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Abstract——Dysfunction in regulation of mRNA trans-
lation is an increasingly recognized characteristic of
many diseases and disorders, including cancer, diabetes,
autoimmunity, neurodegeneration, and chronic pain.

Approximately 50 million adults in the United States
experiencechronicpain.This economicburden is greater
than annual costs associated with heart disease, cancer,
and diabetes combined. Treatment options for chronic
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pain are inadequately efficacious and riddled with ad-
verse side effects. There is thus an urgent unmet need for
novel approaches to treating chronic pain. Sensitization
of neurons along the nociceptive pathway causes chronic
pain states driving symptoms that include spontaneous
pain andmechanical and thermal hypersensitivity. More
than a decade of preclinical research demonstrates that
translational mechanisms regulate the changes in gene
expression that are required for ongoing sensitization of
nociceptive sensory neurons. This review will describe
how key translation regulation signaling pathways, in-
cluding the integratedstress response,mammalian target
of rapamycin,AMP-activatedproteinkinase (AMPK), and
mitogen-activated protein kinase–interacting kinases,
impact the translation of different subsets of mRNAs.
We then place these mechanisms of translation
regulation in the context of chronic pain states,
evaluate currently available therapies, and examine
the potential for developing novel drugs. Considering
the large body of evidence now published in this area,
we propose that pharmacologically manipulating

specific aspects of the translational machinery may
reverse key neuronal phenotypic changes causing
different chronic pain conditions. Therapeutics targeting
these pathways could eventually be first-line drugs
used to treat chronic pain disorders.

Significance Statement——Translational mecha-
nisms regulating protein synthesis underlie pheno-
typic changes in the sensory nervous system that drive
chronic pain states. This review highlights regulatory
mechanisms that control translation initiation and
how to exploit them in treating persistent pain con-
ditions. We explore the role of mammalian/mechanis-
tic target of rapamycin and mitogen-activated protein
kinase–interactingkinase inhibitors andAMPKactivators
in alleviating pain hypersensitivity. Modulation of
eukaryotic initiation factor 2a phosphorylation is
also discussed as a potential therapy. Targeting specific
translation regulation mechanisms may reverse changes
in neuronal hyperexcitability associated with painful
conditions.

I. The Unmet Need of Analgesics

The International Association for the Study of Pain
defines pain as an unpleasant experience associatedwith
actual or potential tissue damage (Nicholas et al., 2019).
At its core, acute pain is an adaptive response intended to
protect and improve the survivability of the organism.
However, when pain transitions into a chronic state, it
loses its adaptive value and becomes a disease in and of
itself. Prevalence of chronic pain in the United States
varies from 11% to 40% depending on the cohort studied
(Dahlhamer et al., 2018). A recent study performed by
the Centers for Disease Control and Prevention esti-
mates that over 50 million adults (20.6%) in the United
States are affected by chronic pain (Dahlhamer et al.,
2018). Roughly 20 million people from among patients
suffering from chronic pain in the United States identify
chronic pain as a significant limiting factor in their
normal day-to-day activities (Dahlhamer et al., 2018).
Because of its wide prevalence, the economic burden

of chronic pain in the United States is estimated to be as

high as $635 billion, which is greater than annual costs
associated with heart disease, cancer, and diabetes
(Gaskin and Richard, 2012). Current pharmacological
treatment options to manage chronic pain typically
include a concoction of nonsteroidal anti-inflammatory
drugs, antidepressants, gabapentinoids, and opioids
(Lynch and Watson, 2006). These medications for
chronic pain demonstrate modest efficacy at best, not-
withstanding the numerous adverse side effects associ-
ated with chronic drug use (Lynch and Watson, 2006).
Hence, understanding the processes governing pain
pathophysiology is crucial to the development of novel
and effective therapeutics against persistent pain while
leaving the adaptive acute pain response intact.

II. Physiology of Pain

Nociceptive information arising from exposure to
intense pressure, temperature extremes, or chemical
irritants is transduced, transmitted, and modulated

ABBREVIATIONS: AKT, protein kinase B; AMPK, AMP-activated protein kinase; ATF, activating transcription factor; BDNF, brain-derived
neurotrophic factor; BiP, binding immunoglobulin protein; CBS, cystathionine b-synthetase; CDK, cyclin-dependent kinase; CFA, complete
Freund’s adjuvant; CHOP, C/EBP-homologous protein; CNS, central nervous system; CreP, constitutive repressor of eIF2a phosphorylation;
DDIT3, DNA damage inducible transcript 3; DRG, dorsal root ganglia; 4E-BP, 4E-binding protein; eEF, eukaryotic elongation factor; 4EKI, 4E
knock-in with null mutation; eIF, eukaryotic initiation factor; ER, endoplasmic reticulum; ERK, extracellular signal-regulated kinase; FDA,
Food and Drug Administration; GADD34, growth arrest and DNA damage-inducible protein 34; GbL, G-protein b-subunit–like protein;
GCN2, general control nonderepressible 2; GSK, glycogen synthase kinase; HRI, heme-regulated inhibitor kinase; IF2, yeast initiation
factor 2; ISR, integrated stress response; ISRIB, ISR inhibitor; KO, knockout; MAPK, mitogen-activated protein kinase; MAPKK, MAPK
kinase; Met-tRNAi

Met, methionine-bound initiator tRNA; MGO, methylglyoxal; MNK, MAPK-interacting kinase; mORF, main ORF; mSin1,
mammalian stress-activated protein kinase interacting protein 1; mTOR, mammalian/mechanistic target of rapamycin; mTORC, mTOR
complex; Nav1.8, voltage-gated sodium channel 1.8; NGF, nerve growth factor; NSCLC, nonsmall cell lung cancer; ORF, open reading frame;
PABP, poly(A)-binding protein; PDB, Protein Data Bank; PDCD4, programmed cell death protein 4; PERK, PKR-like endoplasmic reticulum
kinase; PEST repeats, sequence rich in proline, glutamic acid, serine, and threonin; PI3K, phosphoinositide 3-kinase; PKR, protein kinase R;
PKRi, PKR inhibitor; poly(A), poly-adenosine; PP1, protein phosphatase 1; PRAS40, proline-rich AKT/protein kinase B substrate 40 kDa;
RAPTOR, regulatory associated protein of mTOR; RHEB, Ras homolog enriched in brain; RICTOR, rapamycin-insensitive companion
of mTOR; rpS6, ribosomal protein S6; S6K, S6 ribosomal kinase; SNI, spared nerve injury; TG, trigeminal ganglia; TOP, terminal
oligopyrimidine tract; tRNA, transfer RNA; TRPV1, transient receptor potential vanilloid 1 cation channel; TSC, tuberous sclerosis protein;
uORF, upstream ORF; UTR, untranslated region.
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into the sensation of pain by a multineuronal circuit
that begins in the periphery (Basbaum et al., 2009).
Specialized sensory neurons known as nociceptors in-
nervate most tissues in the body, and direct damage to
their axons or their environment can trigger action
potential generation and the transmittance of nocicep-
tive information to the central nervous system. Noci-
ceptive information is processed in the spinal cord and
then sent onto the brain where complex circuits even-
tually lead to the perception of pain (Koch et al., 2018).
After injury, nociceptors become sensitized, leading to

enhanced activity and pain responsiveness after expo-
sure to normally innocuous (allodynia) and noxious
(hyperalgesia) stimuli (Woller et al., 2017). Studies in
squid with fin-crush injuries have demonstrated the
importance of nociceptor sensitization in species sur-
vival, as it serves as a warning mechanism to escape
danger and protect ourselves after tissue insult (Crook
et al., 2014). However, sensitization that persists past
the healing phase of an injury is maladaptive and is
widely viewed as a leading cause of chronic pain
conditions (Meacham et al., 2017; Price and Gold,
2018; Price et al., 2018). Regulation of the collective
translational capacity of the cell, or the translatome,
underlies at least part of these persistent changes in
neuronal phenotype driving sensitization in these cells
(Khoutorsky and Price, 2018).
Sensory neurons are particularly susceptible to sen-

sitization because of their physiologic role as sensors of
the external environment. In this regard, these neurons
must be able to detect and communicate whether
a stimulus is injurious or benign, and, as a result,
sensory neurons must demonstrate versatile and dy-
namic response properties (Bennett et al., 2019). As
such, nociceptors are capable of changing phenotypes by
altering their gene expression profiles via regulation of
translational control pathways (Khoutorsky and Price,
2018). In addition to sensitization, these nociceptors can
also generate spontaneous activity after injury, and this
is likely a major cause of the ongoing pain that is an
important feature of neuropathic pain states (North
et al., 2019). Changes in gene expression allow these
neurons to become increasingly excitable, resulting in
a hypersensitive state and the generation of spontane-
ous pain, which ultimately drives the pathology of
chronic pain (Haroutounian et al., 2014, 2018; Vaso
et al., 2014).

III. Why Target Translation for Pain Treatment

A key driver of many chronic pain states is increased
excitability and/or spontaneous activity in nociceptors.
This physiologic change can be very long-lasting and
usually persists after an injury has healed (Price and
Gold, 2018). This strongly suggests that changes in gene
expression drive this change. A key question is how these
changes in gene expression occur—do they happen at the

transcriptional or translational level or do both occur
simultaneously?

A great number of studies have attempted to
addresses this question, and the development of RNA
sequencing technologies have had substantial impact
on advances in this area of research. One thing is
absolutely clear: Nerve injury causes transcriptional
reprogramming in sensory neurons. However, this
reprogramming seems to be better associated with the
regeneration response to axonal injury than it does to
altered excitability. The best evidence for this comes
from two types of studies: single cell sequencing and
translating ribosome affinity purification [targeted
purification of polysomal mRNA (TRAP)]. In an ele-
gant study done on trigeminal (TG) sensory neurons,
Nguyen, Le Pichon, and Ryba (2019) demonstrated that
injury to TG neuron axons causes a convergent change
in transcription across neuronal subtypes that was best
described as a response to injury. Key evidence that this
was associated with axonal regeneration and not pain
comes from the finding that scratching the skin, which
does not cause a pain state, causes this stereotyped
transcriptional change in a subset of TG neurons that
innervate the skin. Many chemotherapeutics cause
neuropathic pain through a direct action on sensory
neurons. A hallmark of the neuropathy caused by these
drugs is axonal injury localized to the distal tips of axons
resulting in “die back” from the epidermis (Ma et al.,
2018). TRAP sequencing on DRG nociceptors taken
from animals with neuropathic pain from the chemo-
therapeutic drug paclitaxel demonstrates that there are
few changes at the transcriptional level, but the trans-
lation of hundreds of mRNAs is changed at the peak of
the neuropathic pain state (Megat et al., 2019a).
Examining these data reveal how translational changes
in nociceptors drive the neuropathic pain state at the
cellular signaling level. Collectively, these and other
studies discussed and cited below indicate that trans-
lational changes in gene expression are crucial for the
generation and persistence of neuropathic pain states.

