge 

on the identification, engagement, and study of individuals with rare genetic DBD etiologies, 

consistent with successful precision medicine approaches to the treatment of cancer and 

cardiovascular disease.
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Introduction

Developmental brain disorders (DBD), including autism spectrum disorder (ASD), 

schizophrenia, and intellectual disability, are relatively common, clinically-defined, and 

etiologically-heterogeneous conditions with a wide range of severity and outcomes [1,2]. 

Rare copy number (CNVs) and single nucleotide variants (SNVs) that result in loss of gene 

function are among the most common known etiologies, with numerous reports over several 

decades linking specific genetic diagnoses to DBD clinical phenotypes [3,4]. Hundreds of 

distinct genetic etiologies are now known, collectively representing a significant and 

growing subset of pediatric and adult-onset DBD.
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Evidence suggests that hundreds of different rare genetic disorders converge into a more 

circumscribed number of shared neurobiological pathways, ultimately leading to an 

interconnected matrix of brain disorders [1,4]. Many genes and CNVs implicated in the 

etiology of DBD demonstrate wide phenotypic variability and can manifest as clinically-

distinct presentations. Thus, the expression of the same pathogenic variant may take the 

form of ASD in one person, epilepsy in another, and bipolar disorder in another, even within 

the same family. Unlike the individually-small effect sizes of common variants that 

additively contribute to polygenic risk, rare loss-of-function variants have large, primary 

impacts on neuronal pathways and can be considered causative of brain dysfunction. These 

large effects are modulated in part by background genomic variation, now being quantified 

as polygenic risk scores, which may then be further modified by environmental exposures 

and stochastic developmental variation [1,5]. Given these many secondary influences on 

primary brain dysfunction, the high degree of variable expressivity of DBD presentations for 

a single genetic disorder is not surprising.

Consensus recommendations from expert groups and professional societies have been in 

place for over a decade for clinical genetic testing in children with DBD. These now include 

exome sequencing (ES) as a first tier-diagnostic test for the evaluation of ASD and 

developmental delay / intellectual disability [6]. Similar guidelines for adults have been slow 

to emerge, even as thousands of children with DBD inexorably cross over the threshold into 

adulthood every year.

Most major insurers in the United States offer coverage for fragile X testing and 

chromosomal microarray analysis, although many healthcare plans have not yet codified 

specific policies for next-generation sequencing technologies, such as ES [7]. Those with 

explicit coverage for DBD-related genetic testing often restrict claims to children. However, 

at least one health insurer has recently recognized the potential benefits of genetic testing for 

adults with DBD, lifting the artificial age limit on covering ES for developmental disorders 

while adding neuropsychiatric disorders, such as schizophrenia, as covered indications [8]. 

Developmental pediatricians and child neurologists have increasingly become aware of the 

recommendations for clinical genetic testing, but the same has not been true for adult 

healthcare providers. Most adults with DBD are not offered diagnostic testing and often live 

with multiple symptom-based clinical diagnoses without ever knowing the underlying 

genetic etiologies that may provide unifying explanations for these disparate findings. Here, 

we describe the rationale for diagnostic genetic testing, along with advances in population 

DNA screening that may accelerate both the incidental and intentional identification of 

DBD-related etiologies.

The case for diagnostic genetic testing in adults

Although individually rare, it is well-established that genetic etiologies collectively account 

for a significant proportion of childhood DBD (Table 1). A specific genetic cause can be 

determined in a quarter of individuals with ASD and half of those with ID using a 

combination of clinically-available chromosomal microarray analysis and ES [6,9–15]. 

Many rare genetic causes of epilepsy involve biological pathways with particular relevance 

for pharmacological treatment [10]. Pathogenic variants also account for a significant 
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proportion of cerebral palsy, a disorder once considered almost exclusively due to hypoxic 

and ischemic perinatal events [11,12]. There are far fewer published surveys of diagnostic 

testing for conditions such as schizophrenia and bipolar disorder, where the research focus 

has historically been on identifying common variants through genome-wide association 

studies rather than on rare variants. Numerous CNVs have been reported in schizophrenia 

[13–15], including well-described conditions such as the 22q11.2 deletion syndrome [16]. 

The diagnostic yield of genetic testing in other adult DBD is less clear, but studies using new 

technologies, including genome sequencing, are ongoing (17,18 – also in this issue of the 

Journal).

