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Abstract

The mammalian skin is equipped with a highly dynamic stratified epithelium. The maintenance 

and regeneration of this epithelium is supported by basally located keratinocytes which display 

stem cell properties, including lifelong proliferative potential and the ability to undergo diverse 

differentiation trajectories. Keratinocytes support not just the surface of the skin, called the 

epidermis, but also a range of ectodermal structures including hair follicles, sebaceous glands, and 

sweat glands. Recent studies have shed light on the hitherto underappreciated heterogeneity of 

keratinocytes by employing state-of-the-art imaging technologies and single-cell genomic 

approaches. In this mini review, we highlight major recent discoveries that illuminate the dynamics 

and cellular mechanisms that govern keratinocyte differentiation in the live mammalian skin, and 

discuss the broader implications of these findings for our understanding of epithelial and stem cell 

biology in general.

Introduction

The skin is the primary interface between the body and the external environment. As such, 

the tissue is primarily responsible for maintaining a watertight barrier and mounting an 

effective regenerative response after injury. The skin consists of an outermost layer, the 

epidermis, which is characterized by its layered organization, and is interspersed with 

appendages, such as hair follicles, that serve specific roles in barrier formation, 

thermoregulation, and innate immunity. The structural and functional diversity of the skin 

and its associated appendages is reflected in the diverse self-renewal and differentiation 

patterns of their stem cells, as well as differences in gene expression. Despite the 

compartmentalized activities of these keratinocytes during homeostasis, it is well 

documented that these cells display remarkable plasticity during wound repair and are 

capable of regenerating other epithelial structures after injury. To elucidate the mechanisms 

of keratinocyte differentiation, cutting-edge experimental approaches, including intravital 
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imaging and single-cell sequencing, have been recently employed [1–3] (Figure 1). Here we 

discuss how these powerful techniques have begun to elucidate the heterogeneity and 

dynamic cellular behaviors that keratinocytes display in vivo, fueling exciting new 

hypotheses for the intrinsic and extrinsic nature of their regulatory framework.

The Mammalian Epidermis: Mechanisms of Keratinocyte Fate and 

Differentiation

The epidermis is a stratified epithelium composed of morphologically distinct cellular layers 

that reflect the terminal differentiation process of keratinocytes. After exiting the cell cycle 

and committing to differentiation, keratinocytes leave the innermost basal layer and undergo 

an upwards-directed transit into the more superficial spinous, granular, and cornified layers 

(Figure 2). This unique terminal differentiation process culminates in a stereotypical form of 

cell death, termed cornification, after which the cells are eventually shed from the surface of 

the epidermis. Thus, cell divisions in the basal layer, the only layer with proliferative 

potential, must be regulated to offset cell loss through shedding. The identity of basal layer 

keratinocytes and their organization into distinct long-lived stem cell and transient 

progenitor populations has been the subject of intense research [4–7]. Live imaging 

combined with the use of inducible and light-modulated fluorescent reporters have enabled 

unbiased tracking of individual basal keratinocytes in vivo over multiple generations. These 

experiments demonstrated that the fates of epidermal daughter cells are not pre-determined, 

and appear to have lifetimes that are coupled [8,9]. How epidermal maintenance is achieved 

has remained an outstanding question in the field with much of the debate contesting a 

stochastic common progenitor model of maintenance versus a hierarchical stem cell 

paradigm. Recent studies that combined lineage tracing with cell-cycle distribution analyses 

provided further support for a model of epidermal homeostasis achieved by an equipotent 

keratinocyte population [10,11*]. Moreover, it seems the common progenitor model may 

also hold true during postnatal growth of the epithelium. In applying quantitative clonal 

analysis and single-cell transcriptomics, investigators have defined the cellular dynamics that 

support the organized growth of the expanding epithelium. This work revealed that a single 

population of keratinocyte progenitors, whose fates are uniformly imbalanced towards self-

renewal, mediate postnatal development of the mouse tail and paw epidermis [12**].

