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Abstract

The sarcomere is the basic contractile unit of striated muscle and is a highly ordered protein 

complex with the actin and myosin filaments at its core. Assembling the sarcomere constituents 

into this organized structure in development, and with muscle growth as new sarcomeres are built, 

is a complex process coordinated by numerous factors. Once assembled, the sarcomere requires 

constant maintenance as its continuous contraction is accompanied by elevated mechanical, 

thermal, and oxidative stress, which predispose proteins to misfolding and toxic aggregation. To 

prevent protein misfolding and maintain sarcomere integrity, the sarcomere is monitored by an 

assortment of protein quality control (PQC) mechanisms. The need for effective PQC is 

heightened in cardiomyocytes as these cells are terminally differentiated and must survive for 

many years while preserving optimal mechanical output. To prevent toxic protein aggregation, 

molecular chaperones stabilize denatured sarcomere proteins and promote their refolding. 

However, when old and misfolded proteins cannot be salvaged by chaperones, they must be 

recycled via degradation pathways: the calpain and ubiquitin-proteasome systems, which operate 

under basal conditions, and the stress-responsive autophagy-lysosome pathway. Mutations to and 

deficiency of molecular chaperones and the associated factors charged with sarcomere 

maintenance commonly lead to sarcomere structural disarray and the progression of heart disease, 

highlighting the necessity of effective sarcomere PQC for maintaining cardiac function. This 

review focuses on the dynamic regulation of assembly and turnover at the sarcomere with an 

emphasis on the chaperones involved in these processes and describes the alterations to 

chaperones – through mutations and deficient expression – implicated in disease progression to 

heart failure.
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1. Introduction

The sarcomere is the fundamental molecular unit of contraction in striated muscle cells. It is 

a highly ordered structure containing myosin thick filaments and actin thin filaments, which 

directly engage to facilitate contraction. The myofilaments are accompanied by the 

contraction-tuning troponins (I, T, and C) and tropomyosin, which regulate the thin filament, 

as well as many associated signaling and adaptor proteins (Figure 1A). From its earliest 

histological description in the late 19th century [1], the composition and unique structural 

organization of the sarcomere have held a central focus in physiology. Long considered a 

rigid structure, with the advent of modern molecular biology techniques it has become clear 

in recent decades that assembly and turnover of sarcomere proteins is actually a highly 

dynamic process in constant flux [2–5]. The coordinated assembly of sarcomere proteins 

into organized paracrystalline structures in development (Figure 1B), and with muscle 

growth as new sarcomeres are added, is essential for heart function. Effective assembly 

alone, however, is insufficient, as the protein components of this contractile structure 

experience elevated stress and often denature, thus requiring regular turnover. Old and 

misfolded proteins must be swapped out for newly synthesized proteins without 

compromising mechanical function. Coordinating this task in cardiomyocytes, which 

contract persistently throughout the lifespan, is a challenging endeavor assisted by several 

protein degradation pathways and dozens of molecular chaperones. The need for effective 

sarcomeric protein quality control (PQC) increases under elevated stress conditions, such as 

occur over time with aging and the progression of heart disease with mechanical stress from 

increased afterload. Stress may also stem from mutations to sarcomeric proteins which 

promote misfolding and preclude adequate maintenance. Therefore, a mechanistic 

appreciation of the factors involved is warranted in order to characterize their functional 

significance for the sarcomere and manipulate their activity, toward the goal of targeting 

sarcomere PQC to forestall heart disease progression and restore cardiac function.

Newly synthesized polypeptides require folding into their unique three-dimensional 

structures to achieve functional activity. Additionally, to maintain function and prevent 

cytotoxicity, proteins denatured due to stress or misfolding must be refolded or cleared from 

the cellular environment. Cardiomyocytes employ an assortment of molecular chaperones to 

ensure these vital tasks are accomplished. Chaperones promote proper protein folding, 

prevent protein misfolding through stabilizing interactions, and are required for the assembly 

of macromolecular complexes like the sarcomere [6]. They are essential at the dynamic 

sarcomere, where elevated stress conditions facilitate protein misfolding, and newly 

synthesized proteins must be rapidly incorporated. Unsurprisingly, mutations and deficiency 

of sarcomeric chaperones cause a failure of local PQC and aggregation of misfolded 

proteins, which can disrupt sarcomere structure, lead to muscle dysfunction, and ultimately 

heart failure.
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The structure and composition of the sarcomere are highly conserved between skeletal and 

cardiac muscle, and from worms to mammals. As such, much of what we know about 

sarcomere PQC has been inferred from muscle studies in worms (C. elegans), flies (D. 
melanogaster), and fish (D. rerio) and will be included here. While there is reason to expect 

that these mechanisms translate to higher organisms, inferences should be made with care as 

critical differences may exist for species with longer lifespans and higher cardiac 

hemodynamic load. In this review, we summarize the current understanding of assembly and 

degradation processes at the cardiac sarcomere, discuss the chaperones and PQC pathways 

involved, and highlight emerging evidence for the dynamic remodeling processes that 

maintain sarcomere structure and function.

2. Sarcomere Assembly and Maintenance

2.1. Integrin-ECM interactions initiate myofibril assembly

Cardiomyocytes are efficiently organized into dozens of contractile substructures called 

myofibrils, which extend the length of the cell and are further organized into dozens of 

sarcomeres arranged sequentially. In developing myofibrils, mechanical tension 

communicated between myocyte cell surface proteins and the extracellular matrix (ECM) is 

required for sarcomere formation [7]. Integrins and their associated proteins are the first 

proteins to assemble with the regular periodicity characteristic of sarcomeres and mediate 

the membrane association of immature Z-disc structures, called Z-bodies [8–10]. These sites 

of high integrin concentration at the sarcolemma, termed protocostameres, recruit the Lim-

domain binding protein ZASP/cypher which serves as a nucleation site for Z-body assembly 

[7,11,12]. The regional specificity of the integrin-rich protocostameres, which gives rise to 

the characteristic sarcomere periodicity, relies on their receptor counterparts in the ECM 

[13]. Genetic studies in invertebrates and a study of β1-integrin-KO mice support this and 

indicate myofibril assembly is integrin-dependent and requires specific ECM receptors [14–

18]. Mutations to 18 proteins mediating myocyte-ECM interactions are linked to muscular 

dystrophy and cardiomyopathy through disruption of myocyte integrity [19–21].

