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Abstract

Primary mouse hepatocytes isolated from genetically defined and/or diverse lines and disease 

models are a valuable resource for studying the impact of genetic and environmental factors on 

drug response and disease. However, standard monolayer cultures result in a rapid decline in 

mouse hepatocyte viability and functionality. Therefore, we evaluated 3D spheroid methodology 

for long-term culture of primary mouse hepatocytes, initially to support investigations of drug-

induced liver injury (DILI). Primary hepatocytes isolated from male and female C57BL/6J mice 

were used to generate spheroids by spontaneous self-aggregation in ultra-low attachment plates. 

Spheroids with well-defined perimeters were observed within 5 days after seeding and retained 

morphology, ATP, and albumin levels for an additional 2 weeks in culture. Global microarray 

profiling and quantitative targeted proteomics assessing 10 important drug metabolizing enzymes 

and transporters demonstrated maintenance of mRNA and protein levels in spheroids over time. 

Activities for 5 major P450 enzymes were also stable and comparable to activities previously 
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reported for human hepatocyte spheroids. Time- and concentration-dependent decreases in ATP 

and albumin were observed in response to the DILI-causing drugs acetaminophen, fialuridine, 

AMG-009, and tolvaptan. Collectively, our results demonstrate successful long-term culture of 

mouse hepatocytes as spheroids and their utility to support investigations of DILI.
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INTRODUCTION

Primary human hepatocytes are the gold standard for studying hepatic drug response and 

disease in vitro. In particular, cultured human hepatocytes are an important tool for the 

preclinical evaluation of drug-induced liver injury (DILI), the most common cause of 

adverse drug reaction resulting in warnings and withdrawals of numerous medications 

(Watkins, 2011). As a result, significant effort has been invested to improve the long-term 

viability and phenotypic relevance of this model system. One promising approach is the 

cultivation of human hepatocytes in a 3D configuration, which has been shown to better 

preserve the in vivo phenotype due to the extensive formation of cell-cell contacts, 

reestablishment of cell polarity, and endogenous production of extracellular matrices 

(Messner et al., 2013; Tostoes et al., 2012). Recent studies have also demonstrated that 

hepatocytes in 3D spheroid cultures closely resemble the in vivo liver proteome, have bile 

canaliculi, and have stable liver-specific functionalities such as enzyme activity for at least 5 

weeks of culture (Bell et al., 2016). Furthermore, spheroids allow for repeated drug 

exposures in long-term toxicity studies and are suitable to study a variety of mechanisms 

associated with DILI (Bell et al., 2016; Hendriks et al., 2016).

Genetically engineered mice, mouse models of liver disease, and mouse genetic reference 

populations are unique tools to study biology and pharmacology that would not otherwise be 

possible in human models. Therefore, primary mouse hepatocytes are an important resource 

to supplement human in vitro models and study the impact of genetic and environmental 

factors on hepatic drug disposition, toxicity, and disease. However, primary mouse 

hepatocytes are difficult to maintain in culture due to the higher metabolic rate and oxygen 

demand compared to human cells (Martinez et al., 2010; Swales et al., 1996). As a result, 

studies are limited to only a few days of exposure, which may not be sufficient to elicit the 

appropriate response (Atienzar et al., 2016). While several groups have reported the ability 

to culture primary mouse hepatocytes as spheroids (Chang and Hughes-Fulford, 2014; 

Vorrink et al., 2018), studies characterizing the impact of 3D culture on primary mouse 

hepatocytes are lacking. Only recently has the extensive characterization of a 3D mouse 

model been reported (Nudischer et al., 2020). The authors of this study describe the long-

term viability and functionality of 3D liver spheroids generated by self-aggregation in ultra-

low attachment (ULA) plates using freshly isolated cells from male C57Bl/6 mice. 