Another reason to prioritize translational changes in
gene expression for pain therapy is based simply on the
cellular anatomy of nociceptors (Woolf and Ma, 2007).
These neurons are among the largest cells in the entire
body, with axons that are up to ameter in length in large
mammals. The nucleus of these cells is at a great length
from where many changes in excitability occur, and
these changes in excitability are often selective for
certain axonal sub-branches of these highly complex
neurons (Devor, 1999). This has been shown using
microneurography in human sensory neurons exposed
to nerve growth factor (NGF) (Obreja et al., 2018). Such
a selective change in axonal excitability is hard to
explain through transcriptional changes that would
presumably invade the entirety of axonal branches for
any given nociceptor. In this way, localized changes in
gene expression controlled by translation signaling are
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likely crucial for nociceptor plasticity (Price and
Géranton, 2009) in much the same way that localized
translational control is critical for synaptic plasticity at
specific dendritic spines in the CNS (Steward and
Schuman, 2003; Sutton and Schuman, 2005; Biever
et al., 2019).
A final reason to focus on translation regulation is the

growing opportunity to manipulate gene expression at
this level with very specific pharmacological interven-
tions. This will be the focus for the rest of this review.
First, we will describe signaling pathways that regulate
translation, highlighting how these pathways are dis-
tinct and therefore affording control over subsets of
mRNAs by targeting individual pathways. Next, we will
highlight how these signaling pathways are implicated
in chronic pain, providing evidence for how different
types of chronic pain may be driven by distinct types of
translation regulation. Finally, we will discuss how
these pathways can be perturbed with drugs and how
these drugsmight help patients who suffer from chronic
pain in the not-too-distant future.
An important point to emphasize before delving into

the basic mechanisms of translation regulation is that
it is now clear that specific subsets of mRNAs are
regulated by distinct signaling pathways. For instance,
themammalian/mechanistic target of rapamycin (mTOR)
pathway is likely the best-known translation regulation
signaling pathway and is often referred to as a master
control for cap-dependent translation, which encompasses
most translation in cells. However, we now know that
mTOR exerts very specific control over the translation of
mRNAs that contain sequences in their 59 untranslated
regions (UTRs) called terminal oligopyrimidine tracts
(TOPs) (Thoreen et al., 2012). Only about 500 mRNAs
contain these TOP sequences in their 59 UTRs (K. B.
Jensen et al., preprint, DOI: https://doi.org/10.1101/2020.
04.18.047571). Similar specificity exists for many other
signaling pathways, including themajor pathwayswewill
discuss here. A key to translating this basic science
knowledge into effective treatments for chronic pain will
be to align our understanding of changes in gene expres-
sion in chronic pain states with gene expression control
pathways that cause these pain states to persist. We are
only now beginning to scratch the surface of this detailed
level of insight, but tools are readily available to achieve
rapid advances in this area of therapeutic opportunity.

IV. Basics of Gene Expression

Two cellular processes govern the expression of genes:
transcription and translation. During transcription,
a portion of the genome is transcribed into RNA by
RNA polymerases driven by transcription factors and
enhancers. Translation refers to the synthesis of amino
acid polypeptide chains based on the mRNA code.
Translation is a tightly regulated process that is in-
creasing viewed as a potential target for therapeutic

development in a variety of disease states (Sonenberg
and Hinnebusch, 2009; Bhat et al., 2015; Khoutorsky
and Price, 2018).

MaturemRNA transcripts contain a7-methylguanosine
“cap” at their 59 end and a poly-adenosine [poly(A)] tail
usually composed of approximately 250 adenosine bases
at the 39 end of the transcript. Both of thesemodifications
to the transcripts prevent mRNA degradation by exonu-
cleases, allow formRNAexport from the nucleus, and are
crucial regulators of mRNA translation (Sonenberg and
Hinnebusch, 2009). In between the 59 cap and the poly(A)
tail are the 59 UTR, the subsequent coding sequence for
the polypeptide, and a 39UTR.Before themRNA can exit
the nucleus, spliceosomes excise introns or noncoding
intermittent regions of the mRNA. The remaining RNA
segments, known as exons, aremerged and exported and
potentially bound for translation. Variations in mRNA
splicing provides further diversity in the proteome of the
cell. Mechanisms of RNA splicing and its implication in
disease have been reviewed elsewhere (Lee and Rio,
2015; Montes et al., 2019).

Translation is divided into three phases: initiation,
elongation, and termination. Eukaryotic translation
varies significantly from prokaryotic translation, espe-
cially at the initiation stage (Kozak, 1999; Rodnina and
Wintermeyer, 2009; Hershey et al., 2019). The eukary-
otic initiation factor (eIF) 2 is a trimeric complex that
requires GTP for initiation (Kozak, 1999; Rodnina and
Wintermeyer, 2009). The GTP-bound eIF2 (eIF2-GTP)
along with the initiator transfer RNA, Met-tRNAi

Met

and the small 40S ribosome create the 43S preinitiation
complex, which is recruited to the 59 cap of themRNA by
the eIF4F complex (Sonenberg and Hinnebusch, 2009;
Khoutorsky and Price, 2018). The preinitiation complex
then scans the 59 UTR for the start codon, which is
typically AUG (noncanonical start codons are sometime
found in upstream open reading frames), which codes
for methionine. Upon encountering the start codon, the
large 60S ribosomal subunit is recruited to the preini-
tiation complex, creating an active 80S ribosome that is
ready for elongation. Along this process, the GTP bound
to eIF2 is hydrolyzed to GDP, dissociating the initiation
factors from the ribosome for recycling. eIF2B, a guanine
nucleotide exchange factor, replenishes eIF2-GTP for
another round of initiation.

Unlike initiation, elongation is a well conserved pro-
cess between eukaryotes and prokaryotes (Rodnina and
Wintermeyer, 2009). Elongation requires the assembly
of the 80S ribosome as well as numerous elongation
factors. After initiation, the second codon lies in the
acceptor (A) site of the 80S ribosome awaiting the
docking of the next aminoacyl-tRNA. The eukaryotic
elongation factor (eEF) 1A binds to the aminoacyl-tRNA
coded by the second codon and recruits it to the
ribosome. eEF1A hydrolyzes GTP to release the tRNA
on the A site of the ribosome. Well-positioned by the
larger 60S subunit, peptidyl transferase catalyzes
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peptide bonds between amino acids. The GTPase activ-
ity of eEF2 is required to translocate mRNA and tRNA
in the ribosome to E and P sites to continue elongation.
Like many cellular processes, elongation is a complex
and well regulated mechanism that has been exten-
sively reviewed elsewhere (Dever and Green, 2012).
Spatiotemporal regulation of translation allows for

a rapid response to a variety of internal and external
stimuli, and hence, protein synthesis has evolved to be
highly regulated in localized compartments throughout
the cell, in particular in neurons (Martin et al., 2000;
Khoutorsky and Price, 2018; Biever et al., 2019; Megat
and Price, 2018). Translation initiation is the rate-
limiting step in the translation process. Signaling
pathways, such as the mTOR pathway, mitogen-
activated protein kinase [MAPK; extracellular signal-
regulated kinase (ERK); p38 and MAPK-interacting
kinase are kinases belonging to this family] pathway,
AMP-activated protein kinase (AMPK) pathway, and
the integrated stress response (ISR), tightly regulate
the function of eukaryotic initiation factors and the
formation of initiation complexes and have now been
studied broadly in pain neuroscience. This review will
focus on these pathways, how they are regulated, how
they are involved in pain signaling, and how they might
be targeted with therapeutics. Importantly, each of
these signaling pathways preferentially controls the
translation of a subset of mRNAs. This demonstrates
the complexities and specificity of translation initiation
but also affords therapeutic opportunities since these
signaling pathways appear to be preferentially involved
in different types of chronic pain.

V. Regulation of mRNA Translation—Linking
Signaling to Translation of Subsets of mRNAs

A. The Mammalian/Mechanistic Target of
Rapamycin Pathway

Rapamycin, an antifungal macrolide compound pro-
duced by the bacterium Streptomyces hygroscopius, was
initially discovered in 1972 on the island of Rapa Nui
(Seto, 2012). Rapamycin’s antifungal properties were
soon overshadowed by its potent immunosuppressive
effects. Since then, rapamycin has been adapted to
prevent organ transplant rejection and restenosis after
coronary stent insertion as well as the treatment of
a rare, progressing condition affecting the lungs: lym-
phangioleiomyomatosis (Seto, 2012). In the 1990s,
reports of yeast mutants resistant to rapamycin led to
the identification of target of rapamycin in these
organisms with subsequent discovery of mTOR as the
direct target of rapamycin (Heitman et al., 1991; Brown
et al., 1994).
The mTOR signaling pathway regulates essential

metabolic processes, including autophagy, lipogenesis,
mitochondrial function, and protein synthesis. mTOR
is a serine/threonine protein kinase belonging to the

phosphatidylinositol 3-kinase related kinase superfam-
ily (Zoncu et al., 2011). Structural analysis of mTOR
revealed various regulatory domains on mTOR that
modulate its catalytic function; however, the FRAP,
ATM, and TRRAP C-terminal (FATC) domain is essen-
tial to the kinase activity of the enzyme (Yang et al.,
2013; Showkat et al., 2014). Rapamycin binds to
a cytosolic protein, FK-binding protein 12, and interacts
with the FK-binding protein 12–rapamycin binding
domain of mTOR, thereby suppressing its enzymatic
activity in an allosteric fashion. mTOR forms two multi-
meric complexes, mTOR complex (mTORC) 1 and
mTORC2, each with a distinct set of substrates and
effectors and rapamycin sensitivity (Showkat et al., 2014).