Keratinocytes contribute to the skin barrier, even before their cornification, by forming tight 

junctions in the granular layer of the epidermis [13]. But how the epidermis maintains 

barrier integrity and stable cellular connections while it undergoes significant cellular 

turnover has been an open question. Tracking individual epidermal cells, in vivo, during 

their differentiation revealed that neighboring keratinocytes transit towards the top layers 

independently from each other rather than stratifying in unison as whole layers [8]. More 

refined analyses have revealed that keratinocytes in the granular layer form transiting 

columns. As cells move upwards through the granular layer, they are replaced by newly 

formed granular cells that fill the space of the preceding cell while assuming the shape of a 

tetrakaidecahedron [14]. This shape enables the immediate formation of three-way tight 

junction contacts with neighboring keratinocytes in the granular layer, thus ensuring barrier 

stability. E-cadherin appears to play a critical dual role in this process as well by inhibiting 
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tight junctions in the early stages of keratinocyte differentiation and promoting their 

formation when cells reach the second granular layer [15].

During cornification, terminally differentiating keratinocytes in the top layers of the 

epidermis undergo structural changes that are critical for epidermal barrier function [16]. 2-

photon live imaging experiments in human organotypic skin cultures have resolved some of 

the structural changes that occur during cornification. The thickening and flattening of 

keratinocytes during their transition from the granular to the top cornified layer of the 

epidermis is preceded by the cessation of intracellular vesicle motility and mitochondrial 

depolarization [17]. Furthermore, intravital imaging in mouse skin showed that intracellular 

calcium is transiently elevated in keratinocytes prior to their transition from the granular to 

the cornified layer, suggesting a role for calcium signaling in the cornification process [18].

Single-cell transcriptomic analyses of mouse and human basal epidermal keratinocytes paint 

a rich picture of a heterogeneous cellular landscape [19,20]. These data have provided a new 

perspective into the transcriptional states of basal keratinocytes during epidermal lineage 

specification. Single-cell RNA sequencing (scRNA-seq) in mouse epidermis have defined 

four unique transcriptional profiles among basal layer keratinocytes, which consist of one 

proliferative and three non-proliferative states [19]. A combination of lineage fate prediction 

analyses revealed these transcriptional states to be transitional, likely existing in a 

differentiation hierarchy [19]. Similar analyses of human epidermal keratinocytes also 

identified four transcriptionally diverse basal keratinocyte states. Furthermore, these 

transcriptional states appeared to correlate to distinct locations within the basal layer at the 

top and bottom of rete ridges; epithelial extensions unique to the human epidermis [20]. 

These data suggest a linear hierarchy among basal epidermal keratinocytes. Future 

mechanistic studies will reveal the specific genes that govern the fate transitions of 

epidermal keratinocytes and illuminate the factors that regulate their expression.

It has become increasingly evident that keratinocytes in the basal layer of the epidermis are 

transcriptionally diverse and exist in different stages of the cell cycle. However, it is not 

clear how these cells coordinate their fate decisions to maintain tissue-wide homeostatic 

balance. Positioning the mitotic spindle perpendicular to the basement membrane in dividing 

keratinocytes is a plausible mechanism by which to achieve asymmetric fates. Although this 

mechanism occurs during development [21–23], most cell divisions in the adult epidermis 

appear to be planar [8,24]. Furthermore, there is evidence that epidermal cell fate may be 

regulated through keratinocyte mechanics rather than spindle orientation [25]. In one of 

these processes, the polarity protein Par3 was found to regulate epidermal cell fate by 

coupling Rho/actomyosin contractility to genome integrity and mitotic outcomes.

The importance of tissue mechanics has also been underscored by a recently developed in 
vivo model that has elucidated a mechanism by which stretching of the skin induces a 

response at the single cell level [26**]. Under mechanical tension, epidermal stem cells 

transiently shift their fates towards self-renewal. Consistent with this, intravital imaging 

studies in the mouse that spatiotemporally mapped local differentiation dynamics of 

epidermal keratinocytes uncovered a coordinated fate response. Local decreases in cell 

number/density, caused by keratinocyte differentiation and basal-layer exit, prompted a 
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compensatory self-renewal response by neighboring basal keratinocytes [27]. Using a 

similar live imaging approach, more recent investigations have revealed epidermal 

keratinocytes also couple their growth with cell-cycle progression. These studies proposed a 