The rationale for pursuing diagnostic genetic testing in pediatric populations is well-

accepted, including the establishment of an etiological genetic diagnosis that can direct 

medical care, as well as the potential healthcare cost savings related to a reduction in the 

“diagnostic odyssey” [19–21]. Comparatively fewer studies have assessed the clinical utility 

of genetic testing in adults with DBD. The 22q11.2 deletion syndrome [16], with its 

complex and variable medical phenotypes and 25% risk for schizophrenia, is often cited to 

illustrate the value of genetic diagnosis for anticipatory medical guidance through the 

lifespan. Several other known genetic DBD etiologies include actionable adult-onset 

manifestations, such as a lifetime cancer risk for individuals with pathogenic PTEN variants 

[22], maturity onset diabetes of the young (MODY5) in those with 17q12 microdeletions 

[23], and renal failure in adults with tuberous sclerosis complex [24]. However, as in 

pediatric DBD populations, one cannot argue for widespread diagnostic genetic testing 

solely on the basis of clinical utility, as many genetic etiologies of DBD are non-syndromic 

with primary effects on cognition and behavior.

Absent medical actionability, there is growing recognition of the broader benefits to patients 

of learning a genetic cause for their existing symptoms [25,26]. Although genetically-

targeted treatments are not yet available for most rare DBD etiologies, genetic diagnosis 

may open the door to promising clinical trials and expert resources. Knowledge of genomic 

variants can also inform reproductive decision-making for adults with DBD, and for their 

relatives who can pursue targeted cascade testing [26,27]. A less tangible benefit, but one 

with particular relevance to DBD, relates to the psychological utility of understanding the 

etiology of one’s developmental and psychiatric history. There is often value to “knowing 

for the sake of knowing” a genetic diagnosis by correcting misconceptions about DBD 

causes, reducing stigma, and fostering links with etiology-specific support and advocacy 

groups [25–30]. In our experience disclosing DBD-related genetic test results as part of 

Geisinger’s MyCode Community Health Initiative, many adults expressed profound relief to 

finally have a medical explanation for their disabilities [Martin et al., submitted]. As one 

participant remarked, “It’s one thing to know that psychiatric problems run in families, but 

it’s another thing to see my actual lab report.”

When one considers the known high rates of behavioral, cognitive, and medical 

comorbidities among adults with DBD, there has been a striking lack of attention given to 

diagnostic genetic testing and research in this population as compared to pediatrics [30,31]. 

The pervasive absence of etiological inquiry for adults with complex DBD contrasts with 

most other areas of specialty medicine, where the differential work-up of presenting 
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symptoms is an essential part of clinical practice. In the United States, insurance coverage 

for “behavioral health” is separated out from “physical medicine,” further punctuating an 

artificial dichotomy between DBD and other types of medical illness. Accurate diagnostic 

genetic testing is now widely available for DBD, yet adult healthcare providers have been 

largely absent in developing guidelines for standards of care that would drive insurance 

reimbursement. One exception is the International Society of Psychiatric Genetics whose 

recent guidelines, while conservative, acknowledge the importance of diagnostic testing to 

rule out rare genetic etiologies [32]. A handful of genomic initiatives, such as those led by 

Geisinger and the Simons Foundation, are prioritizing the return of DBD-related WES 

results to research participants (Martin et al., submitted) [33]. Although these promising 

efforts are moving forward, widespread adoption remains slow and may soon be overtaken 

by the large volume of genetic DBD etiologies revealed as a by-product of population-based 

genomic screening.

DBD at the intersection of precision medicine and population health

Advances in the understanding of DBD causation have occurred within the broader context 

of transformational change in population health, led by genomic medicine [19,34–36]. The 

cost of genetic testing has dramatically declined over the past decade, allowing health 

systems and insurers to consider the long-term value of population-based exome and 

genome sequencing for preventive medicine. At the same time, large commercial genetics 

laboratories offer billing and shipping services, facilitating sample collection and increasing 

patient access. In addition, the widespread adoption of electronic health record (EHR) 

systems has improved the consistency, long-term storage, and portability of patient 

information [37]. When linked with genomic data from voluntary patient biobanks, EHR 

findings fuel translational research aimed at achieving precision medicine for human 

disease.

In oncology and cardiology, successful examples of genomics-enabled research strategies 

have already emerged. The discovery of widely-prescribed statin drugs was made possible 

by research initially focused on a rare genetic form of hypercholesterolemia which revealed 

an underlying pathway with ‘druggable’ biochemical targets [38]. Likewise, the study of 

specific genetic etiologies of cancer has transformed the practice of oncology over the past 

decade, dramatically improving outcomes for all cancer patients [39]. Although the brain’s 

specific circuitry and influence on behavior are far from fully characterized, research on rare 

genetic etiologies of DBD will pave the way for an improved overall understanding of brain 

disorders, with and without known genetic causes.