2.2. Models of Sarcomerogenesis

The formation of sarcomeres (sarcomerogenesis) begins early in development as myofibrils 

form and continues in adult myocytes as they remodel with both physiological and 

pathological hypertrophy. However, the assembly mechanisms in hypertrophy remain poorly 

characterized due to limited approaches to assess mechanism in adult cardiomyocytes. Since 

it occurs in developing myocytes, more is known regarding sarcomere assembly compared 

with sarcomere turnover, as immature myocytes are more amenable to molecular biology 

approaches than adult myocytes, which rely heavily on maintenance. Even so, mechanisms 

of sarcomerogenesis remain controversial with multiple models proposed to explain this 

complex process.

2.2.1. The Titin Template Model—Titin is the largest known protein and extends from 

the sarcomere Z-disc to M-line (Figure 1A). The Titin Template Model proposes titin serves 

as a scaffold for sarcomerogenesis, establishing sarcomere length and mediating thick 

filament integration. It was initially proposed due to titin’s length of exactly one-half 
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sarcomere and on evidence that titin associated with Z-bodies and assembled prior to myosin 

filaments [22,23]. Early evidence for the model was largely correlative, but support soon 

followed showing A-band titin assembly preceded myosin incorporation [24,25]. Further 

evidence came from a knockout study of titin, where myofibril assembly and thick filament 

formation were impaired [26]. Subsequent studies in developing myocytes used targeted 

deletion of C-terminal titin domains and found disrupted sarcomerogenesis [27–29]. The 

complexity of titin’s role is enhanced by the recent finding that absence of the Cronos/T2 

titin isoform, which lacks C-terminal titin domains, also causes sarcomere disarray [30].

Despite the prevalence of “titin template” in myofilament nomenclature, in the decades since 

this model was proposed several lines of evidence have refuted its accuracy. For one, titin is 

not required for Z-body formation, as these α-actinin accumulations assemble prior to titin 

expression and titin I-band deletion does not impact Z-disc structure [31,32]. While titin 

may mediate thick filament integration, it is not required for assembly of the thick filament 

as myosin fibrils can form without titin [33]. It was also noted that invertebrate sarcomeres 

form despite their titin analogs only spanning the A-band region [34]. Thus, we speculate 

that titin is required for maintaining sarcomere spacing, but not for initial patterning of the 

myofibril.

2.2.2. The Stitching Model—First described by Lu et al., in the Stitching Model 

elements of the A-band (myosin fibers, myomesin) and I-Z-I bands (α-actinin, actin fibers) 

assemble independently and are then “stitched” together by titin, which joins the two large 

subunits through interactions with myomesin and α-actinin [35,36]. This is supported by 

electron microscopy observations denoting independent sarcomere subunit assembly, where 

Z-discs with associated thin filaments formed in myosin-deficient muscle and A-band 

formation occurred in the absence of thin filament components [35,37,38]. Further work in 

Drosophila found that myosin filaments formed when various Z-disc components were 

deleted [39]. This study proposed that rather than sequential assembly of the sarcomere, 

multiple latent protein complexes are built simultaneously and then combined. 

Unfortunately, with its many moving pieces this model is challenging to assess using 

fluorescence-based approaches in live cells and is therefore largely based on observations in 

fixed preparations.

2.2.3. The Premyofibril Model—The Premyofibril Model is the prevailing model of 

sarcomere assembly. In this model, stress fiber-like structures composed of α-actinin, actin, 

and non-muscle myosin-II (NMM-2) assemble at the cell periphery [32]. These 

premyofibrils mature into nascent myofibrils, where NMM starts to be replaced by muscle 

myosin, and then into mature myofibrils containing only muscle myosin [32,40]. Prevention 

of NMM and muscle myosin co-polymerization in mature myofibrils is attributed to myosin 

binding protein C (MYBPC), which assembles only in the mature myofibril [32]. In support 

of the Premyofibril Model, deletion of NMM mRNA in myoblasts prevents actin stress fiber 

polymerization, and mice with germline KO of the NMM-2B isoform display significant 

cardiac structural defects and die in development [41–43]. The Premyofibril Model is not 

without contention, however, as sarcomerogenesis is unimpaired with cardiomyocyte-

specific deletion of NMM-2B or NMM-2A [44,45]. Some suggest the two NMM isoforms 
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serve overlapping functions allowing the cell to compensate if one is mutated or deficient, 

which is supported by studies in C. elegans [46–48]. Notably, NMM-2A expression 

increases in NMM-2B-deficient mice [41]. While such redundancy may explain the mouse 

single isoform KO results, whether NMM-2 isoforms have functional overlap in higher 

organisms or cardiomyocytes is not known.

A recent study of sarcomerogenesis in iPSC-cardiomyocytes suggested that aspects of each 

model are correct and proposed a unifying model of sarcomere assembly. This study found 

sarcomeres assemble directly from actin stress fiber templates and that assembly requires 

both NMM-2 isoforms and the actin nucleator FHOD3 [49].

2.3. Thin filament assembly and stability

As α-actinin is recruited to the maturing Z-disc by ZASP, it is organized into its lattice 

structure by nebulin-related anchoring protein (NRAP) [50]. With Z-discs in place, thin 

filament assembly proceeds with assistance from numerous chaperones (Figure 1B).

2.3.1. GimC & TRiC—As it is translated, nascent actin is bound by GimC (prefoldin), 

which promotes actin folding and prevents actin monomer aggregation [51]. GimC-bound 

actin is then targeted to TRiC (CCT), a general chaperone that localizes to the Z-disc [52]. 

