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Abstract

Polymeric vehicles are versatile tools for therapeutic gene delivery. Many polymers—when 

assembled with nucleic acids into nanoparticles or polyplexes—can protect the cargo from 

degradation and clearance in vivo, and facilitate its transport into intracellular compartments. 

Design options in polymer synthesis yield a comprehensive range of molecules and resulting 

vehicle formulations. These properties can be manipulated to achieve stronger association with 

nucleic acid cargo and cells, improved endosomal escape, or sustained delivery depending on the 

application. Here, we describe current approaches for polymer use and related strategies for gene 

delivery in preclinical and clinical applications. Polymer vehicles delivering genetic material have 

already achieved significant therapeutic endpoints in vitro and in animal models. From our 

perspective, with preclincal assays that better mimic the in vivo environment, improved strategies 

for target specificity, and scalable techniques for polymer synthesis, the impact of this therapeutic 

approach will continue to expand.
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1. Introduction

1.1 Introduction to nucleic acid delivery

Nucleic acids are powerful tools to exogenously regulate cellular processes that can have an 

impact on the whole organism. Strategic delivery of these molecules can make changes to 

the expression of genes in an organism in either permanent or transient ways. For therapeutic 

purposes, nucleic acids can be used to correct a disease-related inherited gene by adding, 

removing, or replacing genetic material, or to make cells and tissues behave in a certain way 

by activating, suppressing, or supplementing gene expression [1, 2]. Applications of this 

therapeutic strategy are growing as our understanding of human gene regulation and the 

links between genetic defects and the molecular basis of disease expands.

Nucleic acid-based therapeutics must act intracellularly, but most nucleic acids are rapidly 

cleared and degraded after systemic administration and do not readily cross the plasma 

membrane. Therefore, vectors that facilitate their transport inside cells can enhance the 

efficacy of these therapeutic strategies [3]. Successful intracellular delivery of nucleic acids 

has been achieved using a wide variety of tools and techniques, including physical methods, 

viral vectors, and non-viral vehicles [4]. Within the category of non-viral vehicles are 

polymeric delivery systems (Figure 1), which facilitate the protected transport of nucleic 

acids through extracellular space and through the plasma membrane. There are several types 

of delivery vehicles that can be formulated, including polyplexes, nanoconjugates, micelles, 

nanocapsules, dendrimers, and nanoparticles (NPs). Polyplexes are common formulations 

used for the delivery of nucleic acids, particularly with cationic polymers. These vehicles are 

spontaneously formed by entropically driven electrostatic interactions between positively 

charged polymers, often containing ionizable amine (N) groups, and negatively charged 

nucleic acids containing phosphate (P) groups. For gene delivery purposes, an excess of 

polymer is typically used (N/P ratio >1) to condense nucleic acid cargo, generating vehicles 

with a positive surface charge [5].

There are various design criteria that must be met to ensure that polymeric vehicles reach 

their final destination and deliver their cargo effectively. These criteria depend on target cell 

populations, the duration over which the genetic material needs to be present/expressed, and 

the properties (ex. size/molecular weight, sensitivity to degradation, etc.) of the nucleic acid 
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material to be delivered. The major advantages of this class of vehicles stem from versatile 

polymer chemistries and physical characteristics which impart an element of control to the 

delivery strategy; polymers can be manipulated to provide controlled release of cargo, 

support transfection, and affect biodistribution. This review provides an overview of polymer 

materials used to deliver nucleic acids along with the current status of clinical trials. We also 

outline the major challenges faced by polymeric vehicles for gene delivery as well as 

strategies to overcome them.

1.2 Types of nucleic acid cargo

Therapeutic nucleic acids encompass a wide range of sizes, stabilities, as well as various 

modes and intracellular sites of activity. The diversity of these molecules is important to 

consider when designing delivery strategies (Figure 1), as their properties will affect 

encapsulation efficiency as well as delivery vehicle characteristics.

There are several varieties of therapeutic RNA molecules, most of which are small and 

intended to act in the cytosol without entry into the nucleus. Since they are not integrated 

into the genome and are eventually degraded, their activity is temporary. They are often 

chemically modified in order to improve their stability and bioavailability [6]. Such 

modifications can include 2’ hydroxyl modifications that introduce fluorine or methoxy 

groups or replacement of the phosphodiester backbone to phosphorothioates, 

phosphorodiamidates, or polyamides to reduce susceptibility to nucleases [7].

The smallest RNA molecules are small interfering RNAs (siRNA) and microRNAs 

(miRNAs), which are both about 20 base pairs (bp) in length. siRNAs are short duplex, non-

coding RNA molecules ~20 bp in length. They act to silence specific genes after they are 

expressed through the RNA interference (RNAi) pathway. Specifically, siRNA molecules 

silence a single targeted messenger RNA (mRNA) sequence [8]. Similarly, miRNAs are non-

coding RNAs that regulate translation, but act through partial recognition of mRNA targets. 

Transfer RNAs (tRNAs, ~70–90 nucleotides) interact with ribosomes to incorporate a 

desired amino acid based on the native mRNA sequence. The largest RNA molecules are 

single-stranded mRNAs, which direct the synthesis of an encoded protein in the cytoplasm. 

The size of these molecules is dependent on the length of the gene encoded, which can be up 

to thousands of nucleotides.

With sizes in the kilobase range, the largest therapeutic nucleic acids by far are DNA 

molecules. The most extensively studied form of DNA is plasmid DNA (pDNA). pDNAs are 

circular double-stranded molecules that are capable of replicating autonomously in a cellular 

host. They consist of an anionic phosphodiester backbone and a stable deoxyribose 

structure. These large nucleic acids are capable of strong electrostatic interactions and 

condensation, particularly with cationic carriers [9]. As with all DNA molecules, successful 

transfection of pDNA requires transport to the nucleus to be effective. These effects can be 

long-lasting, especially if components of the plasmid are integrated into the host genome.