In current clinical practice and research studies, pathogenic DBD-related variants are readily 

detectable as incidental findings of genomic sequencing, yet guidance is lacking about the 

circumstances under which such results should be disclosed, if at all, to patients. The 

American College of Medical Genetics and Genomics (ACMG) has identified a list of 59 

medically-actionable genes that should be reviewed in the context of any genome-wide 

clinical genetic testing, with disease-causing variants returned to patients as secondary 

findings [40]. These primarily include genes that confer significant risks for cancer and 

cardiovascular disease, all with associated medical recommendations that have the potential 
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for early detection and improved health outcomes [40,41]. Two of the results recommended 

for disclosure, PTEN disorders and tuberous sclerosis complex, happen to include 

neurodevelopmental and psychiatric phenotypes, although their inclusion on the ACMG list 

relates to their medically actionable non-DBD health risks [22,24]. At least 2% of all clinical 

genome-wide test results include an ACMG-recommended returnable secondary finding 

[42–44]. By comparison, DBD-related CNVs alone have been reported in 1% of samples 

from large unselected population studies, including surveys of the U.K. Biobank [45], 

deCODE [46], and the population biobank of Estonia [47]. Geisinger’s MyCode® 

Community Health Initiative, which pairs EHR information with genomic data from its 

biorepository, currently has ES results from >145,000 research participants, primarily 

comprised of unselected adults presenting for primary and specialty healthcare [48]. 

Consistent with other studies, approximately 1% of individuals in MyCode harbors a 

pathogenic DBD-related CNV (Martin et al., submitted). The prevalence of SNVs is still 

being determined, but pathogenic DBD SNVs are expected to be more common than CNVs. 

Despite their clinical relevance and significant personal utility, DBD-related incidental 

findings are not yet recommended for return, although their estimated prevalence in 

unselected populations rivals the detection rate of all the ACMG medically-actionable 

variants combined.

While population health initiatives await the full integration of genomic findings into 

translational medicine, there are discussions within the genomics community about 

expanding the scope of returnable secondary findings. This dialogue includes consideration 

of clinically relevant results which, while not strictly “medically actionable”, have 

significant personal utility for individuals and families [30]. Given their prevalence and the 

potential benefits of disclosure, rare DBD-related etiologies should be at the forefront of this 

discussion. As is currently the practice for all secondary findings, the return of CNVs and 

other DBD-related results should be optional. This is consistent with public perceptions of 

genomic test disclosure, which value patient autonomy while prioritizing disease severity, 

regardless of medical actionability (49). The practice of returning such results is not entirely 

new, as medical geneticists and genetic counselors have decades of experience revealing 

unexpected genetic diagnoses secondarily identified through parental testing of children with 

known DBD etiologies [50]. As with the original ACMG list, additional research and pilot 

studies will be needed to develop thoughtful disclosure protocols and methods for 

monitoring patient response [47,51]. Particular attention should be focused on the potential 

for genetic stigmatization, given the past history of research abuses related to vulnerable 

DBD populations [52]. Developmental and psychiatric disorders are already among the most 

highly stigmatizing of all human conditions, not only in western cultures but throughout the 

world. Based on our experience so far, we anticipate that ‘medicalizing’ DBD by revealing 

underlying genetic etiologies may paradoxically decrease shame and stigma among 

individuals with brain disorders.

Conclusion

A growing number of distinct, genetic disorders can now be identified as causative of DBD, 

allowing healthcare providers to move beyond vague discussions of multifactorial risk to 

more targeted, medical explanations for brain dysfunction. Combined diagnostic yields of 
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widely-available genetic tests are approaching 50% for some DBD clinical cohorts, 

reflecting the important collective impact of rare etiologies. Knowing an underlying genetic 

cause can inform prognosis and medical care, particularly in pediatric populations. In adults, 

medicalizing DBD through diagnosis of genetic etiologies, paired with targeted genetic 

counseling and family cascade testing, may decrease stigma, increase self-advocacy, and 

lead to closer engagement of these patients with healthcare providers. Incorporating genetic 

testing into the care of adult DBD patients could ultimately translate into more cost-effective 

utilization of healthcare resources and improved compliance with treatment 

recommendations. In the long-term, breakthroughs in the understanding of DBD 

pathophysiology will hinge on the identification, engagement, and study of individuals with 

rare genetic DBD etiologies, consistent with successful precision medicine approaches to the 

treatment of cancer and cardiovascular disease [53]. As next generation sequencing moves 

out of the genetics clinic and into mainstream medicine, there is strong interest in harnessing 

its predictive and diagnostic power toward the realization of effective treatments for DBD.
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