TRiC is responsible for the final actin folding steps, and assists with actin polymerization 

[53–55]. Zebrafish with missense TRiC mutations develop normally but have impaired actin 

folding that precludes sarcomere assembly [52]. Mutations to TRiC are associated with heart 

failure in humans and knockout of TRiC in Drosophila resulted in disorganization of actin 

and myosin fibers [56,57]. However, whether this is due to impaired actin folding/

incorporation into the thin filament is not known. TRiC has many different clients and has 

been proposed to interact with up to 10% of the proteome, including myosin [58].

2.3.2. FHOD3—Recent studies have identified a role in thin filament assembly for the 

formin family member FHOD3, which localizes to the sarcomere A-band [49]. Localization 

of FHOD3 to the A-band is dependent on MYBPC [59]. FHOD3 binds to both monomeric 

and filamentous actin and facilitates thin filament nucleation and polymerization; effects that 

are enhanced with GimC present [60]. As previously discussed, FHOD3 localizes with 

NMM in developing myofibrils and is required for de novo sarcomere assembly and 

organized A-band formation [49]. Notably, FHOD3 KO does not completely prevent 

myofibril formation, but impairs cardiac development and causes sarcomere disarray [61–

63]. Mice expressing a mutant FHOD3 with disrupted actin binding die by embryonic day 

12, however, expression of wild-type FHOD3 in these embryos rescued myofibril maturation 

by acting as an actin filament “reorganizer” at the center of the sarcomere [64]. A FHOD3 

mutation causes dilated cardiomyopathy and FHOD3 expression decreases in human heart 

failure, likely one of many deficits contributing to the sarcomere disarray characteristic of 

the failing heart [65,66].

2.3.3. Regulating Actin Polymerization—Once the thin filament is formed, its length 

is dynamically regulated by two reciprocal factors, profilin and cofilin. The cofilin family of 

proteins are actin disassembly factors expressed in all eukaryotic cells [67]. Cofilin-2 is the 
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isoform expressed in striated muscle and mediates thin filament turnover by promoting 

disassembly of actin at the pointed end [68,69]. Cofilin-2 binds to both ADP- and ATP-actin 

filaments, which it cleaves to provide actin monomers for new filament assembly [70–72]. 

Both cofilin-2 mutations and cofilin-2 deficiency are associated with cardiomyopathy [73–

75]. Profilin catalyzes ADP to ATP exchange on monomeric actin and acts opposite to 

cofilin to enhance thin filament polymerization [76,77]. Profilin ultimately passes 

monomeric actin to FHOD3 for filament incorporation, though the site at which this occurs 

– Z-disc vs. A-band – is not clear [78,79].

Thin filament stability is supported by the actin capping proteins CapZ and tropomodulin. 

CapZ binds to the barbed end of the actin filament at the Z-disc and is critical for cardiac 

performance [80]. Inhibition of CapZ impairs myofibrillogenesis by disrupting actin 

filament assembly [81]. Tropomodulin binds to the pointed end of the actin filament and 

prevents polymerization. Tropomodulin knockout impairs sarcomere development and is 

embryonic lethal [82–84]. Its function is antagonized by Leiomodin, a structurally similar 

actin nucleating protein that is expressed later in the developing myofibril and maintains thin 

filament pointed end dynamics [85,86]. The stability of actin capping proteins is essential 

for sarcomere structural maintenance. This is emphasized by knockdown of the co-

chaperone Bcl-2-associated athanogene 3 (BAG3) in neonatal ventricular myocytes, which 

caused rapid degradation of CapZ and sarcomere disarray [87].

2.3.4. The small heat shock proteins (HSPBs)—The HSPBs are ATP-independent 

chaperones and therefore do not have intrinsic folding activity. Instead, they operate as 

“holdases” for misfolded proteins to prevent protein aggregation and connect clients with the 

ATPase chaperones HSP70 and HSP90 [88]. Three HSPBs are implicated in actin stability: 

HSPB1 (HSP27), αB-crystallin (HSPB5), and HSPB7. Morpholino inhibition of HSPB1 

translation in Xenopus embryo cardiac muscle impaired actin filament organization and 

caused myofibril assembly defects [89]. αB-crystallin also associates with actin and 

prevents formation of heat stress-induced actin aggregates [90–92]. HSPB7 binds to 

monomeric actin and inhibits actin polymerization, which likely prevents actin aggregation 

in vivo [93]. Cardiomyocyte-specific KO of HSPB7 resulted in abnormally long thin 

filaments with mislocalization of tropomodulin and was embryonic lethal [93]. The severe 

phenotypes in the KO studies suggest that the HSPBs serve non-overlapping roles where 

those still expressed are unable to compensate.

2.4. Thick filament assembly and stability

Contraction of the sarcomere is mediated by the molecular motor myosin, which ratchets 

along actin filaments by converting energy from ATP into mechanical work. Folding myosin 

polypeptides into their functional conformation, and assembly into the hexameric myosin 

complex found only at the sarcomere, requires chaperones (Figure 1B).

2.4.1. Unc45—Unc45 is the key myosin chaperone and is functionally conserved from 

worms to mammals. The association of Unc45 with myosin is mediated by the Unc45 c-

terminal domain and prevents myosin aggregation [94,95]. Numerous studies show Unc45 is 

essential for myosin maturation, specifically for folding the myosin ATPase domain [96–
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104]. However, Unc45 expression must be tightly regulated as both knockdown and 

overexpression result in defective myofibril organization [105]. The association of Unc45 

with myosin is enhanced with heat shock in vitro, suggesting denaturation-dependent 

binding [96,106]. A similar effect has been shown for αB-crystallin, which prevents heat 

shock-induced myosin aggregation [107]. A study in zebrafish found that physical cell stress 

triggers mobilization of Unc45 (and HSP90) to the sarcomere A-band from a reserve pool at 

the Z-disc that is regulated by differential affinity of Unc45 for denatured myosin [108]. The 

presence of a readily available myosin chaperone pool at the sarcomere facilitates a rapid 

response to muscle damage. Bi-allelic mutations in Unc45 are associated with congenital 

myopathy and Unc45 mutants impair sarcomerogenesis in zebrafish [109,110]. Notably, 

Unc45 mutations have not been found to cause cardiomyopathy. While Unc45 is 

fundamental for muscle function in lower organisms, it may be that other myosin chaperones 

are able compensate for impaired Unc45 activity in mammals.