Therapeutic nucleic acids also include synthetic DNA or RNA analogs such as peptide 

nucleic acids (PNAs). PNAs have a charge-neutral peptide-like polyamide backbone with 

nucleobases capable of hybridization with DNA or RNA with high affinity. They are 
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resistant to degradation by nucleases and have increased serum stability compared to other 

nucleic acids [10], but are also hydrophobic and not easily taken up by cells. However, these 

properties can be advantageous for loading into hydrophobic polymer NPs [11]. PNA 

monomers are composed of N-(2-aminoethyl)-glycine units with nucleobases attached via 

methylene carbonyl linkages [12]. Therapeutically, PNAs can be utilized in multiple ways to 

manipulate gene expression, including antisense, anti-miR, and gene editing [11]. These 

nucleic acids range in size, with larger therapeutic molecules up to ~40 nucleotides in 

length. As PNAs have a different backbone compared to their natural nucleic acid 

counterparts, they cannot be incorporated into the host genome.

Gene editing agents can also be delivered in polymeric vehicles for genetic manipulation. In 

addition to synthetic PNAs mentioned above, there are several families of nuclease-based 

gene editing agents including meganucleases, zinc finger nucleases (ZFNs), TALE nucleases 

(TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/

CRISPR-associated proteins (Cas). Each of these nucleases can be programmed to introduce 

single or double-strand breaks in the genome [13, 14]. The CRISPR/Cas9 system has been 

the most widely used gene editing approach since its discovery in 2013, in part due to the 

relative ease of design for various applications [15]. CRISPR/Cas9 gene editing platforms 

use a single guide RNA (sgRNA) to direct the bacterial Cas9 enzyme to a target locus in the 

genome [16, 17]. In nucleic acid form, Cas9 can be delivered as a plasmid (~8–10 kilobases) 

or mRNA (~4000 nucleotides) alongside a sgRNA (~100 nucleotides) which can also be 

delivered in plasmid form; a donor DNA molecule (up to ~100 nucleotides) is also delivered 

to serve as a template if a site specific genome modification is desired [18]. Protein and 

mRNA forms of Cas9 are often preferred as they limit the duration nuclease activity, 

reducing the potential for off-target modification of the genome. Incorporating these gene 

editing components together results in large and complex nucleic acid payloads within any 

delivery vehicle.

1.3 Extracellular and intracellular barriers to nucleic acid delivery in vivo

Upon in vivo administration, polymeric delivery vehicles encounter a complex set of 

extracellular and intracellular barriers which remain a key challenge in clinical translation 

(Figure 2). For each application, accessibility of target tissues and cell types needs to be 

carefully considered when choosing a route of administration. If administered intravenously, 

delivery vehicles can interact with molecules present in the blood, such as serum proteins 

which can accumulate on carrier surfaces. The formation of a “protein corona” around 

polymeric carriers can change the surface properties and hinder the effectiveness of the 

delivery vehicle by altering the carrier’s interactions with cells and tissues [19, 20]. Most 

intravenously injected carriers, particularly those that are larger than 100 nm, rapidly 

accumulate in the liver due to phagocytosis by Kupffer cells. Avoiding this rapid liver 

accumulation is essential to achieve the long carrier circulation times that are needed to 

increase accumulation in other tissues. The ability of non-viral vectors to evade liver 

clearance and accumulate in target tissues depends on their size and surface properties. 

Small vectors (<100 nm) and vectors with certain coatings that confer stealth properties by 

reducing protein corona formation remain in circulation longer and may be better able to 

accumulate in organs other than the liver [21]. Of course, the carrier must be large enough 
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(>10 nm) to avoid efficient filtration by the kidney. Aside from elimination from the blood, 

once the polymer vehicle reaches the organ of interest, there may be additional physical 

barriers that prevent access to certain cell types including vascular impermeability and 

hydrostatic pressure preventing extravasation, poor local distribution, as well difficultly 

traversing through local mucus or matrix barriers. If the target tissue of interest is accessible 

by local administration, such as direct injection into the eye, many of the challenges 

associated with systemic delivery can be avoided.

Once delivery vehicles reach their target cells, they face additional barriers [22]. The first 

challenge is cellular association and entry, which can occur in a non-targeted or targeted 

manner via specific receptors on the cell surface. Cell association and uptake of delivery 

vehicles will depend on the interactions between the delivery vehicle and cell membrane, 

and generally occurs by endocytosis [23]. Endosomal escape of the carrier is essential to 

avoid lysosomal degradation of the cargo [24]. Delivery vehicles must facilitate transport of 

cargo to the cytosol or the nucleus for the genetic manipulation to take place, after which 

remnants of the delivery vehicle must be eliminated without disrupting normal cellular 

processes.

In sum, to be successful as nucleic acid carriers, polymeric vehicles must perform multiple 

functions. They must efficiently load and protect nucleic acid cargo, evade the immune 

system and premature clearance mechanisms, achieve cellular uptake and endosomal escape, 

and disappear without toxicity. Designing vehicles to fulfill all of these criteria has been 

challenging, but recent approaches aim to modify or combine traditional polymers into 

materials that both capitalize on proven strengths and balance pitfalls to create well-rounded 

vehicles for various applications.

2. Polymeric vehicles for nucleic acid delivery

Polymer physicochemical properties (ex. composition, molecular weight, and 

polydispersity) can be modified to achieve specialized formulations for nucleic acid delivery. 

One common feature in most polymers designed for nucleic acid delivery is the 

incorporation of cationic groups, with two purposes: first, to aid with the loading of 

negatively charged nucleic acid cargo, and second, to faciliate the interaction with negatively 

charged glycoproteins on the cell membrane [25]. Intended applications may dictate 

stability, size, and cargo requirements, which can be achieved with various formulations. 

Some commonly used formulations are illustrated in Figure 1. Both naturally derived and 

synthetic polymers have been utilized for nonviral delivery systems, although an advantage 

of synthetic polymers is the ability to incorporate versatile chemistries in a controlled 

manner, providing more options for the final formulation.

2.1 Early linear polycations

One of the first linear polycations investigated for nucleic acid delivery was 

diethylaminomethyl (DEAE) dextran. This polycationic derivative of the carbohydrate 

dextran was shown to enhance poliovirus RNA transfection in 1965 and simian virus 40 

viral DNA three years later [26, 27]. The advantages of DEAE-dextran include its chemical 

simplicity, reproducibility, and low cost; disadvantages consisting of low transfection 
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efficiency, cytotoxicity in primary cells, and inhibition of cell growth in vitro have limited its 

use in vivo [28].

Polylysines and polyamines have also been used as gene carriers. Polyamines and nucleic 

acids spontaneously condense into compact structures that closely resemble viruses [29, 30]. 