“sizer” mechanism acts in the G1 phase to induce cell division once a certain cell volume is 

reached [28**]. Another study captured spatially segregated pulses of ERK activity in both 

human and mouse epidermal keratinocytes by live imaging, implicating intracellular 

signaling cascades in the regulation of cell fate [29]. These exciting new findings further 

highlight the rich network of cell intrinsic and extrinsic mechanisms that regulate 

keratinocyte dynamics in the mammalian epidermis. Future work will uncover how these are 

integrated at the cellular and tissue level to ensure robustness in maintaining homeostatic 

balance.

When the skin barrier becomes disrupted after injury, a wound-healing response is initiated. 

Recent investigations in the intestinal epithelium revealed induction of a fetal-like 

transcriptional program after injury [30,31]. However, it is not clear whether reactivation of 

an embryonic gene signature occurs, or is necessary, during epidermal wound repair in mice. 

In vivo studies of small wounds (< 1cm in diameter) revealed that epidermal cells at the 

wound edge begin to display an embryonic gene signature. Among these genes, Sox11 was 

found to be significantly enriched at the wound edge. In the absence of Sox11 and its closest 

relative, Sox4, wound edge epidermal cells failed to upregulate an embryonic gene 

signature. This resulted in premature cell differentiation and failure of cells to migrate and 

re-epithelialize [32*]. Moreover, disruption of the skin barrier due to epidermal loss of 

ceramide synthase 4 (CerS4) induces a repair response reminiscent of the molecular 

programs that establish the barrier during skin morphogenesis [33]. These data provide 

strong evidence that reversion to an embryonic-like state is critical for wound repair.

Keratinocyte Dynamics in Epidermal Appendages

The mammalian skin is densely populated by epidermal appendages including hair follicles 

which are visible on the surface of the skin. These self-contained mini organs are specified 

during embryonic development and periodically generate hair fibers that assist in protection 

and thermoregulation. The cyclic growth of hair fibers is powered by a heterogeneous pool 

of resident keratinocytes, commonly referred to as hair follicle stem cells (HFSC). Live 

imaging experiments combined with lineage tracing and single-cell genomic analyses have 

revealed the hierarchical organization of stem cells and their progeny within this organ [34–

38*] (Figure 3). Such work has also extended to the sebaceous glands; bi-lobed structures 

associated with the upper portion of the hair follicle. Sebaceous glands produce and secrete 

waxes and lipids critical to hair and skin physiology. Recent in vivo studies have begun to 

dissect the cellular mechanisms by which lipid-secreting sebocytes that are lost during 

holocrine secretion are replenished [39,40]. However, the specific genes and environmental 

factors that define the sebaceous gland progenitors remain to be fully resolved.

The first step in hair regeneration is the activation of HFSCs. This is required for progenitor 

expansion and to induce necessary morphogenetic changes to accommodate the subsequent 

construction and growth of the hair fiber. The mesenchymal dermal papilla is the primary 

niche that regulates HFSC activity. To initiate hair regeneration, the dermal papilla 
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downregulates inhibitory cues that maintain HFSCs in quiescence [41–44]. In addition to the 

dermal papilla, a complex network of local and systemic regulatory factors plays a 

significant role in the timing and amplitude of hair regeneration. Recent work has uncovered 

a previously unappreciated involvement of the sympathetic nervous system in the activation 

of HFSCs by neurotransmitters [45,46]. Moreover, endothelial cells from the local 

vasculature appear to also modulate the timing of activation and hair regeneration through 

BMP signaling [47].

Following HFSC activation and the initial expansion of the progenitor pool, several 

differentiated hair lineages emerge from micro-niches along the interface between the 

epithelium and dermal papilla [34]. These lineages collectively build and facilitate growth of 

the newly formed hair fiber. Defining the point at which stem cells and/or their progeny 

become irreversibly fated to terminally differentiate has been a central question in the field. 