2.4.2. HSP70 & HSP90—HSP70 and HSP90 are general chaperones each with a wide 

range of clients. Newly synthesized myosin is stabilized by forming a complex with HSP70 

or HSP90, where the chaperones participate in early stages of myosin folding and myofibril 

assembly [111]. Less is known regarding HSP70-mediated stabilization of myosin and it 

likely plays a secondary role to HSP90. Both HSP90 mutations and deficiency are associated 

with significant sarcomere disarray [98,112,113]. While impaired myosin assembly 

contributes to the phenotype, careful interpretation is warranted as HSP90 is also involved in 

quality control of other sarcomere proteins, including titin [114–116]. The myosin folding 

activity of HSP70 and HSP90 are enhanced with Unc45, which interacts with HSP70/90 

through its co-chaperone helix-turn-helix motif, though this association is dispensable for 

myosin folding in C. elegans [117,118]. A recent study in skeletal muscle indicated that 

another HSP70 co-chaperone, BAG3, also assists with myosin stabilization [119]. This 

suggests that, while Unc45/HSP90 is the primary myosin chaperone complex, these 

complexes can exist in at least one other chaperone/co-chaperone combination.

2.4.3. SmyD1—SmyD1 is a histone methyltransferase implicated in myofibril assembly. 

Though not a confirmed chaperone, SmyD1 localizes to the sarcomere M-line where it 

interacts with myosin and plays an essential role in thick filament integration [120–122]. A 

study in zebrafish found SmyD1 knockdown impaired myofibril maturation, disrupted heart 

contraction, and prevented swimming activity [123]. Knockdown of SmyD1 also inhibits 

myosin accumulation in the early sarcomere, causing instability and rapid myosin 

degradation. This effect could be due to disruption of the Unc45/HSP90/myosin complex, 

with which SmyD1 associates. In a probable attempt to compensate for myosin instability, 

Unc45 and HSP90 expression increase with SmyD1 deficiency [124]. These data suggest 

SmyD1 is a third member of the canonical myosin chaperone complex. SmyD1 levels are 

depressed in end-stage heart failure and a recently identified de novo SmyD1 mutation 

causes hypertrophic cardiomyopathy [125,126]. These studies add to the growing 

appreciation for the diversity of chaperone complexes that regulate thick filament assembly.
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2.5. Maintaining titin and desmin stability

The factors maintaining titin stability are largely undefined but are known to include αB-

crystallin. At physiological sarcomere lengths, αB-crystallin binds to the N2B region of titin 

in the I-band of the sarcomere and prevents ischemia/stretch-induced misfolding [127,128]. 

In overstretched myofibrils, αB-crystallin also binds to and stabilizes the I26/I27 Ig region 

of titin between the N2B domain and Z-disc titin [127]. This suggests increased affinity of 

αB-crystallin for the Ig region when it is mildly denatured. Higher stretching forces are 

required to denature titin when αB-crystallin is present and increased stiffness due to less 

distensible titin in failing ventricular tissue is reversed by introducing αB-crystallin 

[127,129]. Notably, a missense mutation in αB-crystallin (R157H) that causes familial 

dilated cardiomyopathy prevents association of αB-crystallin with titin [130]. The 

chaperones HSPB1 and HSP90 are also involved in titin maintenance and translocate to titin 

to prevent toxic aggregation in response to stress caused by genetic mutations to sarcomere 

proteins [115]. More research is needed to determine if these chaperones cooperate with αB-

crystallin or act independently, and to identify additional chaperones involved in titin 

maintenance.

αB-crystallin is also the key chaperone for desmin, an intermediate filament protein 

involved in mechanotransduction that associates with the Z-disc, sarcolemma, and multiple 

organelles [131]. Nearly 70 desmin mutations and numerous αB-crystallin mutations have 

been linked to cardiomyopathy [132,133]. αB-crystallin binds to misfolded desmin and 

prevents aggregation [134]. The association of αB-crystallin with desmin in vitro increases 

with heat stress and pH changes, indicating stress/denaturation-dependent binding [91]. The 

R120G αB-crystallin mutation has received a lot of attention due to the severe phenotype it 

causes. This mutation decreases the dissociation constant for desmin by half and causes 

toxic protein aggregation, which leads to desmin-related cardiomyopathy [134–138]. 

Desmin- and αB-crystallin-containing protein aggregates are common features of 

cardiomyopathy and skeletal muscle myopathy tissue biopsies, even when mutations are not 

involved [139]. These data indicate that both disrupted stability and degradation of desmin 

can be pathogenic.

2.6. Maintenance of MYBPC

MYBPC is a flexible, thick-filament associated protein that regulates myosin crossbridge 

cycling [140]. Mutations to MYBPC are the leading cause of hypertrophic cardiomyopathy 

(HCM), accounting for up to 50% of cases [141]. Disease mechanisms hypothesized in 

HCM include: 1. Point mutations in sarcomere proteins that directly impair function 

(“poison peptide”), and 2. Protein haploinsufficiency caused by truncating mutations [142]. 

Unlike disease-associated mutations in other sarcomere proteins which are predominantly 

missense, truncations account for ~90% of MYBPC mutations [143]. Interestingly, studies 

of HCM biopsy samples from patients with MYBPC mutations failed to identify the 

truncated protein, suggesting that the protein either is not synthesized or is quickly degraded 

via PQC mechanisms [144]. In support of the latter, recent work by Glazier et al. found that 

HSC70 and HSP70 act as chaperones for both wild-type and mutant MYBPC where 

knockdown of HSC70 in cultured ventricular myocytes impaired their degradation [145]. 