Polylysines were the first polymers used in targeted gene transfection strategies by 

incorporating specific ligands for cell surface receptors [31, 32]. Vehicles formulated from 

these polycations can be toxic (with low molecular weight polymers tending to be more 

toxic), and endosomal escape can be inefficient due to complete protonation at neutral pH, 

which limits their endosomal buffering ability. To overcome these limitations, copolymers 

which incorporate these low molecular weight polycations with other polymer blocks, such 

as polyesters, can be synthesized [33].

2.2 Proton sponges and amphiphilic polycations

Proton sponges and amphiphilic polymers are more efficient at endosomal escape than early 

linear polycations. Often, proton sponges are composed of multiple blocked linear and/or 

non-linear polycations that enable a larger buffering capacity and enhanced physicochemical 

properties (such as increased molecular weight for stability). These materials generally 

contain many proton-accepting groups including primary, secondary, and tertiary amines, 

and can achieve endosomal escape by causing an influx of chloride and water into the 

endosome upon increased protonation in an acidified environment. This influx leads to 

subsequent bursting of the endosome from the osmotic pressure and membrane 

destabilization [34]. One example is polyamidoamine (PAMAM), which was developed in 

the early 1990s and demonstrated effective pDNA transfer [35]. Dendrimers, like PAMAM, 

inherently contain hundreds of coupling sites with primary amine termini due to their 

multivalent structure, and as such have been extensively explored as drug and gene carriers 

[36]. Indeed, the abundance of charged coupling sites enables efficient nucleic acid loading 

of even large structures. On the other hand, the high cation density leads to non-specific 

cellular uptake and systemic toxicity in vivo [37–40]. A strategy to improve specificity is to 

utilize the amine groups to chemically attach cell-specific ligands that enhance binding to 

delivery targets. Using this technique, PAMAM-based formulations have been used to 

deliver gene therapy to injured microglia [41] and tumor cells [42]; another similar 

dendrimer (polypropylenimine) was used to treat prostate cancer cells [43]. These strategies 

report no secondary effects to healthy tissues. Conjugation of poly(ethylene glycol) (PEG) to 

PAMAM also reduces toxicity and improves efficacy [44].

Another well-known proton sponge is polyethylenimine (PEI), which has become a “gold 

standard“ for gene delivery. The PEI polymer family consists of linear and branched 

polymers with varying molecular weights and structures, adding to their versatility. These 

materials have been used to deliver a wide variety of nucleic acids including pDNA, 

miRNA, and siRNA both in vitro and in vivo [45–48]. While transfection efficiency is high, 

the mechanism of action for PEI and similar polymers remains unclear [34, 49–53]. Beyond 

the osomotic effect of a proton sponge, it is possible that the higher charge density of PEI 

molecules results in direct interaction with the endosomal membrane and subsequent 

permeabilization. Another possible mechanism for endosomal lysis by PEI is 
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thermomechanical disruption, driven by swelling of PEI vehicles to more than four times 

their original size with a temperature shift [54, 55]. While membrane disruptions are helpful 

for transfection, the high charge density of this polymer can cause extensive damage to 

cellular membranes, leading to apoptosis, necrosis, and inhibition of ATP synthesis. 

Additionally, polyplexes with rapid release of nucleic acid cargo may raise concerns over the 

stability of the vehicle for delivery. Strategies that address this “polyplex dilemma” are 

described in detail in a recent review by Wagner et al. [56]. Other limitations of PEI are that 

it is not degradable, it exhibits molecular weight-dependent cytotoxicity, and can stimulate a 

systemic immune response [57–60]. To address some of these limitations, PEI has been used 

in combination with other, more biocompatible polymers. For example, blending or grafting 

PEI with PLGA produces stable, cationic carriers [61] that have been complexed 

simultaneously with large nucleic acids (pDNA) as well as peptides and have shown 

improved transfection over branched PEI alone [62, 63]. Along these lines, other groups 

have developed derivatives of PEI, by forming hybrids of PEI with other polymers or lipids 

[64]. Another way to reduce the cytotoxicity of polymers with high charge density is 

through rational architectural changes. For example, one hypothesis suggests that increased 

branch density of dendrimers reduces toxicity [65]. This was demonstrated in studies of 

linear branched and cyclic branched poly(2-dimethylaminoethyl methacrylate) 

(pDMAEMA) [66]. Alternatively, the high surface charge of PEI was shielded when heparin 

was conjugated to the surface, increasing hemocompatibility and transfection [67].

Some amphiphilic polymers, such as poly-alkyl-carboxylic acids and polyvinyl ethers, 

appear to enhance endosomal escape due to their hydrophobic domains. This process can be 

futher enhanced by incorporating redox-sensitive and pH-dependent chemical groups into 

the polymer. For example, pyridyl disulfide (PDSA) [68] is pH-sensitive and, under acidic 

conditions, can enhance endosomal membrane disruption due to increased hydrophobicity 

[69–73]. Many amphiphilic polymers lack cationic groups and therefore exhibit reduced 

nucleic acid binding, though cationic groups can sometimes be incorporated into the 

polymer design. For example, cationic polyvinyl ethers contain amine groups and achieve 

both efficient nucleic acid loading and transfection activity [74, 75].

2.3 Biodegradable polymers

Many non-biodegradable polymers have no established way to leave cells and tissues after 

administration. The prolonged exposure to foreign materials and the potential accumulation 

of materials can lead to toxicity. Biocompatibility is enhanced with the use of biodegradable 

polymers as carriers, particularly if the polymer degrades to non-toxic and natural 

metabolites. Both naturally-derived and synthetic polymers can be biodegradable, making 

them potentially safer options for systemic gene delivery.

