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Abstract

Background—Aging-related cognitive decline is a primary risk factor for Alzheimer’s disease 

and related dementias. More precise identification of the neurobiological bases of cognitive 

decline in aging populations may provide critical insights into the precursors of late-life 

dementias.

Methods—Using structural and diffusion brain MRI data from the UK Biobank (UKB; N = 

8,185, ages 45–78 years), we examined aging of regional grey matter volumes (nodes) and white 

matter structural connectivity (edges) within nine well-characterized networks-of-interest in the 
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human brain connectome. In the independent Lothian Birth Cohort 1936 (LBC1936; N = 534, all 

age 73 years), we tested whether aging-sensitive connectome elements are enriched for key 

domains of cognitive function, before and after controlling for early-life cognitive ability.

Results—In UKB, age-differences in individual connectome elements corresponded closely with 

principal component loadings reflecting connectome-wide integrity (|rnodes| = 0.420; |redges| = 

0.583), suggesting that connectome aging occurs on broad dimensions of variation in brain 

architecture. In LBC1936, composite indices of node integrity were predictive of all domains of 

cognitive function, whereas composite indices of edge integrity were associated specifically with 

processing speed. Elements within the Central Executive network were disproportionately 

predictive of late-life cognitive function relative to the network’s small size. Associations with 

processing speed and visuospatial ability remained after controlling for childhood cognitive 

ability.

Conclusions—These results implicate global dimensions of variation in the human structural 

connectome in aging-related cognitive decline. The Central Executive network may demarcate a 

constellation of elements that are centrally important to age-related cognitive impairments.
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Introduction

Non-clinical variation in cognitive decline is a primary risk factor for Alzheimer’s disease 

and related dementias (1,2). These declines have consequences both for individuals, who 

may be less able to perform important everyday functions (3,4), and for aging societies, 

whose workforce productivity and social and medical resources may be prematurely 

exhausted (5). Delineating the neurodegenerative processes underlying aging-related 

cognitive decline may crucially advance our ability to detect, and ultimately prevent or 

mitigate aging-related cognitive impairments.

The human brain exhibits widespread structural changes with aging (6), the patterning of 

which is only partly documented (7). Measures of whole- and regional-brain volumes (8–10) 

and tract-level white matter microstructure (11–14) have been linked to cognitive function 

and age-related cognitive decline. It is not yet known which aging-related changes in brain 

structure underscore adult cognitive functioning. Following the best practices for predictive 

modeling (15,16), we take a cross-cohort magnetic resonance imaging (MRI) approach to 

identify elements of brain morphometry and interregional white matter connectivity that 

show sensitivity to aging and are relevant to late-life cognitive function.

We model each participant’s brain as a macroscale connectome: a network of discrete grey 

matter regions (nodes) that are connected by bundles of myelinated white matter fibers 

(edges) (17). Guided by research spanning multiple brain imaging and mapping modalities 

(e.g., structural MRI, task-related fMRI, resting-state MRI, lesion-based mapping), we 

investigate nine well-characterized networks-of-interest (NOIs) within the structural 
connectome implicated in a variety of cognitive (18,19), affective (20,21), psychomotor 

Madole et al. Page 2

Biol Psychiatry. Author manuscript; available in PMC 2022 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(22,23), and homeostatic (24,25) processes. We hypothesize that those networks previously 

implicated in general cognitive function (e.g., Parieto-Frontal Integration Theory (PFIT) 

(26,27)), will show more pronounced associations with cognitive aging than those 

supporting more basic functions (e.g., Sensorimotor (22,23)). These subnetworks are 

distributed throughout the brain and partially overlap, allowing us to examine whether age- 

or cognitive-relevant information is more tightly concentrated within certain heterogeneous 

subcomponent constellations.

Previous studies implicating the human structural connectome in age-related cognitive 

decline have largely documented age trends in summary indices of connectome topology 

(e.g., strength, global efficiency) (28,29), or have used large-scale, exploratory methods to 

examine how a range of morphometric and diffusion tensor measures relate to age and 

sociodemographic variables (30,31). In over 8,000 individuals from UK Biobank (UKB), we 

examine age trends for individual elements within the whole-brain connectome and its 

NOIs, before exploring how these age trends relate to general dimensions of neurostructural 

integrity. We use regression weights discovered in UKB to construct summary indices of 

volumetric structure and white matter connectivity at age-73 years in the independent 

Lothian Birth Cohort 1936 (LBC1936), which we use to predict concurrent measures of 

processing speed, visuospatial ability, and memory. We examine the robustness of these 

associations relative to controls for total brain volume (TBV) and age-11 cognitive ability.