However, wild-type and mutant MYBPC turnover was enhanced with a small molecule 
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activator of HSP70/HSC70. In cases of missense MYBPC mutants, the role of Hsp70 in 

regulating MYBPC degradation may represent one mechanism in place to prevent the 

“poison peptide” effect. To date, HSP70/HSC70 is the only identified MYBPC chaperone, 

though future work may aim at determining the involvement of known HSP70 cochaperones 

in MYBPC turnover.

3. Sarcomeric Degradation

The regenerative capacity of cardiomyocytes is severely limited [146]. Sarcomere proteins, 

however, have half-lives on the order of weeks to days and require continuous turnover 

[147,148]. Sarcomeric protein turnover is thus essential to maintain function and promote 

cardiomyocyte longevity. In this section, we review the three mechanisms regulating 

sarcomere protein turnover (the calpains, the ubiquitin proteasome system, and the 

autophagy-lysosome system, Figure 2A) and discuss how their dysregulation in heart failure 

contributes to proteotoxicity and potentially sarcomere dysfunction (Figure 2B).

3.1. The calpain system

Calpains are calcium-dependent cysteine proteases evolutionarily conserved from bacteria to 

mammals. The human genome contains at least 16 different calpain-encoding genes, three of 

which – calpain-1, calpain-2, and calpain-3 – are found in striated muscle [149,150]. 

Calpain-3 expression is skeletal muscle-specific [151]. Cardiomyocytes do not have a tissue-

specific calpain and instead express modest amounts of calpains 1 and 2, each with many 

identified sarcomeric clients (Table 1) [152]. The susceptibility of sarcomere proteins to 

calpain proteolysis can be regulated by chaperones, which prevent calpain proteolysis by 

binding to cleavage sites. This was shown for HSPB1, which translocated to the Z-disc 

during oxidative stress and prevented calpain-mediated proteolysis of desmin [153]. HSPB1 

binding can also prevent calpain cleavage of troponins I and T [154]. Calpain proteolysis of 

myofilament proteins is enhanced with sarcomere stretch [155].

Calpain activation is associated with an increase in protein ubiquitination and is thought to 

precede myofilament protein degradation by the ubiquitin-proteasome system (UPS), which 

requires proteins to be in monomeric form. In this model, calpains release the myofilament 

proteins from the sarcomere by proteolyzing several sarcomere components, allowing for 

their subsequent targeting to the UPS (Figure 2A) [156,157]. This observation was first 

made in the heart by Galvez et al. who observed that overexpression of calpain-1 resulted in 

increased ubiquitination and 26S proteasome activity while expression of the calpain 

inhibitor calpastatin decreased ubiquitination and caused cardiac dysfunction [158]. These 

findings suggest calpain proteolysis at the sarcomere is upstream of the UPS and is 

fundamental for cardiac function. However, the regulation of the UPS by calpains is 

incompletely understood and not all studies support the requirement for calpains upstream of 

the UPS [159]. More research is needed to characterize the calpain-UPS relationship at the 

sarcomere.
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3.2. The Ubiquitin Proteasome System

UPS-mediated protein degradation is a concerted effort by multiple enzymes that culminates 

in a reaction catalyzed by an E3 ubiquitin ligase, which transfers ubiquitin to the protein of 

interest [160]. The ubiquitinated protein is subsequently degraded via the 26S proteasome, a 

large ATP-dependent protease complex with multi-catalytic activity that localizes to the 

sarcomere Z-disc [5]. Evidence from many studies indicates the UPS is fundamental for 

sarcomeric PQC and we focus our review on the E3 ligases found at the sarcomere.

3.2.1. The muscle RING finger E3 ligases (MuRFs)—The most well-characterized 

E3 ligases in striated muscle are the muscle RING finger (MuRF) proteins, which belong to 

the TRIM family of ubiquitin ligases. These localize to the sarcomere Z-disc and M-line and 

contribute to the proteasomal degradation of multiple sarcomere proteins [161–163]. 

MuRF-1 and MuRF-2 are functionally similar and associate with troponins I and T, NRAP, 

β-MHC, myosin light chain 2 (MLC2), telethonin (T-Cap), myotilin, titin, and nebulin [164–

167]. MuRF-3 was the first MuRF to be discovered, however, it has only three identified 

sarcomere substrates: filamin C, β-MHC, and four-and-a-half LIM domain protein-2 (FHL2) 

(Table 1) [161,168,169]. Genetic mouse studies have contributed significantly to our 

understanding of the roles MuRFs serve in the myocardium. Absence of MuRF-2 or 

MuRF-3 caused protein aggregation and impaired cardiac function, while overexpression of 

MuRF-1 in a TAC heart failure model was detrimental [170–172]. Uniquely, when mice 

lacking MuRF-1 were challenged with TAC, they developed substantial hypertrophy which 

was not found in MuRF-2-deficient mice [173]. Together, these studies support that 

sarcomeric MuRFs share some redundancy and are fundamental for muscle structure and 

function but require tight regulation.

3.2.2. TRIM32—Another TRIM family member, TRIM32, is involved in the UPS-

mediated degradation of thin filament-associated proteins. Work by Kuryashova et al. found 

TRIM32 binds to the myosin head/neck region and mediates the ubiquitination of 

sarcomeric actin [174]. More recently TRIM32 was shown to ubiquitinate the thin filament-

associated proteins troponin T, troponin I, tropomyosin, myotilin, and α-actinin [175]. 