2.3.1 Natural polymers—Among naturally-derived polymers, structural proteins and 

polysaccharides, such as cationic collagen derivatives and chitosan, have been investigated 

as gene delivery vehicles. Cationic collagenous proteins have been used for nucleic acid 

delivery to articular cartilage and bone for regenerative medicine and metastatic tumor 

treatment [76–81]. Chitosan, a linear cationic polysaccharide, is produced by the 

deactylation of chitin (poly-d-glucosamine). It is non-toxic, even at high concentrations [82, 
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83], and can be formulated into polyplexes for effective protection and transfection of small 

and large nucleic acid cargos [84, 85]. For example, chitosan has been recently used to 

deliver miR-124 to rat microglia ex vivo [86], osteopathic tumors [87], tumors in multiple 

myeloma [88], and for in vivo bone regeneration [89]. An advantage of chitosan compared 

to other cationic polymers with higher charge densities (e.g. PEI) is the ready dissociation 

between nucleic acid cargo and polymer upon internalization, leading to more efficient gene 

transfection [90]. However, incorporating chitosan and PEI into a combined vehicle can take 

advantage of the stronger nucleic acid assoication with PEI while reducing negative 

consequences from charge density [91–95].

Cyclodextrins (CDs) are another family of naturally-derived carbohydrate-based polymers 

with favorable physiochemical properties for gene delivery. CDs in α-, β-, or γ- forms can 

be used either as stand-alone vectors or in combination with other cationic polymers 

(including PEI) [96–104]. β-CD can form host-guest interactions with adamantane which 

has supported the formulation of β-CD, adamantane-PEG, and PEI polyplex blends [105]. 

These formulations acheived high transfection efficiency in the liver, metastatic tumors, and 

via oral administration [106–109].

2.3.2 Synthetic polymers—Synthetic biodegradable polymers are generated by 

assembling low molecular weight monomers into polymers via bioreversible linkages such 

as sulfide or ester bonds. Examples of widely used biodegradable synthetic polymers are 

poly(lactic acid) (PLA), poly(glycolic acid) (PGA), and random or block copolymers such 

as poly(lactic-co-glycolic acid) (PLGA) [110]. These materials degrade slowly via bulk 

hydrolysis, a process which can facilitate sustained release of cargo. PLGA-based delivery 

systems have been used for a wide variety of therapeutic agents [111], including nucleic 

acids such as siRNA, miRNA, and PNAs [112–114]. Importantly, PLGA has been approved 

by the FDA for certain delivery applications. Practically, these materials have been difficult 

to use for nucleic acid delivery, as formulations usually have low nucleic acid loading, 

reducing their effectiveness [115, 116]. Precomplexation of nucleic acids with spermidine 

improves loading of siRNA [112]. Alternatively, PLGA can be blended or copolymerized 

with cationic polymers such as PEI [63], poly(beta amino) esters (PBAEs) [117], poly-L-

arginine [118], and chitosan [119] for enhanced gene transfection. Interestingly, a number of 

these studies capitalized on the chemical properties of both polymers to deliver both nucleic 

acids and peptides [63].

PBAEs are a family of degradable cationic polymers with the ability to effectively 

encapsulate nucleic acids, promote cellular uptake, and act as a proton sponge to achieve 

endosomal escape [120]. Like polylysine, PEI, and PAMAM, PBAEs contain amine groups 

which interact with negatively charged nucleic acids, but they also have hydrolyzable 

moieties which render them degradable. PBAEs are relatively easy to synthesize compared 

to other cationic degradable polyesters and they are amendable to custom modifications 

[121], enabling the generation of large libraries of polymers, which can be screened to 

identify structures that are optimized in different applications [122, 123]. Strategic 

modifications to the polymer structure have been reported to optimize delivery to pediatric 

brain cancer cells [124], hepatocellular carcinoma [125], and retinal pigment epithelial cells 

[126]. While PBAEs are biodegradable and exhibit high transfection efficiencies, the high 
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density of amine groups in these polymers makes them susceptible to aggregation with 

anionic serum molecules and increases toxicity [127, 128]. In blended formulations of 

PBAE and PLGA, cytotoxicity was reduced, which decreased as the ratio of PBAE to PLGA 

decreased [129].

Poly(amine-co-esters) (PACEs) are another class of biodegradable cationic polymers 

designed to have lower charge densities to reduce toxicity. These polymers are synthesized 

via copolymerization of hydrophobic monomers and amine-containing monomers that 

promote nucleic acid association and endosomal escape [130, 131]. PACE synthesis is often 

accomplished with an enzyme (lipase) as the catalyst, making the polymer easy to purify and 

free from potentially toxic metal catalysts used to synthesize many other degradable 

polymers. The physical properties of PACE can be controlled by composition and molecular 

weight, and these materials can be formulated into various delivery vehicles including 

polyplexes and solid NPs [132]. The lower charge density of PACE, compared to PEI and 

PBAE, improves biocompatibility, while maintaining enough charge to promote transfection. 

Like other cationic polymers, PACE polyplexes have the tendency to aggregate in serum, 

although this can be mediated through the use of coatings with synthetic peptides, apolipids, 

or surface modifications [132–134].

Various synthetic strategies now exist to control polymerization reactions and, therefore, the 

properties of the resulting polymer. Until recently, the evolution of sequence-defined 

synthetic polymers in the laboratory was limited to analogs of nucleic acids and 

polypeptides [135–137]. With new knowledge and technical capabilities, sequence-defined 

synthetic polymers are possible. This synthesis approach provides high chemical precision 

and flexible design of the resulting polymer, and is therefore a powerful tool to 

systematically evaluate the effect of minor chemical changes on nucleic acid delivery. 

Examples include controlled free-radical polymerizations such as reversible addition-

fragmentation chain transfer (RAFT) polymerization and atom transfer radical 

polymerization (ATRP) [138]. RAFT polymerization, in particular, can result in high end-

group fidelity and has been used to synthesize amine-based polymers for nucleic acid 

delivery [139]. Another example is highly functionalized nucleic acid polymer (HFNAP) 

libraries which are the first in-lab evolution of sequence-defined synthetic polymers that are 

not limited to the constraints of polymerases or ribosomes [140]. A ligase-based 

polymerization method provides great flexibility for this polymer system to produce libraries 

of different side-chain compositions for parallel experimentation to gain structure-function 

relationships between the resulting polymers and the genetic code to find the best candidates 

for the application of interest. Sequence control can also be achieved with approaches that 

are similar to peptide synthesis: in sequence-defined cationic oligo(aminoamide) (OAA) 

polymers, for example, monomer and functional group placement in the polymer chain is 

controlled by using stepwise solid phase synthesis [141]. By generating libraries of polymers 

built with minor chemical changes, OAAs with different architectures and structural motifs 

were identified for improved stability as a cationic carrier for formation of siRNA [142], for 

Cas9/sgRNA lipo-OAA complexes [143] and for combinations of pDNA and siRNA [144]. 