Methods and Materials

Participants

UK Biobank.—We analyzed MRI data from 8,185 participants (4,315 female) from UK 

Biobank (UKB), a large-scale population epidemiology study of individuals across Great 

Britain (32) (see Supplementary Materials for details). Participants ranged in age from 44.64 

– 78.17 years (mean = 61.9; SD = 7.45). 157 of the participants (< 2%) met criteria for 

potentially confounding dementias and neurological syndromes (e.g., multiple sclerosis, 

stroke). Excluding these participants from the sample did not change primary outcome 

measures (rage correlations (before/after exclusion) > 0.999, mean absolute difference in r = 0.001 

for both edges and nodes). Therefore, we retain the full sample for our analyses. Despite 

previous research demonstrating neuroanatomical sex differences (28,33), we found largely 

similar patterns of connectome aging across men and women (r edge-age correlations = 0.892; 

rnode-age correlations = 0.974, p’s < 0.0005). We therefore report results of analyses of data 

collapsed across both sexes. UKB received ethical approval from the Research Ethics 

Committee (reference 11/NW/0382). All participants provided informed consent to 

participate.

Lothian Birth Cohort 1936.—We analyzed data from 534 participants (246 female) from 

Lothian Birth Cohort 1936 (LBC1936) (34,35) study who had reliable brain MRI and 

cognitive data at the age-73 wave (mean = 72.8 years; SD = 0.70), the first wave of brain 

MRI data collection (see Supplementary Materials for full details). Participants in LBC1936 

completed an intelligence test at approximately age-11 years as part of the Scottish Mental 

Survey 1947 (36). Participants were largely healthy: only seven scored in the mild range of 
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dementia on the Mini-Mental State Exam, zero self-reported symptoms of dementia, and 65 

met for neuroradiologically-identified stroke (37).

Brain Image Acquisition and Processing

MRI.—MRI data for UKB participants was collected on the same 3T Siemens Skyra MRI 

scanner (see Miller et al. (38) & Alfaro-Almagro et al. (39) for full details). MRI data for 

LBC1936 participants was collected on the same GE Signa Horizon HDx 1.5T clinical 

scanner (General Electric, Milwaukee, WI) (see Wardlaw et al. (37) for full details). Further 

details regarding the acquisition and processing of the MRI data can be found in the 

Supplementary Materials.

Tractography.—Probabilistic tractography pipelines were largely identical across UKB 

and LBC1936. Details about diffusion tensor MRI (dMRI) acquisition and processing for 

both samples can be found in the Supplementary Materials.

Connectome Construction.—Treatment of the structural brain data for both samples 

was based on an automated connectivity mapping pipeline (40,41), wherein T1-weighted 

volumes are decomposed into 85 distinct cortical and subcortical regions (nodes) based on 

the Desikan-Killiany atlas (42). Mean fractional anisotropy was averaged along the length of 

all streamlines identified between each pair of nodes (edges; k = 3,570 possible edges). 

Fractional anisotropy is a dMRI-derived measure of white matter organization that describes 

the directional coherence of water molecule diffusion. Three edges were estimated as zero 

across all participants (i.e., probabilistic tractography found no route between the nodes 

involved). Whole-brain structural connectomes, comprised of the 85 grey matter nodes and 

the 3,567 non-zero edges, were created for each participant in UKB and LBC1936. Analyses 

were run using unthresholded matrices, which were determined to be largely similar to 

consistency-based thresholded matrices (43) (Fig. S1; Supplementary Materials).

Networks-of-Interest.—Masks were created to partition whole-brain connectomes into 

nine prespecified NOIs (Fig. 1; Table 1; Table S1 & S2). Several NOIs were composed of 

partially overlapping edges and nodes, collectively referred to here as elements (Table S3). 

Where applicable, results provide details for how overlapping elements were handled.

Cognitive Testing in LBC 1936

We analyzed data from tests of processing speed, visuospatial ability, and memory, which 

we have characterized within this cohort in previous research (53). Visuospatial ability was 

measured using tests of Matrix Reasoning (54), Block Design (54), and Spatial Span 

(forwards and backwards) (55). Processing speed was measured using the Digit-Symbol 

Substitution (54), Symbol Search (54), 4-choice reaction time (56), and inspection time (57). 