Cytotoxicity in response to both 2 and 8 days of exposure to DILI compounds is also shown 

(Nudischer et al., 2020).
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In the present study, we also evaluate the impact of 3D spheroid methodology on the long-

term morphology, viability, and functionality as well as the suitability of primary mouse 

hepatocytes for prolonged toxicity studies, but expand on the Nudischer et al. (2020) 

findings in several ways. Primary mouse hepatocytes were isolated from both male and 

female C57BL/6J mice, cryopreserved, and then used to generate spheroids using similar 

ULA methodology. Biochemical approaches, global gene expression profiling, and 

quantitative targeted absolute proteomics (QTAP) were performed on the spheroids cultured 

for 1, 7, and 14 days post spheroid formation. Cytotoxicity was measured in response to 

increasing concentrations of DILI drugs after 1, 7 and 14 days of exposure. Findings from 

this study similarly demonstrate improved phenotypic relevance of the 3D spheroid model 

for culturing mouse hepatocytes but also show the ability to use cryopreserved cells for 

spheroid formation, maintenance of an expanded set of important drug metabolizing 

enzymes and transporter (DMET) mRNAs, proteins, and activity levels, and comparison of 

spheroids generated from male and female hepatocytes. Furthermore, we show enhanced 

sensitivity to different DILI drugs in the mouse hepatocyte spheroids over time, which 

further supports the use of the 3D culture model for investigations of DILI.

MATERIALS AND METHODS

Hepatocyte isolation and cryopreservation

Male and female C57BL/6J mice, 12 weeks of age, were purchased from Jackson 

Laboratory and allowed to acclimate in-house for 7–10 days prior to study initiation. Water 

and food were provided ad libitum. Primary mouse hepatocytes were isolated using a two-

step collagenase perfusion method as described in (Martinez et al., 2010). Hepatocytes were 

pooled from 3 mice for a single cryopreserved preparation (N=1) and a total of N=6 

cryopreserved preparations (3 per sex) were made using 18 mice (9 males and 9 females) for 

the study. Throughout this manuscript, biological and technical replicates are designated as 

“N” and “n”, respectively. Hepatocyte preparations had a viability of 90% or more and were 

cryopreserved at a concentration of 5 million cells per vial in CryoPreserve solution 

(VitroPrep, Research Triangle Park, NC, USA). All studies were conducted in accordance 

with the guidelines for Animal Care and Use of Laboratory Animals and approved by the 

Institutional Animal Care and Use Committee at the University of North Carolina, Chapel 

Hill, USA.

Hepatocyte spheroid culture

Cryopreserved hepatocytes were thawed in InVitroGRO CP Rodent Media (BioIVT, 

Westbury, NY, USA) supplemented with 10% fetal bovine serum (Gibco, Gaithersburg, MD, 

USA) and seeded at the optimized density of 1000 cells per well into round bottom, ULA 

96-well plates (Corning, Corning, NY, USA) in 100 μL volume. Spheroids were switched to 

maintenance media (InVitroGRO CP Rodent Media without fetal bovine serum) on Day 4 

and media was changed every 2–3 days (by removing and adding back 80 μL from 100 μL 

media per well). Well-defined spheroids were formed by spontaneous self-aggregation on 

culture day 5 and maintained until culture Day 19 as per the culture timelines in 

Supplementary Figure 1.
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Spheroid morphology and size

Spheroid morphology was evaluated in n=1 well per time point from all N=6 preparations (3 

per sex) using phase contrast microscopy photomicrographs captured at 10X magnification 

(Nikon Eclipse TS-100 Phase Contrast Microscope). Spheroid diameter was calculated using 

a total of 334 spheroids from a single male and a single female hepatocyte preparation over 

time: n=100 spheroids Day 1 (corresponds to culture Day 6, 43 male, 57 female), n=119 

spheroids Day 7 (corresponds to culture Day 12, 66 male, 53 female) and n=115 spheroids 

Day 14 (corresponds to culture Day 19, 62 male, 53 female). Live spheroids were scanned at 

10X using the CellInsight CX7 LZR High Content Screening Platform (Thermo Scientific, 

Waltham, MA, USA) in brightfield mode. Area was estimated using the HCS Studio Cell 

Analysis Software v2 (Thermo Scientific, Waltham, MA, USA) and used to calculate 

spheroid diameter as previously described (Ramaiahgari et al., 2017).