The mTORC1 complex consists of mTOR, regulatory
associated protein of mTOR (RAPTOR), G-protein
b-subunit–like protein (GbL), proline-rich AKT/protein
kinase B substrate 40 kDa (PRAS40), and death domain
containing mTOR interacting protein (Showkat et al.,
2014). Raptor binds to the N-terminal domain of mTOR
and supports the linking of 4E-binding protein (4E-BP)
1 and S6 ribosomal kinase (S6K) 1 tomTOR (Hara et al.,
2002). Phosphorylation of raptor at S863 enhances
mTORC1 activity, whereas phosphorylation of the
S722/792 residue by AMPK suppresses mTORC1
(Gwinn et al., 2008; Foster et al., 2010). PRAS40 is
largely considered to be an inhibitory subunit of mTORC1
that may be phosphorylated at various sites by mTORC1,
further promoting the dissociation of the inhibitory sub-
unit and enhancing mTORC1 activity (Nascimento et al.,
2010). In contrast, other studies report that PRAS40 is
necessary for mTORC1 activity such that silencing
PRAS40 reduces the phosphorylation of downstream
targets of mTORC1 (Fonseca et al., 2007; Hong-Brown
et al., 2010). Post-translational modification of PRAS40
has been suggested to mediate this seemingly contradic-
tory function of the subunit (Pallares-Cartes et al., 2012;
Wiza et al., 2012). Although the exact effects of GbL on
mTORC1are notwell studied, it is known that loss ofGbL
in vivo has negligible impact on mTORC1 activity under
physiologic conditions (Guertin et al., 2006). However,
in cancer cells GbL was found to supresses mTORC1
mediated 4E-BP1 phosphorylation (Kakumoto et al.,
2015).

mTORC2 also consists of the catalytic mTOR but
contains the rapamycin-insensitive companion of
mTOR (RICTOR), mammalian stress-activated pro-
tein kinase interacting protein 1 (mSin1), protein
observed with RICTOR, GbL, death domain contain-
ingmTOR-interacting protein, and PRAS40 (Showkat
et al., 2014). As the name suggests, RICTOR-
associated mTORC2 is not affected by acute rapamy-
cin treatment (Jacinto et al., 2004). However, chronic
application of rapamycin and rapamycin derivatives
has been shown to reduce mTORC2 assembly and
activity (Sarbassov et al., 2006; Zeng et al., 2007).
Unlike mTORC1, mTORC2 requires the presence of
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GbL for proper functioning (Guertin et al., 2006;
Kakumoto et al., 2015). mSin1 is also integral to the
formation of the mTORC2 complex because it guides
the proper binding of RICTOR to mTOR (Frias et al.,
2006). Splice variants of mSin1 give rise to distinct
mTORC2 signatures (Frias et al., 2006). mTORC2
regulates cellular metabolism, growth, and apoptosis
by phosphorylating AKT and in turn enhancing
mTORC1 activity (Sarbassov et al., 2005; Jhanwar-
Uniyal et al., 2019). mTORC1-activated S6K1 directly
phosphorylates RICTOR at T1135, promoting mTORC2
signaling (Julien et al., 2010). Hence, both mTOR com-
plexes are intricately linked by a variety of regulators and
substrates, which are further reviewed by Jhanwar-
Uniyal et al. (2019).
1. Mammalian/Mechanistic Target of Rapamycin

Complex 1 Regulates Translation Initiation for Termi-
nal Oligopyrimidine Tract–Containing mRNAs. eIF4F is
a trimeric complex consisting of eIF4E, eIF4A, and
eIF4G. As a scaffolding protein, eIF4G binds to the cap-
binding eIF4E protein as well as the DEAD-box RNA
helicase enzyme eIF4A (Roux and Topisirovic, 2018).
Once bound to the 59 cap of the mRNA transcript, the
eIF4F complex unwinds the 59UTR, exposing the RNA
to the preinitiation complex. The 40S ribosomal sub-
unit, as a constituent of the preinitiation complex,
scans for the start codon, AUG, and, when found,
recruits the 60S ribosomal subunit for the next phase
of translation (i.e., elongation) (Sonenberg andHinnebusch,
2009; Khoutorsky and Price, 2018). Because of its
relatively low expression, eIF4E determines the rate
of 59 cap-mediated protein synthesis. Various homeo-
static mechanisms regulate the function of eIF4E
(Tahmasebi et al., 2018).
mTORC1 enhances translation by inhibiting 4E-

binding proteins (4E-BPs) and promoting the activity
of S6Ks. There are three isoforms of 4E-BPs (4E-BP1,
4E-BP2, and 4E-BP3) encoded by separate genes but
sharing considerable homology (Pause et al., 1994;
Poulin et al., 1998). 4E-BPs act as translational inhib-
itors that prevent the formation of the eIF4F complex by
interacting with eIF4E. Since each 4E-BP protein
contains a binding motif for eIF4E, their role in trans-
lation initiation overlaps substantially (Mader et al.,
1995; Siddiqui et al., 2012). 4E-BP1 is the most well
studied of the three isoforms, whereas literature on
4E-BP3 is sparse (Musa et al., 2016). mTORC1
phosphorylates 4E-BP1 and 4E-BP2 similarly. How-
ever, post-translational modifications, like deamida-
tion of asparagine, of 4E-BP2 can further increase its
phosphorylation by mTORC1 (Bidinosti et al., 2010).
Hypo-phosphorylated 4E-BPs strongly bind to eIF4E,
rendering it incapable of binding with eIF4G (Khoutorsky
and Price, 2018). Phosphorylation of 4E-BPs by mTORC1
weakens its affinity toward eIF4E, allowing for the eIF4F
complex to be formed and thereby increasing 59 cap-
dependent translation.

Another downstream effector of mTORC1 is a group
of serine/threonine kinases, S6Ks, that regulate cellu-
lar metabolism, cytoskeletal organization, transcrip-
tion, and protein synthesis (Tavares et al., 2015). In
mammals, S6Ks are encoded by two genes, RPS6KB1
and RPS6KB2, giving rise to two protein isoforms,
S6K1 and S6K2, respectively. S6K kinases belong to
the AGC kinase family, which includes the cyclic-
nucleotide–dependent protein kinase A, G, and C.
Different translational start sites of S6K1 and S6K2
predominantly give rise to two isoforms of each pro-
tein: p70-S6K1, p85-S6K1, p54-S6K2, and p56-S6K2.
Among these, p70S6K1 is the most widely studied and
heavily associated with mTORC1 activation (Tavares
et al., 2015). Upon phosphorylation by mTORC1, p70-
S6K1 mobilizes from the cytosol into the nucleus
especially in response to growth factor signaling
(Rosner and Hengstschläger, 2011). The primary
target of phosphorylation for the S6Ks is the ribo-
somal protein S6 (rpS6) (Pende et al., 2004). Since
rpS6 is part of the 40S ribosomal subunit, phosphor-
ylation of rpS6 regulates the translation of proteins
(Kawasome et al., 1998; Chauvin et al., 2014). How-
ever, the exact mechanism by which phosphorylation
of rpS6 by S6Ks modulates the activity of ribosomes
is not well understood. Additionally, phospho-S6K1
targets programmed cell death protein 4 (PDCD4) and
eIF4B. The phosphorylation of PDCD4 dissociates it
from eIF4A, allowing the initiation factor to join the
eIF4F complex via eIF4G (Yang et al., 2003). S6K1
phosphorylation of eIF4B facilitates its binding to the
initiation complex, enhancing eIF4A activity and
promoting translation (Holz et al., 2005; Shahbazian
et al., 2006). Furthermore, phosphorylated eIF4B acts
as a scaffold for S6K1-mediated phosphorylation of
eIF3, thereby enhancing the interaction between eIF3
and poly(A)-binding protein (PABP)-interacting pro-
tein 1 and increasing translation (Holz et al., 2005;
Martineau et al., 2008, 2014). By phosphorylating
rpS6, PDCD4, eIF3, and eIF4B, mTORC1-S6K1 pro-
motes translation initiation and protein synthesis.

This discussion of the biochemical targets of mTOR
leaves the impression that this kinase controls all cap-
dependent translation, but this does not seem to be the
case. Elegant translation profiling studies demonstrate
that mTORC1 specifically regulates the translation of
mRNAs that contain TOP sequences in their 59 UTR
near the cap of the mRNA (Thoreen et al., 2012). A
relatively small number of mRNAs contain these TOP
sequences. A very recent study suggests that as few as
500 mRNAs are targeted by mTORC1 (K. B. Jensen
et al., preprint, DOI: https://doi.org/10.1101/2020.04.18.
047571).Many of thesemRNAs encode proteins that are
critical for translation regulation processes, such as
ribosomal proteins and other proteins involved in
ribosomal biogenesis. This is likely a key reason that
mTORC1 activity appears to play an outsized role in
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translation regulation. By targeting the translation of
a small number of mRNAs that are critical for overall
cap-dependent translation, mTORC1 activation can lead
to profound changes in cellular translation capacity.
2. Extracellular Signals Modulate Mammalian/

Mechanistic Target of Rapamycin Complex 1 Activity.
mTORC complexes act as a gateway to integrate
extracellular signals with intracellular signaling mech-
anisms, allowing the cell to respond appropriately to its
environment. Both variants of mTORC respond to
extracellular stimuli; however, the bulk of literature
has focused on mTORC1 signaling. It is only beginning
to become apparent that mTORC2 activation is medi-
ated by growth factor signaling (Jhanwar-Uniyal et al.,
2019). Various receptors on the plasma membrane
activate secondary messengers that converge upon
mTORC1, some of which enhance, whereas others
inhibit, mTORC1 activity. This allows for a fine-tuned
response to a changing extracellular environment.
Phosphoinositide 3-kinase (PI3K)-Akt pathway is an

intracellular pathway that regulates cell cycle and
growth. Through this pathway, cells are able to discern
the current metabolic state of the organism and react
accordingly. As such, growth factors, such as insulin,
activate the PI3K-Akt axis, which stimulates mTORC1
activity (Fig. 1). The binding of insulin or insulin-like
growth factor to their respective receptors activates
PI3K, which in turn leads to the phosphorylation and
plasma membrane localization of Akt (Showkat et al.,

2014; Zhao et al., 2015). Among other effects, activated
Akt phosphorylates tuberous sclerosis protein (TSC) 2
and suppresses the GTPase-activating capability of the
TSC complex consisting of TSC1 and TSC2 (Inoki et al.,
2002; Tahmasebi et al., 2018). The TSC complex
activates the GTPase activity of Ras homolog enriched
in brain (RHEB) protein, converting the mTORC1
activating RHEB-GTP to RHEB-GDP (Inoki et al.,
2003a,b). As a result, Akt-mediated repression of TSC
sustains RHEB-GTP, thereby promoting mTORC1 ac-
tivity. Akt also phosphorylates and inhibits PRAS40,
the inhibitory subunit of mTORC1 (Oshiro et al., 2007;
Wiza et al., 2012). By alleviating the brakingmechanisms
(i.e., inhibition of the TSC complex and PRAS40), PI3K-
Akt activation activates mTORC1-mediated translation.