Memory was measured using the Digit Span Backward (54), Logical Memory (55), and 

Verbal Paired Associates (55). All cognitive domains were modeled as latent variables. Fit 

indices, factor model parameter estimates, and descriptive statistics for the cognitive tests are 

reported in Table S4.
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Results

Connectome Aging

Cross-sectional age trends in each connectome element were estimated in the UKB sample. 

Density distributions of the element-wise age associations for the whole-brain connectome 

and each NOI are presented in Fig. 2A. The majority of elements showed small to modest 

negative associations with age (edges: 2,375/3,570 [66.5%] < 0, mean r = −0.037, range = 

−0.437 to 0.268; nodes: 81/85 [95.3%] < 0, mean r = −0.160, range = −0.322 to 0.087). 

Nodes from the PFIT network displayed a bimodal distribution of age associations, 

potentially indicating multiple aging-related processes within this network (Hartigans’ dip-

test D = 0.088, p < 0.001; Table S5). This multimodality may be driven by network-specific 

divisions: elements from the Central Executive network displayed the steepest age-related 

gradients (mean rage-edge = −0.163; mean rage-node = −0.211; Table S6), suggesting that it 

demarcates a particularly age-sensitive constellation of elements within the larger PFIT 

network. Only the Salience network contained a majority of edges with positive age 

associations (36/45 [80%] r’s > 0). In contrast, all ten of its nodes displayed negative age 

associations.

General dimensions of connectome integrity.—The widespread age-related 

decrements across NOIs suggests that individual elements may represent broader dimensions 

of interindividual variation in global connectome integrity. We examined this possibility by 

residualizing edges and nodes for age and subjecting their respective correlation matrices to 

principal component analysis (PCA) (Fig. S2 & S3; Tables S7 & S8; Supplementary 

Materials). The first PC accounted for 11.0% and 36.9% of variation in edges and nodes, 

respectively. The second PC accounted for less than 1/5 the variance accounted for by the 

first corresponding Eigen value (Fig. S4). Whole-brain loadings were overwhelmingly 

positive (edges: 98.4% of loadings > 0; nodes: 100% of loadings > 0) (Fig. 2B). Elements 

within the Central Executive network displayed the largest average loadings, potentially 

driving the bimodal distribution of edges from the PFIT network (Hartigans’ dip-test D = 

0.028, p = 0.001; Table S5). This again suggests that this small subset of the PFIT network 

may disproportionately index overall brain integrity.

Connectome aging occurs along general dimensions of edge and node 
integrity.—We tested the extent to which aging-related differences in individual 

connectome elements occurred along the general dimensions of edge and node integrity 

identified above. In UKB, we estimated the correlation between each element’s loading on 

the first PC (both whole-brain and network-specific) and each element’s association with 

age separately for edges and nodes. Residualizing connectome elements for age prior to 

conducting PCAs ensured that the tested association between age-sensitivity and PC 

loadings was not an artifact of similar age trends driving element covariation (58,59). Fig. 3 

displays the whole-brain association between PC loadings and age correlations for edges 

(left) and nodes (right). Both edges and nodes that had stronger loadings evinced steeper 

age-gradients (redges = −0.583; rnodes = −0.420): the more indicative an element was of 

global variation in brain connectivity or brain volume, the stronger its negative association 
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with age. Similar patterns were obtained when analyses were conducted separately for each 

individual NOI (Figs. S5 & S6; Supplementary Materials).

We tested whether the observed associations between PC loadings and age correlations were 

explained by the topological centrality (i.e., strength) of elements within the whole-brain 

connectome, a potential indication of metabolic cost that could confer susceptibility to 

degeneration with age (60) (see Supplementary Materials). We found that topological 

centrality was strongly correlated with PC loadings (redges = 0.655; rnodes = 0.583; p’s < 

0.0005; Fig. S7), but only modestly associated with age correlations (redges = −0.202, p < 

0.0005; rnodes = −0.211, p = 0.053; Fig. S8). Similarly, network membership (i.e., the 

number of NOIs that an element belongs to) was weakly, if at all, related to the age 

correlations (Fig. S9). Topological connectedness of connectome elements was therefore 

insufficient to explain associations between PC loadings and age correlations.

General Dimensions of Connectome Integrity are Associated with Late-Life Cognitive 
Function

That connectome aging occurs along general dimensions of variation in edge and node 

integrity suggests that these dimensions may be particularly relevant for cognitive decline. 