Studies of TRIM32 in muscle atrophy show that it is also an important mediator of desmin 

turnover, where TRIM32 knockdown prevented desmin degradation [175]. It seems TRIM32 

is involved in an initial step of muscle atrophy requiring the disassembly of desmin filaments 

[176]. To date, most studies on TRIM32 have been performed in skeletal muscle, where 

TRIM32 mutations are associated with myofibrillar myopathy [174]. Despite high 

expression in the myocardium, very little is known regarding cardiac TRIM32. However, 

recent work with a mouse heart failure model indicated that TRIM32 has protective effects 

as TRIM32 overexpression prevented progression into heart failure in mice subjected to 

TAC [177]. More studies are needed to determine whether TRIM32 substrates identified in 

skeletal muscle are conserved in the heart.

3.2.3. Other E3 ligases at the sarcomere—Several other E3 ligases have been linked 

to sarcomere PQC, with more surely yet to be identified. One of these is carboxyl-terminus 

of HSP70-interacting protein (CHIP). CHIP localizes to the sarcomere Z-disc and A-band 

and assists with myosin turnover [178]. CHIP also mediates the degradation of the myosin 
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chaperone Unc45 via the UPS [179]. Mice lacking CHIP have decreased survival and 

worsened myocardial injury following ischemia/reperfusion [180]. The E3 ligase murine 

double minute 2 (Mdm2) is canonically involved in the turnover of p53 [181]. However, in 

the heart it also ubiquitinates the titin-capping protein telethonin promoting its degradation 

[182]. Conditional knockout of Mdm2 in the heart causes spontaneous cardiac hypertrophy 

and significant cardiomyocyte cell death, though this is attributed to impaired degradation of 

a number of Mdm2 substrates [183]. Mdm2 gene expression decreases in heart failure [183]. 

Studies in recent years implicate several other E3 ligases in sarcomere PQC. These include 

Fbxl22 (α-actinin, filamin C), atrogin-1 (desmin), c-Cbl (troponin-I), and cullin-5/Asb2 

(filamin A, filamin C, desmin) [184–188]. The number of E3 ligases involved in sarcomere 

protein turnover (Table 1) highlights the complexity of this process and suggests that proper 

turnover is achieved by engaging many E3 ligases with somewhat overlapping roles.

3.3. The Autophagy-Lysosome Pathway

Proteins that cannot be refolded by chaperones or processed by the UPS may be degraded 

via macroautophagy, referred to hereafter as ‘autophagy’ (Figure 2A). In autophagy, 

membrane-enclosed vesicles (autophagosomes) are formed around a portion of the cytosol 

containing damaged organelles, protein aggregates, and/or other toxic cellular components 

[189]. Like the UPS, selectivity in autophagy is mediated by ubiquitin. Proteins carrying a 

K63-polyubiquitin tag, or aggregated proteins with K48-polyubiquitination, are recognized 

by adaptors P62/SQSTM1 and NBR1 which facilitate their association with proteins on the 

autophagosome membrane, or HDAC6 which first targets them to the aggresome [190,191]. 

Autophagosomes recycle their cargo by fusing with the lysosome, thus exposing 

autophagosome contents to lysosomal hydrolases. While it is evident from several studies 

that autophagy is required for sarcomere structural maintenance, relatively little is known 

regarding the specific involvement of autophagy in sarcomere PQC.

Impaired autophagy is associated with sarcomere structural abnormalities. Autophagy 

related protein 5 (ATG5) is essential for the formation of the autophagosome membrane and 

its knockout completely ablates autophagy [192]. One of the first studies to implicate 

autophagy in sarcomere PQC was by Nakai et al. using cardiomyocyte specific ATG5 

knockout [193]. Baseline cardiac function was unaffected in ATG5-null mice. However, 

after one-week of pressure overload, ATG5 KO caused significant left ventricular 

dysfunction, chamber dilation, and sarcomere structural disarray [193]. Sarcomere disarray 

was also identified with ATG7 KO in skeletal muscle [194]. These studies indicate the 

importance of autophagy for the sarcomere, but do not specifically assess autophagy at the 

sarcomere level as autophagosome impairment affects global myocyte autophagy.

Chaperone-assisted selective autophagy (CASA), an autophagy pathway discovered in 

skeletal muscle, is thus far the only autophagy pathway that has been explicitly shown to 

operate at the sarcomere (Figure 3A). In CASA, the co-chaperone BAG3 operates as a 

scaffold for HSPB8 and HSC70/HSP70. The complex binds to misfolded filamin C, 

preventing its aggregation. Filamin C is then ubiquitinated by the E3 ubiquitin ligase CHIP, 

which docks on the carboxyl terminus of HSP70. This promotes client identification by the 

ubiquitin receptor P62/SQSTM1, which with synaptopodin-2 (SYNPO2) facilitates the 
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association and engulfment of the complex by the autophagosome [195]. CASA was first 

described in Drosophila, where the complex was shown to localize to the sarcomere Z-disc 

and mediate the degradation of mechanically-misfolded filamin C [196]. While it has not 

been shown directly, it is possible that multiple HSPBs are interchangeable in the CASA 

complex (Figure 3B). This is supported in that multiple HSPBs are established BAG3 

binding partners (HSPB1, HSPB6, HSPB8, αB-crystallin), some of which have also been 

implicated in filamin C maintenance [197–199]. Numerous BAG3 mutations and BAG3 

deficiency have been linked to dilated cardiomyopathy in humans [200,201]. Developing 

work from our group has identified the CASA complex at the sarcomere in cardiomyocytes 

and found it helps maintain sarcomere proteostasis [202]. Future research is needed to 

determine the extent to which CASA operates in cardiomyocytes and whether it has 

additional sarcomeric clients beyond filamin C.

3.4. Sarcomere Turnover in End-Stage Heart Failure

In end-stage heart failure, there is a dysregulation of PQC mechanisms resulting in old/

misfolded protein aggregation that may cause sarcomere structural and functional 

impairment (Figure 2B). Calpain activity increases in both ischemic and dilated 

cardiomyopathy, causing an elevation in clients destined for degradation by the UPS 

[150,201–210]. However, in the end-stage of heart failure there is diminished UPS activity 

and thus the clients are not degraded rapidly enough [213]. In the healthy heart, protein 

aggregates not removed by these first two lines of defense can be removed by autophagy. 