Efficient cap-dependent mRNA translation is en-
hanced by the circulation of the mRNA, during which
the scaffolding protein, eIF4G, interacts with both the 59
cap as well as the poly(A) tail of the mRNA (Khoutorsky
and Price, 2018). This circularization is mediated by
PABP. The poly(A) tail is further lengthened by the
binding of the cytoplasmic polyadenylation element–
binding protein to a cytoplasmic polyadenylation ele-
ment region in the 39UTR (Richter, 2007). The elongated
poly(A) tail protects the mRNA from degradation, enhan-
ces circularization, and promotes translation (Kim and
Richter, 2007; Martineau et al., 2008). Recent work
demonstrates that PABP is expressed extensively
throughout the peripheral nervous system, and com-
petitively inhibiting PABP reduces nascent protein
synthesis and pain hypersensitivity after injury and
inflammation (Barragán-Iglesias et al., 2018).

B. Mitogen-Activated Protein Kinase Signaling
and Translation

The MAPKs are serine/threonine kinases that are
grouped into three families: ERK1/2, c-Jun N-terminal
protein kinase, and p38 kinase (Cargnello and Roux,
2011; Roux and Topisirovic, 2018). Each family further
consists of highly conserved, sequentially acting kinases:
an MAPK, an MAPK kinase (MAPKK), and an MAPKK
kinase. The three-tierMAPK cascade is usually initiated
by the phosphorylation of MAPKK kinase and/or the
binding of a Ras/Rho GTPase followed by phosphoryla-
tion and activation of MAPKK and subsequent phos-
phorylation ofMAPK on threonine and tyrosine residues
(Cargnello and Roux, 2011; Roux and Topisirovic, 2018).
Activated MAPK phosphorylates MAPK-activated pro-
tein kinases, among which p90 ribosomal S6 protein
kinases and MAPK-interacting kinases (MNKs) directly
regulate mRNA translation.

1. Mitogen-Activated Protein Kinase–Interacting
Kinases Phosphorylate Eukaryotic Elongation Factor
4E to Regulate the Translation of a Distinct Subset of
mRNAs. MNK proteins are encoded by two genes,
MKNK1 and MKNK2, with two splice variants each,
giving rise to four isoforms (MNK1a, MNK1b, MNK2a,

Fig. 1. Regulation of eIF4E-mediated translation initiation. Extracellu-
lar factors, like cytokines and growth factors, induce intracellular
signaling pathways that modulate eIF4E-dependent protein synthesis
in a pathway-specific manner. Ras/Raf-MNK signaling phosphorylates
eIF4E enhancing the expression of certain genes. Activation of mTORC1
relieves 4E-BP inhibition and thereby increases eIF4E-mediated trans-
lation. AMPK stimulation further fine-tunes translation initiation by
inhibiting mTORC1 and Raf signaling. MEK, mitogen-activated protein
(MAP) kinase/extracellular signal-regulated kinase (ERK) kinase.
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andMNK2b) that vary at their C termini (Scheper et al.,
2003; O’Loghlen et al., 2004). The long isoforms,
MNK1a and MNK2a, are predominantly expressed in
the cytosol, whereas the shorter isoforms, MNK1b and
MNK2b, show equal nuclear and cytoplasmic expres-
sion (Buxade et al., 2008). In mice, only MNK1a and
MNK2a isoforms have been identified (Scheper et al.,
2003; Proud, 2015). MNK1 binds to both ERK and p38
MAP kinase, whereas the more constitutively active
isoform, MNK2, interacts with ERK and mTORC1
(Waskiewicz et al., 1997; Ueda et al., 2004; Xie et al.,
2020). Upon binding, ERK phosphorylates at least two
threonine residues (T197, T202) on MNK1/2 to increase
its catalytic activity (Waskiewicz et al., 1999), but
mTORC1 phosphorylation of MNK2 at Ser274 (Xie
et al., 2020) and Ser437 (Stead and Proud, 2013)
suppresses MNK2 activity. The most well known target
of MNK1/2 is the S209 site on the eIF4E subunit of
the eIF4F complex (Waskiewicz et al., 1999) (Fig. 1).
The scaffolding subunit of eIF4F, eIF4G, facilitates the
binding of MNK1/2 to eIF4E, suggesting that MNK-
mediated phosphorylation of eIF4E may occur after or
during the formation of the eIF4F complex (Pyronnet
et al., 1999). Although both MNK1 and MNK2 phos-
phorylate eIF4E, MNK1-mediated phosphorylation of
eIF4E is considered “inducible” since MNK1 basal
activity is typically low in a cell (Scheper et al., 2003),
and activation of either ERK or p38 MAPK induces
a strong MNK1 response (Wang et al., 1998).
The phosphorylation of eIF4E is typically not corre-

lated with any change in global translation (McKendrick
et al., 2001). As such, nonphosphorylatable eIF4E mu-
tant (S209A) mice develop normally (Furic et al., 2010),
suggesting that eIF4E phosphorylation serves a more
nuanced regulatory function in translation rather than
influencing bulk translation. It was further found that
eIF4E phosphorylation selectively increases the trans-
lation efficiency of certain genes, particularly those
involved in synaptic plasticity (Gkogkas et al., 2014;
Amorim et al., 2018a), oncogenesis (Musa et al., 2016),
inflammation (Su et al., 2015), and, more recently, pain
(Moy et al., 2017, 2018b). Genes sensitive to changes in
eIF4E levels contain long, structured secondary compo-
nents in their 59UTR, which require the helicase activity
of eIF4A prior to initiation (Koromilas et al., 1992;
Svitkin et al., 2001). The recruitment of eIF4A to the
initiation complex by eIF4E is thought to link the
translation sensitivity of these genes to changes in eIF4E
expression.However, the effect of eIF4Ephosphorylation
in recruiting eIF4Aand/or other initiation factors has not
been demonstrated. Structural and biophysical data
suggest that phosphorylation of eIF4E reduces its affin-
ity to the 59 cap (Scheper and Proud, 2002; Khan and
Goss, 2018). Excessive phosphorylation of eIF4E reduces
cap-dependent translation while increasing cap-
independent translation possible via internal ribo-
some entry site structures (Knauf et al., 2001; Scheper

and Proud, 2002; Thompson and Gilbert, 2017).
Phosphorylated eIF4E also stabilizes the binding of
the g interferon–activated inhibitor of translation
complex with eIF4F, which in turn represses the
translation of a subset of proinflammatory circular
mRNAs (Amorim et al., 2018a). Dephosphorylation of
eIF4E removes the g interferon–activated inhibitor of
translation complex by reducing its affinity for eIF4F
and subsequently enhances translation of these
mRNAs (Amorim et al., 2018b). Thus, it is likely that
phosphorylation of eIF4E influences multiple mecha-
nisms of translation that impact only a small subset of
mRNAs. In any case, inhibiting MNK-mediated phos-
phorylation of eIF4E has proven beneficial in various
pain models, suggesting that MNK is an important
pain target (see below).

C. The AMP-Activated Protein Kinase Pathway

The hydrolysis of phosphate bonds of ATP provides
the energy required for many cellular processes (Camici
et al., 2018). As a nucleoside triphosphate, ATP is an
important precursor to the nucleic acid backbone of
DNA and RNAmolecules. Monitoring levels of ATP and
its reduced forms, ADP and AMP, is crucial to the
survival of the cell. With only one phosphate group,
AMP does not possess any high-energy phosphoanhy-
dride bonds, unlikeADPandATP, and hence represents
a state of depleted energy (Jeon, 2016). AMP-activated
protein kinase (AMPK) was initially identified as
a sensor of AMP. Under energetic stress, homeostatic
processes, such as glycolysis and mitochondrial respi-
ration recover ATP by metabolizing nutrients like
glucose (Burke, 2017).