To test this hypothesis, we created linear composite indices of connectome elements in 

LBC1936 (Fig. S2D), weighted by either UKB-estimated PC loadings or age correlations, to 

test associations with latent processing speed, visuospatial ability, and memory factors. As 

would be expected from the sizable associations between age correlations and PC loadings, 

age-weighted and PC-weighted composites created for the whole brain were highly 

correlated (redge-based composites = −0.907; rnode-based composites = −0.998) and exhibited 

nearly-identical patterns of associations with cognitive outcomes. This indicates that brain 

age and overall integrity are virtually indistinguishable.

Edge-based composites.—Composite indices of connectome-wide edge integrity were 

significantly associated with processing speed (rage-weighted = −0.193; 95% CI = [−0.285, 

−0.101]; rPC-weighted = 0.177; 95% CI = [0.084, 0.269]), but not with visuospatial ability 

(rage-weighted = −0.089; 95% CI = [−0.186, 0.008]; rPC-weighted = 0.064; 95% CI = [−0.033, 

0.162]) or memory (rage-weighted = −0.083; 95% CI = [−0.186, 0.020]; rPC-weighted = 0.055; 

95% CI = [−0.047, 0.157]). For both age-weights and PC-weights, a 1000-fold permutation 

test (Fig. S10; Table S9; Supplementary Materials) in which the weights were randomly 

shuffled across edges indicated that observed edge-based composites were more predictive 

of both processing speed and visuospatial ability than over 99% of the permuted data 

(empirical p’s < 0.01) and more predictive of memory than over 95% of the permuted data 

(empirical p’s < 0.05).

NOI-based composite indices varied in their magnitudes of prediction of processing speed 

(rage-weighted range = −0.193 to −0.037; rPC-weighted range = −0.095 to 0.186), but displayed 

null associations with visuospatial ability (rage-weighted range = −0.130 to 0.009; rPC-weighted 

range = −0.064 to 0.100) and memory (rage-weighted range = −0.099 to −0.003; rPC-weighted 

range = −0.030 to 0.100; top left panels of Figs. 4 & S11). To examine whether differences 

in the magnitudes of association across NOIs stem from differences in their sizes (i.e., larger 
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networks aggregating more information), we divided each correlation by the total number of 

elements on which the composite index was based (processing speed: rage-weighted_adjusted 

range = −0.0064 to −0.00005; rPC-weighted_adjusted range = −0.0021 to 0.0066; top right 

panels of Figs. 4 and S11). Edge-based composite indices of Central Executive network 

integrity showed the largest size-adjusted magnitudes of association with processing speed. 

As edges were generally unrelated to visuospatial ability and memory, we do not interpret 

their size-adjusted associations.

Node-based composites.—Composite indices of connectome-wide node integrity were 

significantly associated with all cognitive domains (processing speed: rage-weighted = −0.245; 

95% CI = [−0.335, −0.155]; rPC-weighted = 0.234; 95% CI = [0.145, 0.325]; visuospatial 

ability: rage-weighted = −0.386; 95% CI = [−0.471, −0.301]; rPC-weighted = 0.383; 95% CI = 

[0.298, 0.468]; memory: rage-weighted = −0.124; 95% CI = [−0.223, −0.025]; rPC-weighted = 

0.118; 95% CI = [0.019, 0.217]). For both age-weights and PC-weights, a 1000-fold 

permutation test (Fig. S10; Table S9; Supplementary Materials) indicated that observed 

node-based composites were not substantially more predictive of any domain than the 

permuted data (empirical p’s > 0.09). This is consistent with the high intercorrelations 

among the nodes, and the observation that the distributions of associations for nearly all 

permuted node runs were very narrow, indicating that nodes may be largely exchangeable 

with respect to cognitive ability-relevant information.

NOI-based composite indices varied in their magnitudes of prediction, with prediction of 

visuospatial ability generally exceeding that of processing speed or memory (processing 

speed: rage-weighted range = −0.288 to −0.128; rPC-weighted range = 0.120 to 0.282; 

visuospatial ability: rage-weighted range = −0.377 to −0.277; rPC-weighted range = 0.292 to 

0.373; memory: rage-weighted range = −0.151 to −0.065; rPC-weighted range = 0.048 to 0.147; 

bottom left panels of Figs. 4 & S11). After adjusting for the number of elements, nodes in 

the Central Executive network displayed the largest associations with all domains of 

cognitive function (processing speed: rage-weighted_adjusted = −0.026, 95% CI = [−0.038, 

−0.015]; rPC-weighted_adjusted = 0.026, 95% CI = [0.014, 0.037]; visuospatial ability: 

rage-weighted_adjusted = −0.044, 95% CI = [−0.055, −0.033]; rPC-weighted_adjusted = 0.044, 95% 

CI = [0.033, 0.055]; memory: rage-weighted_adjusted = −0.013, 95% CI = [−0.025, −0.0003]; 

rPC-weighted_adjusted = 0.013, 95% CI = [0.000, 0.025]; bottom right panels of Figs.4 & S11).