Histology

Approximately 150 spheroids from a single male hepatocyte preparation were collected 

from ULA plates into Eppendorf tubes on Days 1, 7 and 14 post spheroid formation, fixed in 

10% neutral buffered formalin for 10 minutes at room temperature, washed with phosphate 

buffered saline and stored at 4 °C until sample preparation for processing, paraffin 

embedding, sectioning (5 μm) as previously described (Clayton et al., 2018). Spheroid 

sections were stained with hematoxylin and eosin (H&E) for morphological evaluation. 

Slides were scanned using an Aperio AT2 Digital Whole Slide Scanner (Leica Biosystems, 

Inc.). After scanning, images were captured using Aperio ImageScope v12.4.3.

Biochemical assays

Cellular ATP was measured in n=8 individual spheroids per time point from N=6 

preparations (3 per sex) using a CellTiter-Glo Luminescent Cell Viability Assay (Promega, 

Madison, WI, USA) according to manufacturer’s instructions. Media (75 μL out of 100 μL 

per well) was collected from same wells used for cellular ATP measurements and stored at 

−80 °C for albumin measurements. Albumin content in the media was quantified using a 

mouse albumin ELISA quantification set (Bethyl Laboratories, Montgomery, TX, USA) per 

manufacturer’s instructions as previously described (Norona et al., 2016). Raw data was 

collected using a SpectraMax M3 microplate reader (Molecular Devices, San Jose, CA, 

USA). A standard curve was used to calculate ATP (nM) and albumin (ng/mL) for all 

samples.

Cytochrome P450 enzyme activity

A total of 8 spheroids per time point from N=4 preparations (2 per sex) were incubated with 

a mixture of probe substrates containing midazolam (10 μM), dextromethorphan (15 μM), 

phenacetin (100 μM), amodiaquine (10 μM) and tolbutamide (100 μM) (Sigma, St. Louis, 

MO, USA) for 4 hours. Supernatants were pooled from n=8 spheroids for each time point 

and frozen. Formed metabolites (1-OH- midazolam, dextrorphan, acetaminophen, desethyl-

amodiaquine and OH-tolbutamide) were quantified by LC-MS/MS (Biotranex, NJ, USA).
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Gene expression profiling

Total cellular RNA was isolated from approximately 200 spheroids pooled per time point 

from N=4 preparations (2 per sex) using an RNeasy Mini Kit (Qiagen, Germantown, MD, 

USA). The quantity and integrity of the RNA was evaluated spectrophotometrically with an 

Agilent 2200 TapeStation. Double-stranded cDNA was synthesized using the GeneChip WT 

PLUS Reagent Kit (Affymetrix, Santa Clara, CA, USA). Labeled cRNA was fragmented 

and prepared for hybridization on Affymetrix Clariom S HT, mouse arrays. The Affymetrix 

Gene Titan system was used to perform the hybridization, washing and scanning of the 

arrays. Affymetrix CEL files were normalized using Robust Multi-array Average method 

with a log base 2 transformation (Irizarry et al., 2003). Gene expression analysis was 

performed as previously described (Mosedale et al., 2018a; Mosedale et al., 2018b). Briefly, 

data summarization and QC was performed using the Transcriptome Analysis Console 

software version 4.0 (ThermoFisher, Waltham, MA, USA). A filtering step was performed to 

remove low expression probe sets resulting in 13,081 total mRNAs detected. Pathways 

enriched among statistically significant, differentially expressed genes in the data were 

identified using the Tox Analysis module in Ingenuity Pathway Analysis (Ingenuity 

Systems; Build version: exported; Content version: 51963813). Gene expression data 

generated for this manuscript can be downloaded in its entirety from the Gene Expression 

Omnibus repository under the accession number GSE152173.