AMPK is a trimeric complex composed of a catalytic a
subunit and regulatory b and g subunits (Davies et al.,
1994; Xiao et al., 2011). There are two isoforms of a and
b subunits and three isoforms of the g subunit, each
denoted by 1, 2, and 3 after the Greek letter, respec-
tively. Each subunit is slightly different in function, and
the combination of various subunits provides diversity
in AMPK activity (Ross et al., 2016). Themost prevalent
isoforms of AMPK subunits are a1, b1, and g1, although
other isoforms are known to be highly expressed in
specific cell populations like skeletal muscle (Thornton
et al., 1998; Kim et al., 2016). Allosteric modulation and
phosphorylation of AMPK work in tandem to regulate
the kinase activity of the a subunit. Phosphorylation of
the a subunit at T172 enhances AMPK kinase activity
(Woods et al., 2003). ATP competes with AMP and ADP
to bind to the cystathionine b-synthetase (CBS) 3 site on
the g subunit to allow phosphatase access to the T172
residue on the a subunit, preventing the activation of
the catalytic subunit (Oakhill et al., 2010; Jeon, 2016).
In this manner, the ratios of AMP to ATP and ADP to
ATP determine the activation state of AMPK. Under
energetic stress, high levels of AMP and ADP out-
compete ATP for the CBS3 site on the g subunit
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preventing phosphatases access to T172 on the a sub-
unit, whereby a phosphorylated, active state is main-
tained (Jeon, 2016). In addition, AMP and ADP binding
to CBS3 enhances phosphorylation of AMPK by liver
kinase B1, which depends on themyristoylation of the b
subunit (Oakhill et al., 2010). AMP also acts as an
allosteric activator of AMPK when bound to the CBS1
motif of the g subunit (Suter et al., 2006). An increase in
intracellular Ca2+, an indication of cellular activity, also
promotes AMPK activity via phosphorylation by cal-
cium/calmodulin-dependent kinase kinase 2. A recent
report found that calcium/calmodulin-dependent kinase
kinase 2–AMPK interaction was supported by stromal
interaction molecule 2, a Ca2+ sensor for store-operated
Ca2+-entry, in a Ca2+-dependent manner (Chauhan
et al., 2019).
1. AMP-Activated Protein Kinase Suppresses

Mammalian/Mechanistic Target of Rapamycin and
Mitogen-Activated Protein Kinase Signaling. Protein
synthesis is an energy-intensive process requiring high-
energy phosphate bonds at each step, starting from
transcription to translation to protein folding and other
post-translational modifications. Neuronal cells, espe-
cially sensory neurons, are plastic and undergo pheno-
typic changes in response to metabolic stress, hypoxia,
ischemia, and glucose deprivation. As such, AMPK is
a critical component in maintaining energy homeostasis
in every cell, in particular when faced with metabolic
challenge (Jeon, 2016). AMPK activation results in im-
paired protein synthesis by affecting transcription (Shin
et al., 2016; Ke et al., 2018), ribosomal RNA synthesis
(Hoppe et al., 2009), and translation elongation (Deng
et al., 2017). This is because AMPK is crucial for
stimulatingATP-producing catabolic pathways, suppress-
ing ATP-consuming pathways, and regulating protein
synthesis via its control overmTOR andMAPK signaling.
Upon activation, AMPK phosphorylates raptor, a reg-

ulatory subunit of mTORC1, at S722/S792 residues as
well as themTOR kinase at the T2446 site (Cheng et al.,
2004). Phosphorylation of raptor promotes the binding
of the inhibitory 14-3-3 protein to raptor, whereas
phosphorylation of mTOR can suppress its catalytic
activity (Cheng et al., 2004; Gwinn et al., 2008).
Additionally, AMPK also activates TSC2 by phosphor-
ylating S1387 and T1271 residues, indirectly inhibiting
mTORC1 by stimulating the GTPase activity of RHEB
(Inoki et al., 2003a,b; Huang and Manning, 2008). In
this manner, AMPK powerfully inhibits mTOR activity
(Fig. 1).
Moreover, AMPK also regulates MAPK pathway via

its phosphorylation of B-rapidly accelerated fibrosar-
coma kinase, a member of the MAPK pathway (Shen
et al., 2013; Hardie, 2014) (Fig. 1). Phosphorylation of
B-rapidly accelerated fibrosarcoma kinase allows it to
associate with 14-3-3 proteins, which blocks its interac-
tion with kinase suppressor of Ras 1 scaffolding protein
and disrupts downstream signaling (Shen et al., 2013).

Therefore, AMPK activation can lead to suppression of
mTOR and MAPK activity, limiting protein synthesis.
This is an important factor for treating the pathology of
chronic pain, which will be discussed in later sections.

D. The Integrated Stress Response Shapes
Unconventional Translation

The ISR refers to a collection of homeostatic cellular
processes converging upon the phosphorylation of
eIF2a at Ser51 [extensively reviewed by Pakos-
Zebrucka et al. (2016)]. The ISR acts as a sensor for
internal and external stressors, such as accumulation of
unfolded proteins, viral infection, lack of amino acids,
and heme deficiency. Four serine/threonine kinases
phosphorylate eIF2a, leading to a reduction in global
translation while increasing the translation of stress-
resistant genes, like activating transcription factor
(ATF) 4 (Baird and Wek, 2012; Bretin et al., 2016;
Rozpedek et al., 2016). The ISR also promotes cell death
under severe conditions (Sano and Reed, 2013; Chan
et al., 2015; Rozpedek et al., 2016). eIF2a kinases share
considerable homology and are encoded by EIF2AK1,
EIF2AK2, EIF2AK3, and EIF2AK4, each giving rise to
heme-regulated inhibitor (HRI), RNA-dependent pro-
tein kinase R (PKR), PKR-like ER kinase (PERK), and
general control nonderepressible 2 (GCN2) kinases,
respectively (Pakos-Zebrucka et al., 2016) (Fig. 2). Upon
stimulation, these kinases oligomerize and autophosphor-
ylate, activating secondary signaling cascades (Bertolotti
et al., 2000; Vattem et al., 2001; Narasimhan et al., 2004;
Igarashi et al., 2011; Wang et al., 2018). Although each
kinase is preferentially activated by a specific stressor,
there is appreciable overlap in their response to phos-
phorylate eIF2a, suggesting that ISR is a cooperative
endeavor. For example, all four kinases become activated
by oxidative stress (Pyo et al., 2008; Baker et al., 2012;
Suragani et al., 2012; Verfaillie et al., 2012), and PERK
andGCN2 compensate for each otherwhen either of them
is knocked down in models of cellular stress (Devi and
Ohno, 2013; Lehman et al., 2015).

eIF2a is a regulatory subunit of the eIF2 complex
consisting of additional b and g subunits (Pakos-
Zebrucka et al., 2016; Khoutorsky and Price, 2018)
(Fig. 2A). The eIF2 complex binds to GTP and then
catalyzes hydrolysis of GTP to GDP to regulate the
initiation of mRNA translation. Conversion of the now
inactive eIF2-GDP complex to the active eIF2-GTP is
mediated by eIF2B, a guanine nucleotide exchange
factor (Khoutorsky and Price, 2018; Anand and Walter,
2020). Under conditions of cellular stress, phosphoryla-
tion of eIF2a stabilizes the inactive eIF2-GDP-eIF2B
complex, preventing the recycling of GDP and reducing
the ability of eIF2 to further initiate translation (Fig. 2A).
The concentration of eIF2a is many-fold higher than
eIF2B, such that phosphorylation of even a fewmolecules
of eIF2a has a drastic impact on translation. Ultimately,
induction of phospho-eIF2a leads to a reduction in general
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translation while increasing the translation of mRNAs
with an upstream open reading frame (uORF) in their 59
UTR (Barbosa et al., 2013) (Fig. 3). Many of these genes
allow the cell to appropriately respond to stress, such as
ATF4, whereas other genes may code for other trans-
lational repressors (Martínez et al., 2018). ATF4, themost
widely studied transcription factor induced by phosphor-
ylation of eIF2a, increases the expression of ER chaper-
ones tomitigateER stress (McQuiston andDiehl, 2017). It
also induces the expression of CHOP, a proapoptotic
transcription factor, which in turn enhances the
expression of more apoptotic genes (Harding et al.,
2000). ATF4 and CHOP expression negatively regulate

the phosphorylation of eIF2a through the expression of
protein phosphatase 1 (PP1), allowing the cell to recover
general translation (Han et al., 2013). In this manner,
stressors, like accumulation of unfolded proteins, may
shape the translatome and, hence, the fate of a cell.

From among the four kinases of eIF2a, PERK
signaling is the most well characterized and associated
with a variety of intracellular and extracellular stres-
sors, including accumulation of unfolded protein (Hetz
et al., 2013), Ca2+ dyshomeostasis (van Vliet et al.,
2017), mitochondrial dysfunction (Verfaillie et al., 2012;
Lebeau et al., 2018), oxidative stress (Verfaillie et al.,
2012), and inflammation (Meares et al., 2014). PERK is

Fig. 2. Modulation of the integrated stress response. (A) The ternary complex, consisting of GTP-bound eIF2 and the initiator Met-tRNAi, aids in the
recognition of the start codon. The GTP bound to eIF2 is hydrolyzed upon encountering the start codon. The resulting GDP-eIF2 dissociates from the
initiation complex and is recycled by eIF2B for the next round of initiation. Under cellular stress, four kinases (PERK, PKR, GCN2, and HRI)
phosphorylate eIF2a at Ser51 and initiate the ISR, which inhibits global translation by sequestering available eIF2B. (B) Various small molecules are
known to modulate the ISR, particularly by maintaining phosphorylation of eIF2a (e.g., salubrinal, guanabenz, and sephin1) or by activating eIF2B
(e.g., ISRIB). (Ci) Phosphorylation of eIF2a stabilizes the interaction of two molecules of eIF2 with eIF2Ba and eIF2Bd subunits of eIF2B, inducing
a conformational rearrangement that prevents the GDP to GTP exchange and competes with the binding of Met-tRNAi. In this manner, phospho-eIF2a
acts as a noncompetitive inhibitor of eIF2B [Gordiyenko et al. (2019), PDB: 6QG0]. (Cii) ISRIB restores eIF2B levels by facilitating the binding of two
tetramer subunits, particularly by interacting with eIF2Bd and eIF2Bb [Zyryanova et al. (2018), PDB: 6EZO]. (D) Although phosphorylation of eIF2a
suppresses global translation, it induces the expression of certain genes, such as ATF4, CHOP, and GADD34. GADD34 is a stress-induced regulatory
subunit of PP1, which dephosphorylates phospho-eIF2a to normalize translation. Recent structural and functional analysis shows that GADD34
promotes binding of PP1 and phospho-eIF2a via its lysine (K), valine (V), arginine (R), and phenylalanine (F).(KVRF) and proline (P), glutamic acid (E),
serine (S), and threonine (T) (PEST) motifs, respectively [Choy et al. (2015), PDB: 4XPN]. The PEST sequences in GADD34 are not found in CreP,
a constitutively active PP1 regulatory subunit, and may represent a novel target for the suppression of ISR-induced GADD34.
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a transmembraneERresidentprotein bound toa luminal
chaperone, glucose-regulated protein 78-kDa [GRP78;
also known as binding immunoglobulin protein (BiP)].
With the accumulation of unfolded proteins in the ER,
BiP dissociates from PERK’s luminal domain and binds
to hydrophobic domains of nascent/unfolded proteins,
freeing PERK to oligomerize and autophosphorylate
(Bertolotti et al., 2000). The dissociation of BiP from
PERK and other ER transmembrane proteins, inositol-
requiring enzyme 1 and ATF6, initiates homeostatic
mechanisms in a process known as unfolded protein
response (Hetz et al., 2013). Recent evidence also
suggests that misfolded proteins directly bind to the
luminal domain of PERK and induce oligomerization
and activation of the kinase (Wang et al., 2018).
Activation of PERK and subsequent eIF2a phosphory-
lation reduces the synthesis of new proteins and thereby
lessens the ER load.
As noted above, despite the suppression of general