General dimensions of edge and node integrity are incrementally predictive of 
late-life cognitive function.

TBV.: We fitted multiple regression models in LBC1936 to test whether the associations 

between general dimensions of connectome integrity and cognitive function were unique of 

TBV, which is perhaps the most robust and well-validated structural MRI predictor of 

cognitive function (10,14). Results are presented as Model 1 in each panel of Table 2. TBV 

displayed strong associations with node-based composite scores (rage-weighted = −0.869; 

rPC-weighted = 0.877; p’s < 0.0005), but weak associations with edge-based composites 

(rage-weighted = −0.0004; rPC-weighted = 0.014; p’s > 0.750). TBV was significantly associated 

with both processing speed (β = 0.165, p = 0.001) and visuospatial ability (β = 0.333, p < 

0.0005), but not with memory (β = 0.012, p = 0.815). Edge- and node-based composites of 
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connectome integrity predicted processing speed incremental of TBV (edges: βage-weighted = 

−0.194; βPC-weighted = 0.176 nodes: βage-weighted = −0.408; βPC-weighted = 0.382; p’s < 

0.0005). Node-based composites of connectome integrity predicted visuospatial ability 

(βage-weighted = −0.401; βPC-weighted = 0.399; p’s < 0.0005) and memory (βage-weighted = 

−0.446; βPC-weighted = 0.442; p’s < 0.0005) incremental of TBV.

Element type.: We fitted multiple regression models to test whether the associations 

between edge- and node-based indices of connectome integrity and cognitive function were 

unique of one another. Results are presented as Model 2 in each panel of Table 2. All 

associations that were present in the univariate context were preserved. For processing 

speed, the multiple R2s from the models that included both edge- and node-based indices 

were over 40% larger than the R2s from models including only node-based indices, and over 

100% larger than the R2s from models including only edge-based indices. For visuospatial 

ability and memory, multiple R2s from the models that included both edge- and node-based 

indices were only marginally larger than the R2s from models including node-based indices 

alone.

Childhood intelligence.: LBC1936 has available a high-quality index of IQ at age 11 years, 

the Moray House Test No. 12. Age-11 IQ was associated with node-based indices of age-73 

connectome integrity (βage-weighted = −0.158; βPC-weighted = 0.155; p’s < 0.0005), but was 

not significantly associated with age-73 edge-based indices (βage-weighted = −0.079; 

βPC-weighted = 0.076; p’s > 0.076). These results are consistent with previous findings in 

LBC1936 of comparable associations between age-11 IQ and other age-73 structural MRI 

indices (brain cortical thickness) (61), collectively suggesting that general dimensions of 

node integrity may at least partially reflect lifelong brain health.

To probe whether associations between age-73 connectome integrity and age-73 cognitive 

function were plausibly reflective of aging-specific processes, we examined whether the 

observed associations persisted after controlling for age-11 IQ. Results are presented as 

Model 3 in each panel of Table 2. Age-73 connectome-integrity indices maintained their 

associations with age-73 processing speed and visuospatial ability even after controlling for 

age-11 IQ. The modest node-based associations with memory did not persist after 

controlling for age-11 IQ.

Regularized LASSO regression models.—We were interested in whether a least 

absolute shrinkage and selection operator (LASSO) approach for indexing connectome age 
could improve prediction of late-life cognitive function beyond the simple composite indices 

reported above (see Supplementary Materials for detail). Consistent with previous research 

that has found differential prediction of age based on brain tissue-type (62), a LASSO model 

in UKB based on all edges predicted 54.6% of the variance in age in the UKB holdout 

sample, whereas a model based on all nodes predicted only 35.8% of the variation in age 

(Fig. S12 & S13; see Supplementary Materials for detail). LASSO-based prediction of 

cognitive function in LBC1936 from UKB-trained connectome age did not appreciably 

improve effect sizes relative to estimates obtained using the simple composite indices 

reported earlier (Fig. S14 & S15), suggesting that the sparsity introduced by complex 

Madole et al. Page 8

Biol Psychiatry. Author manuscript; available in PMC 2022 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



algorithmic learning methods is not advantageous for predicting late-life cognitive abilities 

from connectome aging.

