Skip to main content
. 2020 Dec 14;10:21899. doi: 10.1038/s41598-020-78129-0

Table 3.

Performance comparison of models based on different initial weights and learning rates for different ratios of the training dataset.

Ratio Learning rate AUC
Scratch-based model ImageNet-based model CAMELYON-based model
20% 5e−2 0.516 0.511 0.572
5e−3 0.623 0.766 0.799
5e−4 0.887 0.894 0.912
5e−5 0.890 0.891 0.920
5e−6 0.813 0.872 0.910
40% 5e−2 0.546 0.599 0.597
5e−3 0.759 0.803 0.812
5e−4 0.897 0.919 0.929
5e−5 0.881 0.905 0.930
5e−6 0.822 0.824 0.931
100% 5e−2 0.546 0.616 0.631
5e−3 0.754 0.804 0.811
5e−4 0.914 0.943 0.944
5e−5 0.921 0.944 0.938
5e−6 0.911 0.906 0.901

AUC was measured for patch-level evaluation in AMC dataset.