While techniques to control polymer sequence and structure are time-consuming, they 

enable control over the properties of the polymer, including hydrophilicity/hydrophobicity, 

charge density, functional domains, and architecture.
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2.4 Vehicle characteristics and surface modifications

Strategic modifications to polymer vehicles can manipulate their behavior in vivo. Chemical 

or physical changes to the vehicle profile can capitalize on natural transport phenomena 

(transport-based) or can include molecules to aid in specific binding (molecular binding-

based). Perhaps most simply, the size of polymer vehicle can significantly alter transport 

capabilities in the blood. A recent study comparing PAMAM dendrimers with minor size 

differences (4.3nm vs 6.5nm) found profound changes to circulation time and enhanced 

brain accumulation with the larger polymers [145]; another study found that the size of 

PLGA NPs determined the fraction that were rapidly accumulating in the liver, and the 

fraction that were able to target the bone marrow and lung [146]. Similarly, reducing the size 

of PEI/pDNA complexes resulted in the evasion of normal clearance mechanisms for these 

polyplexes [147]. In addition to evading clearance, it has long been appreciated that the size 

of the carrier is an important consideration in capitalizing on enhanced permeability and 

retention (EPR) effect seen in tumors and other instances of leaky vasculature [148]. 

However, this strategy does not apply to many tissue types and can result in accumulation in 

off-target regions [149, 150].

Another tool to accomplish increased circulation time is through the incorporation of stealth 

coatings, such as PEG, as described above. Originating in the 1960s [151], PEGylation is a 

strategy to reduce aggregation, improve stability, reduce clearance, and increase systemic 

circulation time in vivo [152]. Hydrophilic PEG moieties sterically hinder interactions with 

the neighboring NPs or serum proteins and blood components by creating a hydrated cloud 

around the NP [153, 154]. Unfortunately, the use of PEG to enhance circulation time has 

other consequences. The steric hindrance and stealth properties can prevent intended cellular 

uptake and reduce transfection efficiency [155]. Further, there is still a fraction of serum 

proteins that can adhere to the vehicle even after PEGylation [154]. In addition, there have 

been reports of several adverse events including anti-PEG antibody production [156] and 

complement activation [157]. Despite these potential limitations, the addition of PEG to 

polymer vehicles remains a popular technique, and is included in many of in vivo 
applications [123, 158].

An alternative to PEGylation is the addition of other hydrophilic moieties, such as 

hyperbranched polyglycerol (HPG). HPG has a dendrimer-like structure which increases the 

availability of surface-accessible hydroxyl groups [159]. The structure of HPG can be 

beneficial for further chemical modifications. For example, the vicinal diols can be 

chemically modified to aldehyde groups, conferring bioadhesive properties [160]. Like PEG 

modifications, HPG also increases blood circulation time when added to NP surface, and in 

some cases may outperform PEG in extended circulation half-life and reduced liver 

accumulation [161]. Advantages of HPG are low toxicity and reduced immunogenicity in 
vivo [162]. Other molecules added to the surface can also affect biodistribution of injected 

NPs based on natural transport mechanisms. Different types of cholesterol, for example, can 

direct NPs and oligonucleotides to accumulate in either the liver exclusively (low density 

lipoprotein) or spread throughout the liver, gut, kidney, and steroidogenic organs (high 

density lipoprotein) [163, 164].
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To enhance vehicle accumulation within a certain cell type or tissue, molecules can be 

incorporated into the vehicle that will increase the likelihood of vehicle binding. Although 

this strategy will not help the polymer vehicle “home” to a particular site, in many cases it 

can increase the concentration delivered to a target site if the vehicle encounters this target 

naturally [165]. Using this strategy to deliver nucleic acids to tumors, many recent reports 

describe the use of sugars, proteins or drugs attached to the surface of the vehicle that will 

bind to uniquely upregulated receptors on cells [42, 43, 85, 118, 166]. This effort is 

summarized in Figure 3, which illustrates in vivo gene delivery applications, which have 

primarily been targeted to tumors. Enhanced accumulation at the tumor site was observed 

when hyaluronic acid (which binds to the CD44 receptor) [42, 85, 118], lactoferrin [43], 

folate [167–169], or epidermal growth factor [170] were used. Similarly, lactose, which 

binds to hepatocytes through asialoglycoprotein receptors, improved transfection efficiency 

of poly(lysine)-PEG vehicles in hepatocellular carcinomas [166]. More details on 

nanoparticle designs made to enhance delivery in the tumor microenvironment can be found 

in the recent review by Mukalel et al. [171]. Another study demonstrated enhanced pDNA 

delivery using the drug eprosartan to bind to upregulated ATR1 in myocardial ischemic 

regions [172].

In addition to the molecules described above, a number of smaller peptides have also 

resulted in enhanced tumor accumulation. Certain peptides such as Arg-Gly-Asp (RGD) 

[173, 174] and RGERPPR [175] are frequently used. New peptides, discovered through 

phage display libraries, can enhance binding to specific, hard-to-access sites. Some 

examples of novel peptides identified in this way include the tartrate-resistant acid 

phosphatase (TRAP)-targeted peptide for bone regeneration [176] and an epithelial targeted 

peptide for lung delivery [177]. Although not yet applied to polymer vehicles, a recent study 

using peptides discovered with phage display increased nanoligand siRNA carriers in the 

brain from ~2% (random peptide) to 6% using the targeted peptide [178]. Traditional 

binding molecules such as antibodies and aptamers can be used as well for specific binding 

if highly expressed antigens are identified [71, 179–182]. Furthermore, coating NPs with a 

complete cell membrane is a biomimetic strategy that can prolong circulation and can be 

used for immune cell targeting [183]. Ultimately, any of these strategies can be used to 

enhance the accumulation of polymer vehicles at a target site, which can increase the 

therapeutic efficacy from a single administered dose.

2.5 Clinical trials

Worldwide clinical trials for nucleic acid therapy encompass different approaches with 

approximately 70% using viral vectors and 30% using non-viral vectors. While there have 

not yet been any polymeric NPs for gene delivery approved by the FDA, there are several 

recent and ongoing clinical trials (Table 1). The development of safe, efficient, and 

controllable delivery vehicles remains a bottleneck to clinical translation, highlighting the 

need for further vehicle optimization.