Discussion

Examining variation in elements within the whole-brain structural connectome and several 

of its NOIs in relation to late-life chronological age and cognitive function may prove 

fundamental to detecting and mitigating age-related cognitive impairments. Using age-

heterogenous data from UKB, we found that connectome age occurs along the same 

dimensions of global brain health that underlie correlations amongst (age-partialled) 

connectome element integrities. We used indices of these general dimensions of element 

integrity in LBC1936 to obtain between-sample cross-validated predictions of aging-

sensitive domains of cognitive function in older adulthood (2,63,64). Connectome-wide 

node integrity was related to all domains of cognitive function, whereas connectome-wide 

edge integrity was specifically related to processing speed. Associations with processing 

speed and visuospatial ability persisted after controlling for both TBV and age-11 IQ, 

suggesting that they capture aging-specific processes. Associations with memory did not 

survive after controlling for age-11 IQ, suggesting that they may be vestiges of early-life 

differences in cognitive function. NOI-specific analyses indicated a disproportionally large 

role of the Central Executive network in these patterns relative to its small size. Edges in the 

Central Executive network were particularly predictive of processing speed after adjustment, 

suggesting that the efficacy of water diffusion along white matter pathways between regions 

such as the dorsolateral prefrontal cortex and the posterior parietal cortex may constrain an 

individual’s ability to efficiently process and act on information.

That connectome elements with stronger loadings on their corresponding PCs had larger 

negative correlations with age reveals an important connection between individual 

differences in global neurostructural integrity and aging-related neurodegeneration. This 

result parallels findings from cognitive aging research that tests with stronger loadings on a 

general factor of cognitive ability tend to be more closely correlated with age (65,66), 

suggesting a strong shared basis for cognitive aging across different abilities (67). The 

current results extend this phenomenon to the brain and highlight that research on individual 

differences in aging-related cognitive and neurostructural decline would benefit from 

focusing on broad mechanisms of aging, in addition to more granular processes. This finding 

also raises considerable interpretation challenges to work on apparent brain age (68,69), 

suggesting that brain age may index overall connectome health rather than an aging-specific 

process. Our findings demonstrate that late-life connectome health is partly accounted for by 

childhood differences in cognitive ability, but that associations between age-73 connectome 

health and age-73 processing speed and visuospatial ability are also likely to be partly 

reflective of the aging process proper. Incorporating high-quality controls for prior 

intelligence or brain structure may facilitate interpreting associations between brain age and 

external outcomes (70). Not only was connectome age strongly related to connectome 

integrity, but age-weighted connectome composite scores were nearly entirely collinear with 

PC-weighted composites (redge-based composites = −0.892; rnode-based composites = −0.999). 

Thus, any given association with apparent brain age might just as appropriately be 

conceptualized as an association with overall brain integrity.
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Although this study examined a well-characterized set of high-quality structural brain 

networks in independent, large-scale samples, it nevertheless had some key limitations. First, 

though the samples were non-overlapping, they were both based in the United Kingdom, 

self-selected, of the same broad ethnic and cultural background, and healthier, better-

educated, and more cognitively able than average (34,35,71). To encourage investigations 

into the external validity of our findings, we have made the weightings for each of our brain-

network predictors publicly available (Table S10). Second, the study focused on 

neurostructural prediction of cross-sectional differences in cognitive level. Future work 

might benefit from investigating whether these same predictors are relevant for late-life 

cognitive change. Research integrating longitudinal measurement of aging-related brain 

changes with previously-identified determinants of cognitive decline (72), including medical 

comorbidities, lifestyle indicators, and genetic risk, may critically advance prediction of 

cognitive aging. Third, though we used unthresholded connectivity matrices, it is possible 

that edges that occur in few subjects and involve few streamlines contain greater 

measurement error (73,74). Fourth, the LBC1936 and UKB MRI scanners differed in 

acquisition strength (1.5T and 3T, respectively). It is potentially nontrivial to compare brain 

indices across scanners of different magnetic strengths (75,76), and future research would 

benefit from assessing whether these differences bias cross-sample prediction. Fifth, we used 

multiple IQ-type tests to model latent variables of three core domains of cognitive function, 

but it remains unclear how results might generalize to other cognitive domains, such as 

nonverbal memory (77). Studies using different tests may find somewhat different patterns 

of relationships between specific brain networks and cognitive abilities. Sixth, previous 

studies have focused on connectivity between several of the networks studied here (78). By 

primarily investigating networks separately, we may have missed the potential role of 

between-network connections and cognitive aging. Finally, previous research has examined 

how aging-related disrupture of functional connectivity within specific neural subnetworks 

relates to cognitive performance in older adults (79,80). Though we focus solely on 

structural connectivity, integrating the structural and functional perspectives is a critical 

future task for network-focused cognitive neuroscience.