translation during bouts of stress, the cell continues to
synthesize proteins to address the stressor, such as
chaperones (Starck et al., 2016), and ensure the survival
of the cell. This observation shows that alternative
mechanisms of protein synthesis in addition to 59 cap-
mediated translation initiation exist. A recent study
profiled ribosome-associated mRNA in cultured human
cells stressed with sodium arsenite, a chemical stressor

and a potent inducer of eIF2 phosphorylation (Andreev
et al., 2015). The authors found that nearly all stress-
resistant genes had at least one uORF in their 59 UTR
that repressed the coding gene product under normal
conditions. Such is the case for ATF4 and DDIT3
(i.e., transcript encoding CHOP) translation, which
relies on delayed reinitiation and leaky translation,
respectively (Fig. 3). uORF-mediated translation is
extensively reviewed by Barbosa et al. (2013), Young
and Wek (2016), and Jaud et al. (2020). Under normal
conditions, when eIF2 is constantly replenished, a 59
uORF sequence (uORF1) on the ATF4 mRNA codes for
a short peptide, leading to the dissociation of the eIF2-
containing ternary complex, whereas the 40S ribosome
continues to scan the transcript until it encounters
another uORF (uORF2) (Vattem and Wek, 2004). The
coding sequence of uORF2 overlaps out of frame with
the main ORF (mORF) coding sequence. Because of
ample GTP-bound eIF2 levels, the uORF2 sequence is
efficiently translated, and the ribosomal complex dis-
sociates midway through the mORF, suppressing ATF4
translation. When phospho-eIF2a levels are high, the
scanning ribosome skips the initiation site of the second
uORF because of the delay in the restoration of the
ternary complex with eIF2-GTP. The ribosome contin-
ues scanning and reaches the ATF4 mORF coding
sequence, by which time the eIF2 complex becomes

Fig. 3. Other mechanisms of translation regulation. Despite a loss in the ternary complex after ISR, the synthesis of certain proteins, like CHOP and
ATF4, is enhanced by leaky scanning (A) and delayed reinitiation (B) mechanism, respectively. The reduced availability of eIF2 in stressed conditions
allows for the scanning ribosomes to bypass (i.e., leaky scanning) the uORF in the 59 UTR and translate the mORF. This is the case for CHOP and
GADD34. Some genes, like ATF4, contain multiple uORFs in which one of the uORFs overlaps with the mORF in an out-of-frame manner, thereby
suppressing the expression of the main gene. During ISR, the delay in eIF2 recycling allows for the scanning ribosome to skip the start codon of uORF
and instead translate the mORF.
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available, ultimately allowing for the expression of
ATF4 (Vattem and Wek, 2004). The DDIT3 transcript
also contains a uORF in its 59 UTR, which codes for
a 34–amino acid peptide that stalls scanning ribosomes
and prevents translation of the mORF (Jousse et al.,
2001; Palam et al., 2011; Young et al., 2016). This
indicates that the presence of a uORF can lead to
translational repression of mRNAs in the absence of
cellular stress. Under conditions of cellular stress, the
scanning ribosome bypasses the short uORF sequence
(e.g., a “leaky” ribosome) and instead translates the
DDIT3 coding sequence. Yet, other accounts suggest
that stress-induced translation requires the presence of
a uORF in the 59UTR to translate the coding sequence.
Stress-resistant genes like PPP1R15B and IFRD1 re-
quired the uORF to confer resistance to eIF2 suppres-
sion. Mutations in the 59 uORF were able to abrogate
the stress-resistance phenotype, particularly that of
PPP1R15B, which codes for growth arrest and DNA
damage-inducible protein 34 (GADD34), a phosphatase
required to dephosphorylate eIF2a and alleviate the
ISR (Andreev et al., 2015). Why and how some uORFs
inhibit translation of the mORF coding sequence when
others stimulate translation still remain unknown.
However, it has been proposed that the translation of
uORFs depends upon the distance of the start site from
the 59 cap, the context of the start codon, the length of
the uORF, secondary structures in the mRNA, conser-
vation across species, the amount of uORFs in the 59
UTR, the position of the stop codon, and the distance
between the uORFand themORF (Barbosa et al., 2013).
Altogether, these observations suggest that uORFs in
the 59 UTR finely regulate translation of genes in
a complex yet unconventional manner.
eIF2A, not to be confused with eIF2a, is a 65-kDa

protein that recruits methionine-bound initiator
tRNA to the 40S ribosomal subunit [see review by
Komar and Merrick (2020)] (Fig. 3). The function of
mammalian eIF2A is similar to yeast eIF2A and
prokaryotic initiation factor 2, suggesting that eIF2A
is the primeval mechanism of translation initiation
(Zoll et al., 2002). Although canonical translation with
the eIF2 complex requires GTP-dependent binding
of eIF2 to Met-tRNAi, eIF2A-mediated binding of
Met-tRNAi is codon-dependent and GTP-independent
(Komar and Merrick, 2020). In addition to using AUG as
a start codon, eIF2A-mediated translation initiation
uses CUG and UUG codons (Kearse and Wilusz,
2017). The viability and overall healthiness of the
recently characterized eIF2A2/2 mice suggest that
eIF2A-mediated translation does not have a major
impact on protein synthesis under physiologic con-
ditions (Golovko et al., 2016). How eIF2A2/2 animals
respond to stressors remains to be investigated. Un-
like the prokaryotic yeast initiation factor 2, eIF2A
does not physically bind to the 40S ribosome and
does not hydrolyze GTP, which is required for the

dissociation of the protein from the ribosome and to
resume the next phase of translation (Zoll et al.,
2002). Recently, eIF5B, a GTPase that stabilizes
ribosomal docking to the start codon, was shown to
function synergistically with eIF2A under ER stress
but not under normal conditions, suggesting that
stress-induced eIF2A-eIF5B interaction may induce
the translation of stress-resistant genes (Kim et al.,
2018). Furthermore, ER stress-induced BiP trans-
lation was shown to be mediated by a uORF in the
HSPA5 gene that required initiation by eIF2A at
a UUG start site (Starck et al., 2016). eIF2A has also
been demonstrated to interact with internal ribosome
entry site structures within the mRNA to recruit
ribosomes and translate genes, particularly c-Src,
a transcription factor associated with cellular sur-
vival and proliferation (Kwon et al., 2017b) (Fig. 3).
Taken together, these observations suggest that
multiple mechanisms of unconventional translation
work synergistically to synthesize proteins under
conditions of stress despite the suppression of eIF2a-
mediated global translation.

VI. Targeting Translation in Chronic Pain

A. Evidence for Injury-Induced Translational
Dysregulation in Sensory Neurons

After injury, cells release a variety of signaling
ligands that act on nociceptors, and injury to nociceptor
axons themselves also induces changes in cellular
signaling in these neurons (Reichling et al., 2013;
Kandasamy and Price, 2015; Pinho-Ribeiro et al.,
2017; Price and Gold, 2018). Axonal endings can become
sensitized to thermal, chemical, and mechanical stim-
ulation, likely as a means to protect the injured area
from further damage. However, in many cases, sensiti-
zation persists even after the injury resolves, leading to
persistent hyperalgesia. These neurons can also become
spontaneously active, which is likely an underlying
cause of many neuropathic pain states (Campbell and
Meyer, 2006; Devor, 2006; Serra et al., 2012; North
et al., 2019). Many of these changes in nociceptor
sensitivity and excitability are associated with trans-
lation regulation signaling, resulting in altered gene
expression.

Elevated levels of translational control pathway
components, such as eIF4E, P13K, AKT, ERK, mTOR,
S6, and p38, are found in their active, phosphorylated
forms in sensory neurons of rodents with peripheral
nerve injury and persistent inflammation (Jiménez-
Díaz et al., 2008; Géranton et al., 2009; Melemedjian
et al., 2011; Persson et al., 2011; Moy et al., 2017, 2018b;
Megat et al., 2019a). Some of these findings have been
recapitulated in humans, in which elevated levels of
activated p38 and ERK have been detected in neuromas
of human amputees (Black et al., 2008). A likely driver
of these changes in signaling is release of inflammatory
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mediators from cells at the injury site or from immune
cells that may infiltrate or proliferate within an in-
jured nerve. Inflammatory cytokines, chemokines,
and neuropeptides bind to neuronal receptors that
signal to activation of the mTOR and MAPK path-
ways, leading to changes in translation that are
connected to downstream events engaged by these
signaling pathways. Examples of this are NGF and
brain-derived neurotropic factor (BDNF), which bind
to neuronal TRK receptors to trigger downstream
translation cascades via the mTORC1 and MAPK
pathways. Positive feedback loops in this type of
signaling may also play a role in the exacerbation of
nociceptive sensitization by driving peripheral and
central sensitization. For instance, DRG neurons
exposed to NGF show increased expression of BDNF
mRNA and protein (Kerr et al., 1999; Mannion et al.,
1999), and it was recently discovered that BDNF
translation is dependent on MAPK-mediated eIF4E
phosphorylation (Moy et al., 2018a). Because eIF4E
phosphorylation is increased in sensory neurons after
injury (Megat et al., 2019a; Melemedjian et al., 2011),
it is likely that BDNF overexpression is mediated by
activation of eIF4E-dependent translation, which
may in turn cause central sensitization by acting on
the first synapses of the nociceptive pathway in the
spinal dorsal horn (Kerr et al., 1999; Thompson et al.,
1999; Zhao et al., 2006; Sikandar et al., 2018).
Increased signaling through translation control

pathways also causes expression differences in pro-
teins that directly contribute to the functional prop-
erties of sensory neurons. For example, neuropathic
pain is associated with increased expression of
voltage-gated sodium channel 1.8 (Nav1.8) at the
lesion site, which potentially gives rise to ectopic
activity (Gold et al., 2003). Pharmacological inhibi-
tion or knockdown of Nav1.8 also attenuates neuro-
pathic pain behaviors in rodent models (Lai et al.,
2004; Hameed, 2019). Nav1.8 protein is also signifi-
cantly upregulated in neuromas from human patients
with limb amputations (Black et al., 2008). Interest-
ingly, there is a decrease in Nav1.8 mRNA transcripts
in the soma (Okuse et al., 1997; Thakor et al., 2009)
but a marked increase in mRNA encoding the channel
in axotomized fibers (Thakor et al., 2009; Ruangsri
et al., 2011), suggesting that trafficking of mRNA
from the soma to the fibers is occurring after nerve
injury. Nav1.8 shRNA treatment reduces Nav1.8
mRNA in the injured nerve but not the soma and
reverses pain behaviors after peripheral nerve injury
(Ruangsri et al., 2011). Interestingly, increased axo-
nal trafficking of Nav1.8 transcripts after nerve in-
jury occurs via an injury-induced splicing that
lengthens the 39 UTR, presumably altering RNA-
binding protein association (Hirai et al., 2017). These
findings around one of the most widely studied ion
channels in nociceptors reveal how mRNA trafficking

and localized mRNA translation in injured axons are
instrumental in key aspects of underlying neuronal
plasticity that drives neuropathic pain.