Quantitative targeted absolute proteomics

QTAP was performed using approximately 100 spheroids per time point from N=6 

preparations (3 per sex) by nanoLC-MS/MS as previously described with slight 

modifications (Fallon et al., 2016; Khatri et al., 2019; Ramsby and Makowski, 1999). 

Briefly, samples (20 μg protein) were evaporated to dryness, denatured, reduced, blocked 

with iodoacetamide and spiked with 1 pmol of stable isotope labeled peptide standards 

before trypsin digestion. Clean up was with solid phase extraction (SPE) Strata™-X 33 μm 

Polymeric Reversed Phase cartridges (Phenomenex, Torrance, CA, USA). Analysis was 

performed on a nanoACQUITY (Waters, Milford, MA, USA) interfaced with a SCIEX 

QTRAP 5500 hybrid mass spectrometer operated in the MRM mode and equipped with a 

NanoSpray III source. System control was via Analyst 1.5 software (SCIEX, Framingham, 

MA, USA) and nanoACQUITY UPLC Console. Peaks were integrated using MultiQuant 

2.0.2 (SCIEX, Framingham, MA, USA) with a limit of quantification set at 0.1 pmol/mg 

protein for all peptides. Peptide sequences targeted for analysis are included in 

Supplementary Table 1.

Drug treatments

Drug treatments were performed in n=6 spheroids per time point from a single male 

preparation (N=1, pooled hepatocytes from 3 mice). ATP and albumin data were generated 

from at least n=3–6 spheroids per time point, drug and concentration, except for a single 

concentration on day 14 for both acetaminophen (APAP) and tolvaptan (for which the data 

was obtained from n=2 spheroids due to spheroid loss during repeated media changes over 

time). APAP, fialuridine, and tolvaptan were purchased from Sigma (St. Louis, MO, USA) 

and AMG-009 was purchased from MedKoo Biosciences (Morrisville, NC, USA). Stock 
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solutions of chemicals were prepared in DMSO at 500X final concentration and diluted in 

culture media to create dosing solutions with DMSO at 0.2% v/v. Dosing solutions of APAP 

were prepared directly in culture media. The highest concentration for each drug was based 

on the maximum solubility limit determined either experimentally or from manufacturer’s 

product sheet. As in baseline cultures, media was changed and fresh compound added every 

2–3 days for the length of drug exposure.

Statistical analyses

Statistical analyses for biochemical, morphological, and toxicity endpoints were performed 

using GraphPad Prism statistical software version 8.0 (GraphPad Software Inc.). Mean 

values of biochemical and enzyme activity assays for all time points were compared using a 

one-way analysis of variance (ANOVA). Comparisons between Days 7 and 14 to Day 1 were 

performed using a Dunnett’s multiple comparison test with p<0.05 considered statistically 

significant. For drug cytotoxicity assessments, data was normalized (to respective vehicle 

control on each day) and dose response curves were generated using log (drug 

concentration) vs normalized response with a 3PL fit. This model forces the curve to run 

from 100% down to 0% and determines the EC50 as the concentration that provokes a 

response equal to 50%. Gene expression and proteomic analyses were performed using 

Partek Genomics Suite version 7.0 (Partek Inc.). For the gene expression data, an initial 

analysis was performed with all 13,081 mRNAs detected and then a targeted analysis was 

performed with just the mouse orthologues of 10 key DMET mRNAs known to be important 

in drug metabolism and toxicity in humans (Supplementary Table 1). For all analyses, 

differences were identified using an ANOVA model with linear contrasts. Preparation was 

included as random factor in the analysis. Probability values were adjusted for multiple 

comparisons using a false discovery rate of 5% (FDR = 0.05) (Benjamini and Hochberg, 

1995). An absolute value fold change (FC) cutoff of >2 was also used as noted below.