This study represents a comprehensive investigation of aging within the human structural 

connectome in relation to late-life cognitive function. We found evidence that aging in the 

brain as a whole, and within specific networks, is related to broad dimensions of variation in 

neurostructural integrity and is substantially predictive of out-of-sample cognitive abilities. 

Given the wealth of publicly-available neuroimaging data, the cross-cohort-comparison 

approach will be fruitful in producing predictively valid estimates of neurostructural 

associations with cognitive abilities, and thus of potential use in detecting and understanding 

differences in cognitive decline.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Anatomical maps of each NOI.
Anatomical maps of each prespecified brain NOI displaying the network-specific 

connectome elements (i.e., edges and nodes).
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Figure 2. Density distributions of age associations and whole-brain principal component 
loadings.
A) Density distributions of each element’s association with age, categorized by prespecified 

NOI. All NOIs are subsets of the whole-brain (Global) network, such that comparison with 

the red distribution at the top of both panels is not a comparison of independent elements, 

but a comparison of a subset to a whole. B) Density distributions of loadings on the first 

principal component of the whole-brain connectome, categorized by prespecified NOI. 

Principal component analyses were conducted separately for each NOI.
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Figure 3. Scatterplot of age correlations and principal component loadings.
Scatterplots of each connectome element’s correlation with age against its loading on a 

single principal component (based on an age-partialled correlation matrix (Fig. S2)). 

Analyses were conducted separately for edges (left) and nodes (right). Each point represents 

a single element of the connectome (3,567 non-zero edges; 85 nodes). Points are categorized 

by the NOI to which the element belongs. Elements belonging to multiple NOIs are plotted 

once for each group membership and jittered for the sake of visual interpretation. Reported 

correlations and displayed regression lines reflect analyses including each element only 

once.
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Figure 4. Prediction of cognitive function in LBC1936 from UKB-weighted indices of 
connectome integrity.
Raw and adjusted associations between weighted-composite scores reflecting variation in 

overall connectome integrity and cognitive function in LBC1936. Adjusted estimates were 

created by dividing the raw estimates by the number of edges or nodes in the network. Note 

that raw associations for edges and nodes are presented on the same y-axis scale, whereas 

the scale for the adjusted associations differs for edges and nodes. Scores were created 

across the whole brain and all NOIs by summing the LBC1936 data weighted by each 

element’s loading on the first principal component of its respective subnetwork discovered 

in UK Biobank. Plots are broken down by element type (i.e., edges or nodes) and reflect 

correlations between respective weighted composites from each NOI and the cognitive 

domains of processing speed, visuospatial ability, and memory. Error bars represent 95% 

confidence intervals.
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Table 2.

Associations between weighted connectome (edge and node) composites, total brain volume, and age-11 IQ.