In 2010, Davis et al. reported on the first polymeric NP-based gene delivery system 

(CALAA-01) tested in a Phase I trial for solid cancers [184]. CALAA-01 is a NP system in 

which an siRNA against the M2 subunit of ribonucleotide reductase (RRM2) is 
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encapsulated. The nucleic acid is loaded into a NP composed of a CD-based polymer and 

PEG with a human transferrin protein (TF) targeting ligand on the surface. Results from the 

clinical trial indicated that these NPs could deliver siRNA to melanoma cells after systemic 

administration and that an antiproliferative response was achieved. Though apparently 

successful in delivery of the siRNA to several types of cancer cells, this trial was terminated 

after Phase I when patients experienced dose-limiting toxicity. Preclinical studies indicated 

that primary toxicities were in the liver and kidneys as elevations in liver enzymes, 

creatinine, and blood urea nitrogen were observed [185]. However, in humans, most adverse 

events consisted of hypersensitivity and acute immune responses. Subsequently, several 

cationic PEI-based systems (ex. BC-819/PEI, BC-819, DTA-H19) were developed for 

clinical trials for the treatment of various cancer types after local administration [186]. 

However, the substantial cytotoxicity of PEI polymers at the preclinical level has limited 

their clinical application and consequently several modifications have been investigated. For 

example, glycosylated JetPEI was used in CYL-02 to deliver SSTR2 and DCK::UMK in 

pDNA form to inhibit tumor cell proliferation and increase chemosensitivity of tumor cells 

to gemcitabine, respectively [187]. In this case, treatment-related toxicities were mild. 

Further, EGEN-001, a PEG-PEI-cholesterol polymer-lipid hybrid vehicle was developed for 

the delivery of an IL-12-expressing plasmid for immunotherapy of epithelial ovarian cancer. 

This clinical trial progressed to Phase II but resulted in patients exhibiting adverse side 

effects, including fever, chills, nausea, vomiting, anemia, thrombocytopenia, and leukopenia 

[188]. Another trial using PLGA-based NPs, a polymer system that has been used safely in 

many FDA-approved drug delivery and medical device applications, delivering siRNA 

targeting the oncogene KRAS for pancreatic cancer treatment is currently recruiting for 

Phase II. In summary, polymeric vehicle-based gene therapy at the clinical level is still in its 

infancy, and the polymeric NPs that have progressed to clinical trials with published results 

have mostly failed to meet their rigorous endpoints. Further, the adverse events reported thus 

far, though mild in some cases, suggest that the therapeutics that have been investigated at 

the clinical level exhibit off-target activity. However, it is difficult to determine whether 

these adverse effects are due to the polymeric vehicles themselves, their nucleic acid cargo, 

or administered combination therapies where applicable. Nonetheless, it is clear that 

therapeutics involving polymeric carriers must still overcome challenges associated with 

safety and efficacy before translation to humans. In particular, advances that reduce 

cytotoxicity while increasing transfection efficiency and target specificity are needed. 

Strategies to improve vehicle design are outlined below. However, it is important to note that 

increasing the complexity of polymeric carriers increases the difficulty of maintaining the 

high quality standards needed for clinical trials.

3. Strategies to mitigate current challenges facing polymeric nucleic acid 

delivery

While innovation to produce novel polymeric materials and delivery vehicles continues at a 

rapid pace, significant challenges remain. The clinical viability of any nucleic acid delivery 

system requires proper dissemination without interfering with normal bodily functions, 

eliciting an immune response, or producing adverse effects in non-target organs [189]. We 

have discussed strategies and examples for balancing biocompatibility and transfection 
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efficiency in our review of polymeric delivery systems above. In broad terms, new 

innovations that focus on in vivo efficacy and target specificity as well as translation to 

commercial production will lead to increased clinical usage of this class of therapeutics. 

Here, we describe these challenges and identify forward-looking strategies to address the 

issues.

3.1 In vivo efficacy and target specificity

Many nucleic acid delivery systems have been successful in vitro but are not effective in 
vivo. This discrepancy is likely due, at least in part, to the lack of physiologically relevant 

screening tools and difficulty controlling tissue tropism. It is well understood that traditional 

2D monolayer culture systems, which are widely used for initial screens, are not a realistic 

representation of cell behavior in the human body. Fluid flow, 3D cell and tissue 

organization, and vehicle clearance are critical aspects of gene delivery that are not 

adequately addressed using conventional in vitro experimental designs [190]. Further, 

animal models of disease can be inadequate, costly, and not truly predicative of human 

results [191, 192]. As shown in Figure 3, a number of studies deliver genetic material to 

specific human cancer cell lines (hepatocellular, prostate, lung, breast) which are grown in 

rodents as tumors. The physical constraints of this type of delivery may not mimic organ-

specific cellular organization and limit the predictive results of these experiments.

Strategy: improve preclinical screening models to more accurately predict in 
vivo activity—Advancements in technologies that create platforms to better mimic human 

disease and physiological barriers can enhance or replace typical in vitro and in vivo 
preclinical studies. 3D cell culture systems have emerged over the past few decades as 

physiologically relevant cellular environments. Using technologies such as 3D printing and 

microfluidic devices, cell culture environments can mimic the tortuous and complex tissue 

environments found in tumors, the liver, and other tissue types [193–195]. In particular, 

micropatterning of cell culture devices allows researchers to incorporate sophisticated 

gradients and patterns of signaling molecules, growth factors, or environmental confinement 

[193, 194]. Evaluating polymeric vehicle efficiency in these systems can help to elucidate 

the effect that physical constraints have on vehicle stability and cell association.

In addition to replicating the physical environment, cells with genetically accurate human 

disease can be produced from human induced pluripotent stem cells (iPSCs) with the advent 

of CRISPR/Cas9 and other gene editing technologies. The ability to generate iPSCs from 

somatic cells provides tremendous promise for gene delivery screening as it is possible to 

produce many different cell types from patient cells [196]. Candidate therapies can be tested 

directly in cells modified to include defects responsible for hematological, neuronal, 

muscular, and other disorders [197]. iPSCs are also more physiologically relevant cells with 

which to conduct preclinical safety studies than immortalized cell lines.