B. Mammalian/Mechanistic Target of Rapamycin
Complex 1 and Mammalian/Mechanistic Target of
Rapamycin Kinase Inhibitors

One of the first translation regulators to be implicated
in pain neurobiology was mTORC1 (Price et al., 2007;
Jiménez-Díaz et al., 2008; Asante et al., 2009; Géranton
et al., 2009). As reviewed above, mTORC1 controls
phosphorylation of 4E-binding proteins (4E-BPs) and
p70-S6 ribosomal kinase (S6K1/2). When phosphory-
lated, 4E-BPs initiate translation by allowing assembly
of the eIF4F complex and its binding to the mRNA cap,
whereas S6K1/2 activates other proteins that control
translation initiation and elongation (Zoncu et al., 2011)
(Fig. 1). Importantly, mTOR activity is enhanced in
the peripheral nervous system and in CNS pain-
neuromodulatory regions, such as the outer lamina of
the spinal dorsal horn, in a large number of rodent pain
models (Jiménez-Díaz et al., 2008; Géranton et al.,
2009; Melemedjian et al., 2011; Terenzio et al., 2018;
Megat et al., 2019a). These range from acute pain
models, such as the capsaicin (Megat et al., 2019b)
and formalin test (Price et al., 2007; Asante et al., 2009;
Xu et al., 2011), to inflammation (NorstedGregory et al.,
2010; Liang et al., 2013; Martin et al., 2017) and
neuropathic pain (Géranton et al., 2009; Asante et al.,
2010; Melemedjian et al., 2011; Uttam et al., 2018;
Inyang et al., 2019c; Megat et al., 2019a) models and
even into opioid-induced hyperalgesia models (Xu et al.,
2014). Therefore, mTORC1 is a core signaling molecule
causing neuronal plasticity that mediates pain sensiti-
zation in animal models. This makes it an enticing
candidate for therapeutic intervention.

Indeed, short-term inhibition of mTOR using the
specific inhibitor, rapamycin, attenuates nociceptive
behaviors and nociceptor plasticity in many models of
inflammatory and neuropathic pain (Price et al., 2007;
Géranton et al., 2009; Duan et al., 2018; Melemedjian
et al., 2010, 2013; Norsted Gregory et al., 2010; Obara
et al., 2011; Xing et al., 2020). Microinjections of
rapamycin and other mTOR inhibitors (rapalogues)
into CNS pain-neuromodulatory regions, such as the
anterior cingulate cortex and insular cortex, also have
profound effects on pain behaviors, neuronal excitabil-
ity, and synaptic plasticity in rodents (Kwon et al.,
2017a; Um et al., 2019; Kim et al., 2020). However,
chronic treatment with mTORC1 inhibitors in patients
can cause higher incidences of pain (Carracedo et al.,
2008; Budde et al., 2011; McCormack et al., 2011), even
leading in some cases to severe pain conditions that are
similar to complex regional pain syndrome (Witzig
et al., 2005; Molina et al., 2008; Massard et al., 2010).
These findings have been mechanistically replicated in
rodent models in which sham-treated animals display
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nociceptive behaviors after chronic dosing with rapa-
mycin (Melemedjian et al., 2013; Lisi et al., 2015). At the
molecular level, rapamycin inhibition of mTORC1
causes disinhibition of the S6K1/2–insulin receptor
substrate 1, resulting in activation of a feedback circuit
that drives MAPK activation (Carracedo et al., 2008;
Melemedjian et al., 2013). A longstanding finding that
rapamycin treatment enhances eIF4E phosphorylation
was thought to be solely driven by this compensatory
hyperactivation of MAPK signaling. However, cells
treated with rapamycin display enhanced eIF4E phos-
phorylation even when MNK1 is knocked down, sug-
gesting that mTOR activity directly contributes to
MNK2 phosphorylation of eIF4E (Wang et al., 2007).
Indeed, recent work has revealed thatmTORC1 directly
phosphorylates MNK2 to shut down its constitutive
activity (Xie et al., 2020).
ATP-competitive inhibitors of the mTOR kinase have

also been developed. These drugs inhibit both mTORC1
andmTORC2. These inhibitors, such as AZD8055, have
been extensively studied because of their antitumor
activity and are currently in clinical trials for cancer
(Chresta et al., 2010; Pike et al., 2013). Although these
compounds have not yet been investigated widely in
preclinical pain models, their efficacy will likely be
complicated by similar feedback signaling issues.
For example, AZD8055 causes inhibition of AKT,
leading to increased expression and activation of epi-
dermal growth factor receptor, which can trigger down-
stream signaling in the MAPK and Janus kinase/signal
transducer and activator of transcription proteins sig-
naling pathways (Wei et al., 2015). Our view is that
therapeutics that allosterically target mTORC1 or di-
rectly target the mTOR kinase are poor candidates for
pain therapeutics for two reasons. The first is because of
their potential for exacerbating pain or other symptoms
due to the feedback mechanisms discussed above.
Investigators in the cancer field have proposed that
mTOR inhibitors could be coupled with MAPK blockers
to prevent activation of the insulin receptor substrate
1–MAPK negative feedback circuit (Carracedo et al.,
2008), or that cotreatment with epidermal growth factor
receptor inhibitors could be used to block engagement of
other feedback mechanisms (Wei et al., 2015). However,
these approaches may be fraught with other issues
related to adverse side effects. The second is related to
the immune suppression caused by mTOR inhibitors.
This approach is an advantage when preventing organ
transplant rejection but is likely not tolerable for most
patients with chronic pain. Because these pathways
influence the translation of distinct subsets of mRNAs,
the physiologic responses to drugs targeting different
translation regulation pathways diverge. AMPK acti-
vators and MNK inhibitors do not appear to cause
immune suppression.
Investigating the role of mTOR signaling in chronic

pain states has unquestionably advanced the field in

terms of gaining a better understanding of the un-
derlying neurobiology that causes chronic pain. How-
ever, this is unlikely to be an approach that can be
directly adapted into a viable treatment option.

C. AMP-Activated Protein Kinase Activators

AMPK has emerged as a prime therapeutic target
for pain treatment because of its ability to simulta-
neously suppress mTOR and MAPK/ERK signaling
(Fig. 1) (Melemedjian et al., 2011; Tillu et al., 2012;
Khoutorsky and Price, 2018) without engaging feed-
back loops (Melemedjian et al., 2013) or causing
immunosuppression. Indirect and direct AMPK acti-
vators have shown efficacy in preclinical models of
chronic pain, although these drugs do, in some cases,
differ in their efficacy between sexes (Melemedjian
et al., 2011; Mao-Ying et al., 2014; Burton et al., 2017;
Afshari et al., 2018; Shiers et al., 2018; Das et al.,
2019; Inyang et al., 2019a,b,c). Indirect AMPK acti-
vators stimulate AMPK without binding to the ki-
nase, whereas direct AMPK activators bind directly to
a, b, or g subunits of the kinase to augment AMPK
activation (Hardie et al., 2012; Hardie, 2015). Indirect
AMPK activators can stimulate AMPK through a va-
riety of mechanisms, but one of the best understood
involves the class of molecules like metformin that
affect mitochondrial complex I activity, resulting in
changes in AMP/ATP levels in the cell (Shaw et al.,
2005; Xiao et al., 2013). Interestingly, a variety of
preclinical studies have now shown that indirect
AMPK activators are more efficacious at alleviating
both acute and chronic pain measures in rodent
models (Burton et al., 2017; Inyang et al., 2019a,b,c).
This likely occurs because injury decreases AMPK
phosphorylation in sensory neurons (Roy Chowdhury
et al., 2012; Inyang et al., 2019a), resulting in a de-
creased ability for direct AMPK activators to enhance
kinase activity. A core feature of indirect AMPK
activators is that they drive upstream activation of
kinases, like liver kinase B1 that phosphorylate the a
subunit of AMPK. This phosphorylation is needed to
fully activate the kinase. Direct activators of AMPK
are at least partially dependent on the phosphorylation
state of AMPK to enhance kinase activity (Timmermans
et al., 2014; Cameron and Kurumbail, 2016). If kinase
phosphorylation has been decreased through other
mechanisms, this would be expected to result in in-
creased efficacy of indirect (versus direct) AMPK acti-
vators, as is seen in many preclinical pain models
(Melemedjian et al., 2011; Roy Chowdhury et al.,
2012; Tillu et al., 2012; Han et al., 2014; Mao-Ying
et al., 2014; Alcocer-Gómez et al., 2015; Maixner et al.,
2015; Mejia et al., 2016; Inyang et al., 2019a,b).