Table 2a: Processing Speed

Composite Model Predictor 1 Predictor 2 β1 (p-value) β2 (p-value) R2 Multiple R

Age-based

1a - TBV - 0.165 (0.001) 0.027 0.165

1b Edges TBV −0.194 (< 0.0005) 0.165 (< 0.0005) 0.065 0.255

1c Nodes TBV −0.408 (< 0.0005) −0.188 (0.049) 0.069 0.263

2a Edges only - −0.193 (< 0.0005) - 0.037 0.193

2b - Nodes only - −0.245 (< 0.0005) 0.060 0.245

2c Edges Nodes −0.167 (< 0.0005) −0.226 (< 0.0005) 0.088 0.297

3a - Age 11 IQ - 0.511 (< 0.0005) 0.261 0.511

3b Edges Age 11 IQ −0.149 (0.001) 0.498 (< 0.0005) 0.282 0.531

3c Nodes Age 11 IQ −0.162 (< 0.0005) 0.484 (< 0.0005) 0.285 0.535

PC-based

4a - TBV - 0.165 (0.001) 0.027 0.165

4b Edges TBV 0.176 (< 0.0005) 0.163 (0.001) 0.058 0.241

4c Nodes TBV 0.382 (< 0.0005) −0.168 (0.089) 0.062 0.249

5a Edges only - 0.177 (< 0.0005) - 0.031 0.177

5b - Nodes only - 0.235 (< 0.0005) 0.055 0.235

5c Edges Nodes 0.154 (0.001) 0.219 (< 0.0005) 0.079 0.281

6a - Age 11 IQ - 0.511 (< 0.0005) 0.261 0.511

6b Edges Age 11 IQ 0.133 (0.002) 0.500 (< 0.0005) 0.277 0.526

6c Nodes Age 11 IQ 0.154 (< 0.0005) 0.486 (< 0.0005) 0.283 0.532

Table 2b: Visuospatial Ability

Composite Model Predictor 1 Predictor 2 β1 (p-value) β2 (p-value) R2 Multiple R

Age-based

1a - TBV - 0.333 (< 0.0005) 0.111 0.333

1b Edges TBV −0.087 (0.068) 0.331 (< 0.0005) 0.117 0.342

1c Nodes TBV −0.401 (< 0.0005) −0.017 (0.860) 0.149 0.386

2a Edges only - −0.089 (0.072) - 0.008 0.089

2b - Nodes only - −0.386 (< 0.0005) 0.149 0.386

2c Edges Nodes −0.043 (0.363) −0.380 (< 0.0005) 0.150 0.387

3a - Age 11 IQ - 0.553 (< 0.0005) 0.306 0.553

3b Edges Age 11 IQ −0.039 (0.387) 0.549 (< 0.0005) 0.307 0.554

3c Nodes Age 11 IQ −0.308 (< 0.0005) 0.504 (< 0.0005) 0.397 0.630

PC-based
4a - TBV - 0.333 (< 0.0005) 0.111 0.333

4b Edges TBV 0.058 (0.224) 0.331 (< 0.0005) 0.114 0.338
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Table 2a: Processing Speed

Composite Model Predictor 1 Predictor 2 β1 (p-value) β2 (p-value) R2 Multiple R

4c Nodes TBV 0.399 (< 0.0005) −0.019 (0.848) 0.147 0.383

5a Edges only - 0.064 (0.197) - 0.004 0.064

5b - Nodes only - 0.383 (< 0.0005) 0.147 0.383

5c Edges Nodes 0.023 (0.633) 0.380 (< 0.0005) 0.147 0.383

6a - Age 11 IQ - 0.553 (< 0.0005) 0.306 0.553

6b Edges Age 11 IQ 0.017 (0.702) 0.552 (< 0.0005) 0.306 0.553

6c Nodes Age 11 IQ 0.306 (< 0.0005) 0.505 (< 0.0005) 0.397 0.630

Table 2c: Memory

Composite Model Predictor 1 Predictor 2 β1 (p-value) β2 (p-value) R2 Multiple R

Age-based

1a - TBV - 0.012 (0.815) 0.0001 0.012

1b Edges TBV −0.082 (0.117) 0.009 (0.861) 0.007 0.084

1c Nodes TBV −0.446 (< 0.0005) −0.370 (< 0.0005) 0.049 0.221

2a Edges only - −0.083 (0.116) - 0.007 0.083

2b - Nodes only - −0.124 (0.014) 0.015 0.124

2c Edges Nodes −0.067 (0.204) −0.166 (0.023) 0.020 0.141

3a - Age 11 IQ - 0.613 (< 0.0005) 0.376 0.613

3b Edges Age 11 IQ −0.027 (0.557) 0.615 (< 0.0005) 0.381 0.617

3c Nodes Age 11 IQ −0.033 (0.468) 0.611 (< 0.0005) 0.381 0.617

PC-based

4a - TBV - 0.012 (0.815) 0.0001 0.012

4b Edges TBV 0.052 (0.329) 0.009 (0.863) 0.003 0.055

4c Nodes TBV 0.442 (< 0.0005) −0.369 (< 0.0005) 0.045 0.214

5a Edges only - 0.053 (0.324) - 0.003 0.053

5b - Nodes only - 0.118 (0.019) 0.014 0.118

5c Edges Nodes 0.037 (0.483) 0.114 (0.026) 0.015 0.122

6a - Age 11 IQ - 0.613 (< 0.0005) 0.376 0.613

6b Edges Age 11 IQ −0.003 (0.954) 0.616 (< 0.0005) 0.379 0.616

6c Nodes Age 11 IQ 0.029 (0.524) 0.612 (< 0.0005) 0.380 0.616

Note. TBV = Total brain volume.
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