Lastly, new assays are being developed to rapidly screen many gene delivery vehicles. In one 

example, Yonamine and colleagues modified an ELISA (enzyme-linked immunosorbent 

assay) assay into a high throughput screening (HTS) method to select NPs with high affinity 

to target proteins [198]. The screen identified polymeric NPs with distinctive functional 
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group compositions that exhibited high affinity to either histone or fibrinogen which allowed 

for identification of synthetic polymers with affinity for the target. These types of assays are 

often used to screen only one aspect of the delivery process, but they can be a powerful 

addition to the more complex models described above. In vivo, other factors may be relevant 

and vehicle specific, such as time in circulation and biodistribution. For high-throughput in 
vivo screening, we recently described an accessible approach to measure the circulation half-

life of fluorescently labeled agents after intravenous injection [199]. Further, Dahlman and 

colleagues have designed a way to directly compare the biodistribution of many 

formulations of nanoparticles at once by labeling the encapsulated DNA with unique 

barcodes [200]. Evaluating the activity of many polymer vehicles side-by-side in the 

intended setting can provide valuable insights to behavior in the physiological environment.

Strategy: strategic administration and new vehicle designs for improved 
target specificity—As described, using molecular targeting strategies for systemic 

delivery can enhance accumulation at a specific site, but often will still result in unwanted 

accumulation elsewhere [173, 201, 202] and cannot provide access to every organ [41]. One 

strategy to overcome this challenge is site-specific administration, either by using an implant 

in response to an injury that anchors polymer delivery vehicles at the site [203, 204] or 

through an injection into an accessible organ or tissue (e.g. eye [126], spinal cord [62], brain 

[124]). Similarly, localized genetic manipulation has been achieved by pre-treating cells with 

polymeric vehicles ex vivo, and then transplanting the treated cells back into the patient [63, 

113]. This strategy takes advantage of sustained delivery available with some polymer 

vehicles to maintain the nucleic acid activity throughout cellular development or 

differentiation. Finally, in instances where organs or tissues are being transplanted out of the 

body, ex vivo normothermic organ perfusion (EVNP) could provide a period of privileged 

access to deliver therapeutics without off-target possibilities. EVNP is being investigated for 

many organ transplant practices, and both polymeric NPs and naked siRNA have been 

successfully delivered during this process [205, 206]. Ex vivo treatment or direct injections 

can be invasive and are not suited for all applications. Another strategy for systemic delivery 

is to temporarily blockade the reticuloendothelial system with decoy materials, allowing the 

critical cargo to circulate without liver interference [207–209]. Recent work in the field of 

lipid NP-mediated gene delivery has also shown that modulating the internal charge of 

delivery vehicles can enable tuning of biodistribution and tissue-specific gene delivery [210].

Alternatively, stimuli responsive polymers offer a tool to constrain nucleic acid availability 

to only intended regions [211]. In this strategy, polymers react to environmental or applied 

stimuli, and a conformational or chemical change triggers the release of the nucleic acid 

cargo. Externally applied stimuli such as a magnetic field, an electric field, ultrasonic waves, 

or light can be spatially applied for treatment of tumors or organ specific pathologies [212–

214]. For example, near-infrared light was used to trigger PEI-derived NP decomposition-

driven release of siRNA to tumors in vivo [215–217]. Environmental factors that are unique 

to the cell, tissue, or pathology (inflammation, cancer, infection) can also be used, such as 

pH [218–223], temperature [224–226], and the presence of ATP (reviewed in [64]). 

Polymers incorporating disulfide bonds can be transformed into thiols via reduction in the 

presence of glutathione (GSH) or reactive oxygen species (ROS), triggering a release of 
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nucleic acid cargo [227–229]. ROS-sensitive polymers are particularly useful tools for 

cancer cells that exhibit higher levels of ROS radicals and GSH [230].

3.2 Translation to commercial production

Polymeric materials must be inexpensive to produce, easy to synthesize, facile to purify and 

characterized completely to accomplish commercial-scale production. Control over 

polymerization mechanisms and chain polydispersity are key factors that can lead to variable 

performance [231, 232]. Since polymers are generally not a specified molecular entity, their 

characterization for manufacturing can prove difficult with regard to achieving Good 

Manufacturing Practice (GMP) certification. In terms of vehicle production, the size, 

morphology, and functionality of polymeric carriers need to be reproducible and scalable. 

For example, on a research scale, formulation processes such as nanoprecipitation and 

emulsion evaporation begin with milligrams of a dissolved polymer and end with the 

formation of precipitates that require the removal of solvents. On an industrial scale, grams 

to kilograms of materials would be required, with accompanying changes to techniques 

which may change formulation properties [233]. Many formulations, especially polyplexes, 

are unstable and cannot be stored long term, and as such, stability and shelf-life need to be 

considered as well.

Strategy: improved synthesis, purification, and formulation methods—Precise 

and inexpensive synthesis of polymers is a challenge, especially due to the cost of reactor 

systems, materials (especially catalysts and initiators), and purification equipment. 

Enzymatic catalysts can provide a cost-effective and environmentally friendly solution for 

biodegradable polymers compared to conventional metal or salt catalysts [234]. For 

example, bacterial-derived lipase can perform essential synthesis steps while maintaining 

high selectivity, high efficiency, the ability to operate under mild conditions, and potential 

catalyst recyclability [235–241]. In a non-aqueous environment, more efficient catalysis can 

occur due to the increased solubility of the substrates in solvents, a reduction in the number 

of side-reactions, and a shift in the reaction equilibrium to favor synthesis over hydrolysis 

[242, 243]. Enzymes can also be separated from the reaction mixture as they are often 

immobilized to an inert bead which can be collected via filtration [244, 245]. Lastly, their 

thermal stability can be enhanced, allowing for synthesis reactions to occur more efficiently 

at higher temperatures [246].