RESULTS

Primary mouse hepatocyte spheroids maintain morphology, viability, and function over 
time in culture

Primary mouse hepatocyte spheroids with well-defined perimeters were formed within 5 

days after seeding and appropriate morphology was maintained for an additional 2 weeks in 

culture (Figures 1A and B). No significant difference in ATP levels, albumin production or 

spheroid diameter was observed in spheroids over time (Figures 1C, D and E). No sex 

effects were observed in morphology, ATP, albumin, or spheroid diameter at any time in 

culture (Supplementary Figure 2).

Levels of key drug metabolizing enzymes and transporter mRNAs are constant over time 
in spheroid culture

Only 287 of 13,081 total mRNAs detected (2.2%) were differentially expressed in spheroids 

over time. The largest number of changes were observed in spheroids on Day 14, with 159 

mRNAs increased and 123 mRNAs decreased compared to spheroids on Day 1 (Figure 2A). 

Pathways enriched among these upregulated and downregulated genes are shown in Figure 

2B. We also performed a targeted analysis of the mouse orthologues of 10 key DMET 
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mRNAs known to be important in drug metabolism and toxicity in humans (Supplementary 

Table 1). No significant differences were observed in the levels of any of the DMET 

transcripts over time in spheroid culture (Figure 3). However, 2 of these 10 mRNAs were 

higher in spheroids from females than males on specific days of analysis including Cyp2c29 
and Cyp3a11 (Supplementary Figure 3).

Levels of key drug metabolizing enzymes and transporter proteins are constant over time 
in spheroid culture

The same 10 key DMET genes were also measured at the protein level by QTAP. Only 

Cyp2e1 protein showed a significant decline over time in culture (Figure 4). However, 3 of 

these 10 proteins were higher in spheroids from females than males on specific days of 

analysis including Cyp2c29, Cyp3a11, and Ntcp (Supplementary Figure 4).

Activity levels of most key cytochrome P450 enzymes are stable over time in spheroid 
culture

Enzyme activity was evaluated by measuring the formation of metabolites from probe 

substrates corresponding to five major human cytochrome P450 enzymes: CYP1A2 

(phenacetin), CYP2C8 (amodiaquine), CYP2C9 (tolbutamide), CYP2D6 

(dextromethorphan) and CYP3A4 (midazolam) as previously described for human 

hepatocyte spheroids (Bell et al., 2016). No significant differences were observed in the 

levels of any metabolites formed over time in spheroid culture (Figure 5). However, levels of 

metabolite formation from phenacetin and midazolam were higher in females than males on 

Day 1 and 7, respectively (Supplementary Figure 5).

Hepatotoxicity to DILI drugs was increased with prolonged drug exposures using the 
mouse spheroid model

Decreased viability (ATP) and functionality (albumin) were observed in spheroids treated 

with increasing concentrations of four major DILI drugs that operate via different 

mechanisms of toxicity: APAP, fialuridine, tolvaptan, and AMG-009 (Figure 6). EC50 

values for each endpoint were generally decreased (below 100-fold plasma Cmax 

concentrations) in response to increased length of exposure with each drug (Bowsher et al., 

1994; Ryan et al., 2018; Sevilla-Tirado et al., 2003; Shoaf et al., 2007). EC50 values for 

albumin responses were lower than ATP, although the variability with albumin 

measurements was higher.

DISCUSSION

Extensive characterization of primary human hepatocyte spheroids (Bell et al., 2018; Bell et 

al., 2016; Messner et al., 2018) has facilitated their adoption for preclinical toxicity testing 

(Proctor et al., 2017; Vorrink et al., 2018) and to study mechanisms of DILI (Bell et al., 