Autophagy operates at low basal levels but is upregulated in response to proteasome-

insufficiency, elevated mechanical strain – such as occurs with increased afterload –, and 

other stress conditions including those associated with genetic mutations to sarcomere 

proteins [214]. However, autophagy activity is dysregulated in heart failure [215]. Together, 

this dysregulation of sarcomeric PQC mechanisms in the progression of heart disease results 

in aberrant protein aggregation that may result in impaired contractile function and 

ultimately cell death.

4. Clinical Implications

Manipulating sarcomere PQC separately from global cardiomyocyte PQC is not feasible 

given our current understanding. However, as we gain mechanistic insight into the signaling 

pathways that mobilize chaperones from the cytosolic pool to the sarcomere, small molecule 

approaches targeting sarcomere PQC may become a reality. For now, manipulating global 

cardiomyocyte PQC to affect changes at the sarcomere appears the best option. Boosting 

HSP expression by exercise, caloric restriction, or small molecule therapeutics has proven 

cardioprotective in animal models of heart failure [216,217]. These therapies mostly target 

heat shock transcription factor-1 (HSF1), the master regulator of HSP expression [218]. The 

expected benefits of increasing HSP expression for the sarcomere extend from ensuring 

effective assembly and protein stability, to maintaining adequate protein degradation. 

Autophagy inducing drugs also show promise in restoring cardiac function in animal heart 

failure models, though their impact on the sarcomere is poorly characterized [189]. For cases 

of chaperone deficiency, which frequently occur in end-stage heart failure, we speculate 

AAV-based gene therapy may be a promising approach to restore proteostasis. Gene therapy 
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has shown promise in restoring endoplasmic reticulum (ER) proteostasis, a central node of 

global cardiomyocyte PQC [219,220]. Moreover, a recent preprint of a study by our group 

highlights promise for gene therapy targeting sarcomere chaperones, where AAV9-BAG3 

delivery in a mouse heart failure model rescued myofilament contractile function and 

restored sarcomere proteostasis [202]. However, gene therapy is complicated in larger 

species by difficulties with delivering ample amount of virus.

5. Summary & Future Directions

Protein quality control (PQC) at the sarcomere is fundamental for maintaining cardiac 

function. In this review, we describe the proteins involved in sarcomere assembly and 

stability, along with processes controlling protein degradation therein. The exact mechanism 

of sarcomere formation (sarcomerogenesis), while controversial, is thought to involve the 

formation of immature stress fiber complexes that are a blueprint for the mature sarcomere. 

Sarcomerogenesis is supported by a variety of chaperone and co-chaperone proteins, which 

stabilize sarcomere proteins and prevent their aggregation. While the lifetime of a 

cardiomyocyte extends for many years, that of the individual proteins is limited to days/

weeks. Thus, new proteins must constantly be incorporated into the sarcomere in place of 

old members without compromising mechanical function. Protein turnover is accomplished 

via three different systems (the calpain system, the ubiquitin-proteasome system, and the 

autophagy-lysosome pathway), which assist in removal of old proteins to maintain 

sarcomere proteostasis.

The studies summarized in this review showcase the staggering complexity of sarcomere 

PQC and highlight dozens of factors essential for sarcomere assembly and maintenance. 

However, it is important to note that some of these studies came from skeletal myocytes. 

Unlike cardiomyocytes, skeletal myocytes do not persistently contract and are slowly turned 

over with age, and thus may not be faced with the same PQC requirements. Regardless, it is 

increasingly evident that we still do not fully understand many aspects of sarcomere PQC, 

which leads to key unanswered questions. Foremost among these are questions regarding 

sarcomere assembly and maintenance in the terminally differentiated adult cardiomyocytes: 

1. What are the stimuli and mechanisms for de novo sarcomere assembly in adult myocytes? 

2. Does the addition of new sarcomeres in eutrophy and exercise-induced hypertrophy differ 

from pathological hypertrophy? 3. How do mutations to sarcomere proteins, such as 

contribute to the “poison peptide” effect, impact their maintenance by chaperones? 4. Are 

there functionally distinct PQC mechanisms for the sarcomere? Much like mitochondria-

specific autophagy (mitophagy), is there a sarcomere-specific autophagy (“sarcophagy”)? 

Answering these questions with current experimental systems/techniques is challenging. 

Adult cardiac and skeletal myocytes are not amenable to long-term culture, contracting cells 

present difficulties for live-cell imaging, and in vitro hypertrophy models require treatment 

paradigms of multiple days.

Future work may aim at determining how local protein assembly and degradation are 

regulated at the sarcomere. How a cardiomyocyte ensures the delivery of new proteins to its 

hundreds of sarcomeres with both temporal and spatial accuracy is a puzzling question. 

Within a given myocyte, the mechanical strain on individual sarcomeres is non-uniform 
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[221]. Higher mechanical strain increases the propensity of a protein to misfold and thus the 

rate of protein turnover at some sarcomeres must outpace that at others. In the same vein, the 

mobilization of protein degradation pathways to individual sarcomeres must therefore be 

locally regulated. Recent work by Lewis et al. made important observations regarding the 

spatiotemporal maintenance of the sarcomere [2]. They found ribosomes and sarcomere 

protein transcripts localize to the Z-disc, thus allowing for local translation of sarcomere 

proteins. They propose an excess synthesis model of sarcomere maintenance where an 

overabundance of sarcomere proteins are synthesized and serve as a readily available pool 

for incorporation into the complex [2]. Evidence also suggests that under increased stress, 

autophagy engages in local protein degradation at the sarcomere. In mechanically stressed 

myocytes, the autophagic ubiquitin receptor P62/SQSTM1 and autophagosome membrane 

protein LC3 localize to the sarcomere, suggesting sarcomere protein aggregates are engulfed 

locally by the autophagosome [195,222]. These studies shed some light on the mystery of 

regulating local PQC at the dynamic sarcomere and provide an excellent framework for 

future studies in the years to come.
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Highlights