Recently, single-labeled HFSCs were followed in real-time by 2-photon live imaging. This 

revealed that differentiated hair lineage fates resulted from the spatial priming of HFSCs. In 

other words, the lineage fates of HFSCs are determined based on their initial location within 

the niche [48**]. Furthermore, the progenitors of HFSCs were also revealed to be capable of 

flexibly adopting new fates in the absence of an injury stimulus. This finding is especially 

interesting as it suggests hair progenitors retain stem cell characteristics during homeostasis 

with fate commitment occurring later than previously thought, to ensure robust 

differentiation.

Chromatin organization is intimately linked to cell fate regulation. ATAC-seq was recently 

used to investigate how the chromatin landscape is altered to achieve lineage specification in 

keratinocytes [49–52]. Overlaying lineage-specific transcriptomes with these chromatin 

landscapes revealed putative master transcription factors and chromatin-associated 

regulatory elements. Together, the spatial and temporal emergence of these signaling 

features drives hair follicle lineage diversity and specification during hair growth. 

Furthermore, coupling these analyses with new and previously published chromatin 

immunoprecipitation sequencing datasets further informed on the cooperative roles between 

WNT and BMP signaling effectors with key transcription factors in regulating the hair 

lineage cascade [49,50*].

Hair follicle-derived keratinocytes contribute to cutaneous wound repair and long-term 

maintenance of the healed epidermis [53–56]. Yet how HFSCs and their progeny adapt at the 

molecular level to contribute to wound repair was not clear. By using scRNA-seq on 

individual lineage-traced cells, investigators have underpinned the molecular adaptations 

that occur in different epidermal stem cell populations during wound repair. Prior to exiting 

their niche to contribute to wound repair, HFSCs upregulate an epidermal-like signature with 

rapid remodeling of receptor gene expression to enable interactions with wound-derived 

ligands from the stroma [57]. As these cells actively contribute to wound repair, they 

gradually lose their stem cell identity and become a part of the epidermal lineage. The 

transient manifestation of both hair follicle and epidermal signature genes in hair 

keratinocytes may be critical to achieve plasticity necessary for wound repair and also 

support the recently proposed concept of “lineage infidelity” [58].
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Conclusion

In the past few years, in vivo imaging approaches, together with modern sequencing 

technologies, have yielded new insights and provided greater clarity into the spatiotemporal 

regulations which control epithelial differentiation in the skin epidermis and hair appendage 

during homeostasis and wound repair. With this knowledge, future studies can elucidate the 

multiplicity of external inputs that drive chromatin remodeling to achieve lineage-restricted 

fates and explore the intimate crosstalk between stem cells and their niches.
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Figure 1. Genetic labeling and visualization of single keratinocytes in live mouse skin.
Representative low and high magnification images demonstrating high-throughput 

visualization of single-labeled stem cells in the mouse skin, by intravital imaging. Cells in 

the epidermis and hair follicles can be differentially labeled using cell-type specific 

inducible drivers. Scale bar 100μm.
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Figure 2. Keratinocyte dynamics during epidermal homeostasis.
Mapping the time and location of self-renewal and differentiation events in large epidermal 

regions by longitudinal live imaging, revealed that keratinocyte fate choices are locally 

coordinated. As epidermal stem cells differentiate and exit the basal layer (1), neighboring 

epidermal stem cells are prompted to self-renew in response to the local decreases in cell 

number and density (2). Differentiation then proceeds along individual epidermal 

differentiation units (EDUs) defined by the squamous cells in the granular and cornified 

layers. Upon terminal differentiation and desquamation, a cell is immediately replaced by a 

superseding keratinocyte within the same unit.
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Figure 3. Resolving the cellular heterogeneity and regulation of hair growth by high-throughput 
next-generation sequencing.
Advancements in modern sequencing techniques provide a unique opportunity to explore 

tissue composition and cellular states with unprecedented detail. The application of such 

innovative approaches has begun to scratch the surface towards a holistic understanding of 

epidermal and hair follicle composition and development [37, 50]. Abbreviations: scRNA – 

single-cell RNA, ATAC- Assay for Transposase-Accessible Chromatin, ChIP - chromatin 

immunoprecipitation, SC- stem cell, TF - transcription factor, MPP - multipotent progenitor.
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