2016; Hendriks et al., 2016; Jiang et al., 2019; Nautiyal et al., 2020). Although human 

hepatocyte models are important for translational work, genetically engineered mice, mouse 

models of liver disease, and mouse genetic reference populations provide unique tools to 

study the impact of genetic and environmental factors on hepatic drug disposition, toxicity, 

and disease that would not otherwise be possible in human models. Rodent models offer 
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further advantages over human cell-based models in the in vitro setting as they provide a 

reliable, reproducible, and cost-effective supply of cells resulting in consistent outcomes and 

responses. Using the spheroid approach will also substantially increase the power (number 

of replicates), content (number of endpoints), and throughput (speed) of these studies while 

decreasing the need for live animal studies. To this end, the first report of an extensive 

characterization of a 3D mouse model was recently published (Nudischer et al., 2020). The 

authors describe cultivation of 3D liver spheroids containing freshly isolated cells derived 

from male C57Bl/6J mice (Nudischer et al., 2020). Our study adds to this work by including 

a comparison of phenotypic differences between cells from male and female mice as well as 

a more extensive characterization of the gene expression profile, DMET protein levels, and 

P450 enzyme activity. Furthermore, hepatocytes in our study were cryopreserved prior to 

use, which would facilitate convenience and the ability to culture hepatocytes from multiple 

mouse models simultaneously in future studies.

Similar to Nudischer et al. (2020), mouse spheroids in our study were generated by 

spontaneous self-aggregation in ULA plates. This is a simple, rapid, cost-effective and 

efficient method for generating and culturing 3D spheroids, and there is an abundance of 

data characterizing spheroids generated using this approach (Bell et al., 2016; Bell et al., 

2017; Jensen and Teng, 2020; Ramaiahgari et al., 2017; Vorrink et al., 2017). Other 

methods, such as, scaffold-based approaches or use of magnetic field, hanging-drop or 

bioreactors have also been utilized for generating 3D spheroids (Desai et al., 2017; Godoy et 

al., 2013; Messner et al., 2018; Tostoes et al., 2012). However, these approaches lack 

reproducibility (due to lot-to-lot differences in various scaffolds and their interference with 

cells, drugs or the assay), scalability (not amenable to high-throughput applications in 

bioreactor-based approach) and require specialized or proprietary equipment(s) and/or 

culture techniques (e.g. magnetic field, hanging-drop). Using ULA methodology, we 

generated primary mouse hepatocyte spheroids of uniform size with well-defined 

morphology, and under 300 μm to ensure supply of nutrients and oxygen to all cells within 

the spheroid. Spheroids maintained a stable phenotype for 2 weeks post formation, which 

was the longest time point tested in this study. Nudischer et al. (2020) demonstrated viability 

for a total of 24 days in culture, but it is likely that mouse hepatocytes could be maintained 

in spheroid culture for longer periods of time as has been previously demonstrated with 

human hepatocyte spheroids (Bell et al., 2016).

We expanded on the findings from Nudischer et al. (2020) to show that the global gene 

expression profile and levels of 10 key DMET genes and proteins were also maintained in 

hepatocyte spheroids over time in culture. This suggests that the spheroid approach helps to 

preserve the phenotype of mouse hepatocytes better than more traditional 2D culture formats 

(Godoy et al., 2016). The pathways enriched among the small number of genes that were 

increased over time in spheroid culture included signaling molecules and genes involved in 

lipid metabolism, which may be due to reestablishment of cell-cell interactions but may also 

reflect a small degree of cellular stress that occurs over time in culture (Cassim et al., 2017). 

Interestingly, the pathways enriched among the small number of genes that were decreased 

overtime largely reflect a loss of type 1 collagen gene expression, which would likely result 

from the loss or inactivation of contaminating stellate cells and/or portal fibroblasts (Liu et 

al., 2013).
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We also observed sex differences in the expression of some DMET genes and proteins in 

spheroids, which is consistent with studies in native mouse liver. At the gene expression 

level, we observed female-predominant expression of Cyp2c29 and Cyp3a11 which is in line 

with previous reports of these mRNAs in mouse liver (Lofgren et al., 2009; Lu et al., 2013). 