As cationic charge in polymers has continued to be essential for nucleic acid encapsulation 

and delivery, appropriate synthesis schemes incorporating specific amine and other end 

groups are crucial. For example, specified crosslinking with 1,1′-carbonyldiimidazole (CDI) 

is a useful technique to obtain user-defined end groups. Activation and cross-linking with 

CDI results in a variety of gene delivery polymers with precise end group chemistries for 

efficient delivery of nucleic acid cargos [247–250]. Subtle differences in the structure and 

properties of polymeric materials used for gene delivery can lead to dramatic differences in 

transfection efficiency and CDI chemistry is an efficient way to develop a library of 

materials [133].
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As described above, it is also desirable to have control over the entire polymer sequence and 

not just the end group composition. Multistep flow synthesis and iterative exponential 

growth (Flow-IEG) is a technique has been utilized for macromolecules such as PNAs and 

synthetic RNAs, and has been adapted for polymers with semi-automatic processes with 

molecular weight distribution control [251, 252]. The development of the next generation of 

polymeric materials could utilize an iterative approach to find the appropriate chain length, 

charge density, and end group chemistry to form the most efficient non-viral vectors in a 

scalable manner [251, 253–257].

Alongside advanced apparatus systems and novel catalysts, new polymer purification 

equipment and techniques have been employed with the same scalability. Enzyme catalyst 

reactions often require solvents for appropriate viscosity for mixing during synthesis [239, 

241, 243]. This could be seen as a disadvantage as purification requires the complete 

removal of the solvent, but it can be advantageous as removal of the polymer and separation 

of the catalyst can be completed in a series of wash steps that utilize solvent miscibility 

principles [132]. Other methods of advanced purification, including the use of supercritical 

fluids and innovative membrane filtration, have aided in large scale polymer syntheses [258–

262].

Scale-up of formulation methods requires added consideration of the fragility of nucleic acid 

cargo, where techniques such as membrane extrusion and supercritical fluid technology are 

not applicable. Nonetheless, a few methods have been developed in order to produce NPs at 

larger scales with desired characteristics, such as microfluidic mixing technologies for 

nanoprecipitation processes [263]. Such processes still require the removal of organic 

solvent, achievable with tangential fluid flow systems. However, these methods are not 

amenable to the production of surface functionalized or targeted polymeric carriers, which 

may require additional processing steps.

4. Conclusions

The future of nucleic acid-based therapies will depend on innovations in delivery systems. 

For polymeric vehicles, this will involve the development of materials that excel at nucleic 

acid association, are less toxic/immunogenic, and are efficient at nucleic acid delivery both 

in vitro and in vivo. It will also be essential to define the mechanisms by which these 

materials achieve delivery to maximize effectiveness and minimize unexpected side effects. 

Studies aimed at understanding the structure-function relationships of polymeric vectors and 

the mechanisms by which they interact with cells in physiological environments are likely to 

produce promising candidates. Determining the requirements for optimal timing and 

longevity of genetic manipulation for each application will also help to guide vehicle design. 

Given the rapid progress in the field, nanoscale polymeric delivery systems will likely 

continue to serve an important role in the clinical translation of gene therapies.
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Abbreviations

ATRP atom transfer radical polymerization

bp base pairs

Cas CRISPR-associated protein

CD cyclodextrin

CDI 1,1′-carbonyldiimidazole

CRISPR clustered regularly interspaced short palindromic repeats

DEAE diethylaminomethyl

DMSO dimethyl sulfoxide

ELISA enzyme-linked immunosorbent assay

EPR enhanced permeability and retention

EVNP ex vivo normothermic organ perfusion

Flow-IEG flow synthesis and iterative exponential growth

GMP Good Manufacturing Practice

GSH glutathione

HCA high content analysis

HFNAP highly functionalized nucleic aid polymer

HPG hyperbranched polyglycerol

HTS high-throughput screening

iPSC induced pluripotent stem cell

mRNA messenger RNA

miRNA micro RNA

N amine group

NIR near-infrared

NP nanoparticle

OAA oligo(aminoamide)

P phosphate group
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PACE poly(amine-co-ester)

PAMAM polyamidoamine

PBAE poly(beta amino) ester

pDMAEMA poly(2-dimethylaminoethyl methacrylate

pDNA plasmid DNA

PDSA pyridyl disulfide

PEG poly(ethylene glycol)

PEI polyethylenimine

PGA poly(glycolic acid)

PLA poly(lactic acid)

PLGA poly(lactic-co-glycolic acid)

PNA peptide nucleic acid

RAFT reversible addition-fragmentation chain transfer

RGD Arg-Gly-Asp

RNAi RNA interference

ROS reactive oxygen species

RRM2 M2 subunit of ribonucleotide reductase

sgRNA guide RNA

siRNA small interfering RNA

TALEN TALE nuclease

TF human transferrin protein

TRAP tartrate-resistant acid phosphatase

tRNA transfer RNA

ZFN zinc finger nuclease
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Figure 1. Polymeric vehicles for nucleic acid delivery: cargo and formulations.
Polymeric nucleic acid delivery vehicle formulation menu including example choices of 

cargo, polymers, modifications, and end vehicle design. Vehicle designs include polyplexes 

– short-lifetime electrostatic complexes that require an excess of polymer to nucleic acids to 

be formed, nanoconjugates - very short-lifetime linear polycations with limited structure and 

random organization, micelles - MW-dependent lifetime core-shell complex composed of 

dynamic amphiphilic polymers, nanocapsules - natural polymer shell complex that 

encapsulates cargo, dendrimer - branched polymer complex with dendritic encapsulation of 

nucleic acids that can have peripheral functionalized for improve delivery, and nanoparticles 

- solid particles with homogeneous loading of nucleic acids that require degradation to assist 

cargo release.
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Figure 2. Extracellular and intracellular barriers to nucleic acid delivery in vivo.
A schematic illustrating physiological barriers relevant to polymeric nucleic acid carriers at 

the organism level, organ/tissue level, and cell level. Systemically administered vehicles 

must adequately circulate in the blood, accumulate in and penetrate target tissues, be 

internalized by target cells, and achieve intracellular cargo release.
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Figure 3. Nucleic acid delivery in polymeric vehicles grouped by target organ.
Heat maps in this figure demonstrate the relative number of publications that have described 

polymer delivery vehicles for targeted gene delivery per organ or tissue type. The rodent 

representation is compiled from approximately 100 studies between 2015 and 2020. The 

non-human primate is compiled from approximately 8 studies between 2005 and 2020, and 

the human representation is compiled from 11 clinical trials presented in Table 1. These 

studies were identified using key words such as “gene delivery”, “in vivo” and “polymer” in 

the Web of Science database. In order to be included, investigations had to report activity-

based assays demonstrating effective gene delivery.
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