• Sarcomere assembly and maintenance are mediated by molecular chaperones

• Mutations and deficiency of chaperones are linked to cardiomyopathy

• Mechanical and oxidative stress at the sarcomere predispose to protein 

misfolding

• Calpains, the UPS, and autophagy regulate sarcomeric protein turnover

• Failure of PQC mechanisms occurs in the progression of heart disease
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Figure 1. The cardiac sarcomere and assembly of the myofilaments.
(A).Schematic diagram of the sarcomere and sarcomere-associated proteins. The sarcomere 

is the basic contractile unit in striated muscle with the thin actin and thick myosin 

myofilament proteins at its core. Sarcomeres are bounded at either end by α-actinin-rich Z-

discs and are arranged sequentially to form myofibrils. (B). Simplified schematic of thin and 

thick filament assembly. GimC binds newly synthesized actin as it is translated by the 

ribosome and mediates early stages of folding. GimC passes now semi-folded actin to TriC, 

which assists in the assembly of the actin filament. Thin filament assembly is further 

supported by FHOD3, which stabilizes monomeric and filamentous actin and is crucial for 

actin filament nucleation and polymerization. The small heat shock proteins (heat shock 

protein B family, HSPBs) stabilize actin monomers and prevent protein aggregate formation. 

Actin capping proteins, CapZ and tropomodulin (T-Mod), bind to the ends of actin filaments 

and maintain stability. CapZ itself requires the BAG3/HSC70 chaperone complex to 
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maintain its stability. Unc45 is the key chaperone for thick filament assembly and stability. It 

prevents myosin aggregation and assists with the folding of the myosin ATPase domain. 

Unc45 is a co-chaperone for HSP90, which participates in the early stages of myosin folding 

and myofibril assembly. The lysine methyltransferase SmyD1 is proposed to interact with 

the HSP90/Unc45/myosin complex.
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Figure 2. Sarcomeric protein degradation in the healthy and failing heart.
(A). Schematic representation of sarcomere PQC in the healthy heart. Three protein 

degradation pathways are in place for the sarcomere. The calpains proteolyze sarcomere 

proteins and release protein monomers to be degraded by the ubiquitin proteasome system 

(UPS). The UPS also mediates the degradation of individual misfolded proteins. Larger 

protein aggregates are removed by the autophagy/lysosome pathway. (B). Schematic 

representation of the changes to sarcomere PQC that occur in the end-stage failing heart. 

Proteins misfolded from mechanical (stemming from increased afterload), thermal, 

oxidative, and genetic stress aggregate in the end-stage failing heart. Aberrant protein 

misfolding as a result of these stressors is accompanied by elevated calpain activity, which 

produces excess proteolysis products. Compounding the issue of proteotoxicity, the activity 

of the systems designed to recycle these proteins, the UPS and autophagy, are downregulated 

in heart failure. Together, these factors culminate in toxic levels of protein aggregation, 
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which – presumably – contribute to the sarcomere structural disarray and mechanical 

dysfunction commonly found in failing myocardium. Which specific proteins aggregate and 

to what extent remains to be fully elucidated.
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Figure 3. Chaperone-assisted selective autophagy at the sarcomere.
(A). The co-chaperone BAG3 operates as a scaffold for HSP70 and HSPB8, which bind to 

misfolded filamin C. The E3 ligase CHIP then ubiquitinates filamin C, allowing it to be 

recognized by the ubiquitin receptor P62, which facilitates the association of the CASA 

complex with LC3 on the autophagosome membrane. Through BAG3 this complex also 

associates with SYNPO-2, which mediates interaction with a SNARE protein on the 

autophagosome membrane that assists with autophagosome formation. Autophagosome 

contents are recycled via autophagosome-lysosome fusion. (B). BAG3 domains enable 

numerous binding activities. SYNPO2, which assists in autophagosome formation, binds to 

the N-terminal WW domain. Several HSPBs bind to two IPV motifs and the BAG domain 

associates with the ATPase domain of HSP70/HSC70.
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Table 1.

Summary table of sarcomere and sarcomere-associated proteins with their proposed degradation mechanisms.

Protein Function Proposed Degradation Mechanisms

Actin Thin filament TRIM32 [174]

α-Actinin Actin cross-linking Fbxl22 [186], TRIM32 [175]

Ankyrin Cytoskeletal adaptor Calpains [204,223]

Desmin Cytoskeletal adaptor Calpains [153,224], TRIM32 [175,176], Atrogin-1 [187], Cullin-5 [184,185]

Dystrophin Cytoskeletal adaptor Calpains [149,225]

FHL2 Sarcomere/nucleus crosstalk MuRF-3 [168]

Filamin A and C Actin cross-linking Calpains [226,227], Cullin-5 [184,185], Fbxl22 [186], MuRF-3 [168], CASA [196]

MYBPC Thick filament regulation Calpains [228,229], MuRF-1 [166]

β-MHC Thick filament MuRF1–3 [164,166], CHIP [178]

MLC-2 Thick filament regulation MuRF1–2 [164]

Myotilin Z-disc integrity MuRF1–2 [164], TRIM32 [175]

Nebulin/Nebulette Thin filament stability Calpains [230,231], MuRF1–2 [164]

NRAP Thin filament stability MuRF1–2 [164]

Telethonin/T-cap Titin stability Mdm2 [182], MuRF1–2 [164]

Titin Strain-sensing, scaffold Calpains [149,232], MuRF1–2 [164]

Tropomodulin/T-mod Thin filament stability Calpains [233]

Troponin C Thin filament regulation MuRF-1 [165]

Troponin I Thin filament regulation Calpains [208,211,234,235], MuRF1–2 [164,165], TRIM32 [175], c-Cbl [188]

Troponin T Thin filament regulation Calpains [208,234,235], MuRF1–2 [164], TRIM32 [175]

Tropomyosin Thin filament regulation Calpains [149,230], TRIM32 [175]
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