CYP3A4, the human orthologue of Cyp3a11, is also female predominant in human liver 

(Waxman and Holloway, 2009), but CYP2C19, the human orthologue of Cyp2c29 (Pan et 

al., 2016), is reportedly higher in liver tissue from males than females (Lofgren et al., 2008), 

indicating some species-specific differences. At the protein level, we observed female-

predominant expression of Cyp2c29 and Cyp3a11, as well as Ntcp. Again, these findings are 

in line with previous reports of these proteins and their orthologues in mouse and human 

liver (Cheng et al., 2007; Waxman and Holloway, 2009), except for Cyp2c29 for which both 

the mouse protein and the human orthologue CYP2C19 are reportedly higher in livers from 

males than females (Chen et al., 2018; Lofgren et al., 2008; Shirasaka et al., 2016). Taken 

together, this indicates that some sex effects may be retained in vitro.

Importantly, we found that activities of most key cytochrome P450 enzymes were both 

measurable and stable over time in mouse spheroid culture, consistent with DMET mRNA 

and protein expression, and the overall trends were comparable to those reported in human 

spheroids (Bell et al., 2018). We also observed some sex differences in enzyme activity, with 

higher acetaminophen and OH-midazolam observed in spheroids from females than males at 

various time points in culture. Higher OH-midazolam formation in females than males is 

consistent with reports in both mouse (Cyp3a11) and human (CYP3A4) livers (Down et al., 

2007; Waxman and Holloway, 2009), but acetaminophen formation from phenacetin 

(Cyp1a2) is reported to be higher in males than females in humans (Waxman and Holloway, 

2009). Again, some sex effects may be retained in vitro and thus the use of spheroids from 

both male and female mice may be considered to better represent the sex differences in drug 

metabolism seen in humans.

Finally, we also observed that longer drug exposures caused a leftward shift in dose-

response curves for all four DILI drugs tested, similar to what has been previously reported 

for human hepatocyte spheroids (Bell et al., 2018; Bell et al., 2016; Bell et al., 2017), and 

recently for mouse hepatocyte spheroids as well (Nudischer et al., 2020; Vorrink et al., 

2018). We expand on these findings by including the measurement of albumin in addition to 

ATP and by assessing different DILI drugs in the mouse model. Interestingly, albumin was 

found to be a more sensitive endpoint than ATP as seen in other organotypic formats such as 

the bioprinted liver and micropatterned co-cultures (Nguyen et al., 2016; Ware et al., 2015) 

but can often be more variable. The human equilibrative nucleoside transporter required for 

mitochondrial transport and toxicity of fialuridine is lacking in mouse (Lee et al., 2006), 

which makes our observations of toxicity for this drug somewhat curious. However, 

fialuridine toxicity has been observed in mice at high concentrations (Manning FJ and 

Swartz M, 1995) and may suggest a different mechanism is involved in our study as well. 

The lack of a more robust effect of AMG-009 (bile acid-mediated toxicity) could be due to 

lack of bile acids in media. Only 5% of bile acids are synthesized de novo in the liver as 

most of the bile acids are recirculated back via the enterohepatic pathway which is missing 

in the in vitro system (Chiang and Ferrell, 2018). To address this issue, we are exploring the 
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addition of a physiologically-relevant pool of bile acids to our media formulation as 

previously reported for human hepatocyte spheroids (Hendriks et al., 2016).

In conclusion, we describe the successful long-term cultivation of primary mouse 

hepatocytes as 3D spheroids that are suitable for use in toxicity studies with prolonged drug 

exposures. Our data adds to the recent report from Nudischer et al. (2020) by using 

cryopreserved cells, demonstrating phenotypic comparison between cells from male and 

female mice, and including a more extensive characterization of the gene expression profile, 

DMET protein levels, and cytochrome P450 enzyme activity over time. Primary mouse 

hepatocytes are a valuable resource for studying the impact of genetic and environmental 

factors on drug response and disease and the 3D spheroid approach will allow for the 

simultaneous evaluation of multiple mechanistic endpoints at multiple concentrations and 

time points using substantially fewer cells, and, as a result, fewer animals, than traditional 

2D culture.
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Refer to Web version on PubMed Central for supplementary material.
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• 3D spheroids were generated from primary mouse hepatocytes in ULA plates

• Morphology, ATP, and albumin levels are stable for 2 weeks post spheroid 

formation

• Global mRNA profile, DMET protein level, and P450 enzyme activities are 

also stable

• Time- and concentration-dependent toxicity responses to DILI drugs were 

observed
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Figure 1. 
(A) Representative phase-contrast photomicrographs of spheroids at 10X magnification on 

Days 1, 7, and 14 post spheroid formation. (B) Representative H&E staining of spheroids 

over time. Bars indicate 50 μm. (C) ATP, (D) albumin, and (E) spheroid diameter measured 

over time. Data represent the mean+SEM from N=6 preparations (3 per sex) for ATP and 

albumin, and N=2 preparations (1 per sex) for spheroid size. No significant differences were 

observed in baseline ATP, albumin, or spheroid diameter over time as determined by 

repeated measures ANOVA with Dunnett’s multiple comparison test comparing Days 7 and 

14 to Day 1.

Nautiyal et al. Page 15

Toxicol In Vitro. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
(A) Venn diagrams showing overlap of genes significantly increased or decreased on Days 7 

and 14 compared to Days 1 and 7 post spheroid formation. (B) Top 10 most significantly 

enriched pathways among transcripts that were increased or decreased on Day 14 vs. Day 1. 

Pathway significance is plotted on the upper x-axis and represented by the bars on the 

graphs. The ratio of significant genes to total genes in the pathway is plotted on the lower x-

axis and represented by the dots (connected by a line) on the graphs. The dashed line 

represents a threshold for significance set at −log10(p) >1.3. Differentially expressed genes 

were determined by ANOVA with linear contrasts (FDR p<0.05 and lFCl>2). Data was 

obtained from N=4 preparations (2 per sex).
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Figure 3. 
Ratio of mRNA levels for 10 key drug metabolizing enzymes and transporters on Days 1, 7 

and 14 compared to Day 1 post spheroid formation. Data represent the geometric mean+SD 

of the ratio from repeated measurements of N=4 preparations (2 per sex). No differences 

over time were determined by ANOVA with linear contrasts (FDR p<0.05 and lFCl>2). 

Corresponding proteins, if different than the gene name, are listed within brackets.

Nautiyal et al. Page 17

Toxicol In Vitro. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Ratio of protein levels for 10 key drug metabolizing enzymes and transporters on Days 1, 7 

and 14 compared to Day 1 post spheroid formation. Data represent the geometric mean+SD 

of the ratio from repeated measurements of N=6 preparations (3 per sex). * indicates FDR 

p<0.05 and lFCl>2 as determined by ANOVA with linear contrasts comparing Days 7 and 

14 to Day 1.
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Figure 5. 
Metabolite levels measured after a 4-hour incubation with cytochrome P450 substrate 

cocktail. Data are presented as mean+SEM from N=4 preparations (2 per sex). No 

significant differences were observed by repeated measures ANOVA with Dunnett’s 

multiple comparison test comparing Days 7 and 14 to Day 1 for each metabolite.
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Figure 6. 
Dose-response curves for ATP and albumin as % control in response to 1, 7, and 14 days of 

treatment with increasing concentrations of (A,E) acetaminophen (APAP), (B,F) fialuridine, 

(C,G) tolvaptan, and (D,H) AMG-009. The concentration at which a 50% effect was 

observed (EC50) for each treatment duration is reported on the respective graph. Data is 

represented as mean±SEM for n=3–6 spheroids (from a single male preparation) per 

concentration, time point, and drug and corresponding least squares curve fit of log (drug 

concentration) vs. normalized response. n=2 spheroids were used for a single concentration 

and time point (day 14) for APAP and tolvaptan due to spheroid loss during repeated media 

changes over time.
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