One of themost interesting features of indirect AMPK
activator effects in preclinical models is that they
appear to be disease-modifying. For example, metfor-
min, an already FDA-approved type II diabetes drug
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that is safe to use in humans and an indirect AMPK
activator, resolves pain behaviors for several months
after only 1 week of dosing in neuropathic mice
(Melemedjian et al., 2011, 2013; Inyang et al., 2019c).
Additionally, certain comorbidities of chronic pain that
develop in preclinical models—particularly cognitive
impairment—are reversed after a week-long treatment
regimen inmice is completed (Shiers et al., 2018). There
is also evidence that metformin can be effective for the
treatment of pain in humans. In a retrospective study,
metformin usage was linked to reduced lumbar radi-
culopathy pain (Taylor et al., 2013), but another larger
retrospective study did not find a positive effect of
metformin (Smith and Ang, 2015). Metformin treat-
ment has also been linked to mobility improvements
and reductions in cartilage degradation in rodents and
humans with osteoarthritis, which may be a conse-
quence of improved pain outcomes (Wang et al., 2019;
Li et al., 2020a,b). Finally, positive results have been
reported for pain in a polycystic ovary syndrome trial
(Kiałka et al., 2016), and a preventative trial for
oxaliplatin neuropathy showed positive results for
metformin cotreatment (El-Fatatry et al., 2018). The
latter clinical finding is consistent with preclinical
literature showing efficacy for metformin in prevention
of chemotherapy-induced neuropathy (Mao-Ying et al.,
2014; Inyang et al., 2019b; Pereira et al., 2019). The
clinical results in pain trials with metformin to date are
promising and warrant further clinical trials.
An important unresolved question is whether the

antipain effects of metformin are mediated by AMPK.
Although the effects of metformin are consistent with
the effects of structurally different AMPK activators in
preclinical pain models, there are important differences
that we have cataloged in several recent studies. These
include sex differences and improved efficacy for met-
formin versus other AMPK activators (Burton et al.,
2017; Inyang et al., 2019a,b,c). We cannot rule out
metformin effects on other targets as an important part
of the mechanism of action of this compound. An
interesting possibility is that metformin can act as
a reactive glycation product scavenger (Mehta et al.,
2009). These reactive molecules play an important role
in pain sensitization (Bierhaus et al., 2012; Brings et al.,
2017; Liu et al., 2017; Barragán-Iglesias et al., 2019)
and may underlie some of the beneficial effects of this
compound in pain models and in patients.
Altogether, there is now a very large body of preclinical

literature and emerging clinical literature indicating
that indirect AMPK activators can be efficacious in
treating a wide range of chronic pain conditions. This
plethora of findings establishes AMPK as a promising
therapeutic target that should be vigorously pursued.
Compounds targeting AMPK already exist, are FDA-
approved, and are readily being used in humans
(i.e., metformin), creating an opportunity for rapid
clinical translation of the basic science advances

described above. Newer generation and more specific
AMPK activators may eventually make their way to
the clinic however, their induction of left ventricular
hypertrophy may be problematic for systemic exposure
to these drugs (Feng et al., 2017; Myers et al., 2017).

D. Mitogen-Activated Protein Kinase–Interacting
Kinase Inhibitors

MNK1/2 inhibitors are emerging as promising ther-
apeutic targets for pain management because of their
ability to inhibit eIF4E phosphorylation. Longstanding
evidence supports that eIF4E phosphorylation is ab-
normally elevated in sensory neurons after injury
(Melemedjian et al., 2011; Moy et al., 2017; Megat
et al., 2019a) and gives rise to the enhanced translation
of a subset of mRNAs. Some of these mRNAs, such as
Bdnf and Mmp9, are known to encode key molecules in
neuronal plasticity and nociceptor sensitization in
chronic pain (Furic et al., 2010; Gkogkas et al., 2014;
Amorim et al., 2018a; Moy et al., 2018a). Over a decade
of preclinical work supports that disruption of MNK-
eIF4E signaling dampens translation dysregulation
and nociceptor sensitization and treats chronic pain.
Transgenic mice that lack MNK isoforms and/or eIF4E
phosphorylation show diminished pain sensitization in
response to inflammatory mediators (Moy et al., 2017,
2018a), injury to nerves (Shiers et al., 2020), chemo-
therapeutic agents (Megat et al., 2019a), and even
interferons induced by viral infection (Barragán-
Iglesias et al., 2020). In this section, we will discuss
the currently available or in-development MNK inhib-
itors, evidence for MNK inhibition as a strategy for pain
treatment, and the future for drug development ofMNK
inhibitors.

One of the first identified compounds that targets
MNK1/2 is the antifungal agent known as cercospor-
amide (Sussman et al., 2004; Konicek et al., 2011).
Although this drug does inhibit MNK1/2 and subse-
quent eIF4E phosphorylation, it shows a higher selec-
tivity for MNK2 (IC50 of 11 nM) over MNK1 (IC50 of 116
nM) (Konicek et al., 2011). Additionally, its effects may
be compromised by its ability to inhibit other kinases,
including Janus kinase 3, activin receptor-like kinase 4,
GSK3B, and Pim1, although these are in the low
micromolar range (Konicek et al., 2011). Nevertheless,
the first preclinical experiments using cercosporamide
demonstrate that its use has profound effects on
nociceptor activity and analgesia. The first line of
evidence is based on in vitro work demonstrating that
sensory neuron hyperactivity caused by exposure to
inflammatory mediators like NGF or interleukin-6 is
blocked by cercosporamide (Moy et al., 2017). In a second
set of experiments, mice treated with cercosporamide
display reduced mechanical and thermal hypersensi-
tivity because of inflammation induced by NGF and
interleukin-6 and are protected from hyperalgesic
priming (Moy et al., 2017). Similar in vitro and in vivo
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findings have been replicated genetically in mice with
a knock-in null mutation in the phosphorylation site of
eIF4E [eukaryotic initiation factor 4E (4EKI)] and in
MNK1 and 2 double-KO animals (Moy et al., 2017).
Although promising, the selectivity concerns of cerco-

sporamide limit its usefulness as a tool compound for
probing MNK signaling, as it could be accompanied by
multiple off-target effects with acute or chronic dosing.
This and other factors have prompted the development
of a new generation of MNK inhibitors. Tomivosertib,
also known as eFT508, is a highly potent and specific
MNK inhibitor developed by eFFECTOR Therapeutics
for the treatment of cancer that is now in phase III
clinical trials (Thompson et al., 2017). Tomivosertib has
an IC50 of 2.4 nM for MNK1 and an IC50 of 1 nM for
MNK2 with excellent oral bioavailability (Reich et al.,
2018). Oral dosing of tomivosertib significantly reduces
eIF4E phosphorylation in the DRG and sciatic nerve as
well as in the CNS (Megat et al., 2019a; Shiers et al.,
2020). Similar to effects seenwith cercosporamide, DRG
neurons cultured from animals with chemotherapy-
induced peripheral neuropathy or exposed to inflam-
matory cytokines show reduced excitability after
in vitro exposure to tomivosertib (Megat et al., 2019a;
Shiers et al., 2020). Because nociceptor hyperactivity is
among the most salient features of spontaneous pain in
peripheral neuropathy, these data support the notion
that tomivosertib could be used to treat neuropathic
pain conditions. Indeed, 4EKImice and/or tomivosertib-
treated mice with spared nerve injury (SNI), a model of
neuropathic pain, do not display any behavioral signs of
having spontaneous pain (Shiers et al., 2020). Similar
results have been obtained in 4EKI mice with periph-
eral neuropathy due to chemotherapeutics (Megat
et al., 2019a).
Importantly, inhibition of MNK-eIF4E signaling also

prevents the development of pain-related cognitive
comorbidities related to attention in mouse models of
neuropathic pain. 4EKI mice and mice treated with
tomivosertib display no signs of deficits in attentional
set shifting measured in a T-maze–based behavioral
task after having SNI for 3 weeks (Shiers et al., 2020).
This is relevant to neuropathic pain treatment because
cognitive comorbidities are a prominent feature of the
clinical picture for this disease. The question remains
whether these positive effects are peripherally or
centrally mediated. Published results to date, as cited
above, suggest that inhibition of ectopic peripheral
neuron activity normalizes ascending pain inputs to
the parabrachial nucleus, amygdala, and prefrontal
regions, resulting in recovery of pain-related cognitive
dysfunction. However, changes in translation control
pathways in pain models have been identified in the
amygdala (Carrasquillo and Gereau, 2007; Missig et al.,
2017) and anterior cingulate cortex (Wei and Zhuo,
2008; Dai et al., 2011; Um et al., 2019), which do have
projections into prefrontal regions that control cognitive

function. Therefore, it is possible that restoration of
cognitive dysfunction in pain by MNK inhibitors is
centrally mediated. This question can be addressed by
development and testing of peripherally restricted
MNK inhibitors.

The evidence described above makes a compelling
case for MNK inhibitor use in several types of neuro-
pathic pain; however, results in inflammatory pain
models are mixed. Although some inflammatory medi-
ators fail to evoke pain behaviors in mice lacking eIF4E
phosphorylation, complete Freund’s adjuvant (CFA)
provokes inflammatory mechanical hyperalgesia that
is similar in WT and 4EKI mice (Moy et al., 2017).
Interestingly, this observation is quite different in mice
more than 18 months old. In aged 4EKI mice, the
inflammatory pain response is greatly reduced, and
CFA-evoked pain resolves more rapidly in these aged
mice (Mody et al., 2020). This suggests that MNK
inhibitors may be advantageously used for certain types
of persistent inflammatory pain in older populations, in
which these problems are actually more severe (Price
et al., 2018).

Altogether, MNK inhibitors are promising therapeutic
candidates because of their ability to diminish expression
of a variety of proinflammatory and neuroplasticity-
related genes that drive persistent nociceptor activity
and chronic pain. A growing body of preclinical evidence
has substantiated MNK as an important analgesic
target, particularly for neuropathic pain; however, there
are several important considerations for further investi-
gation of MNK as a pain target moving forward. In our
view, themost important of these is thatMNK inhibitors
designed for the treatment of pain should likely be
designed to be peripherally restricted. The rationale for
this is that disruption of MNK-eIF4E signaling through
genetic or pharmacological manipulation causes some
CNS-mediated phenotypes that would not be desirable
for a pain therapeutic. 4EKI andMNK1KOmice display
abnormal obsessive compulsive disorder–like behaviors,
such as stereotypic jumping and increased marble
burying (Shiers et al., 2020). Moreover, 4EKI, MNK1/2
double KO, and mice treated with cercosporamide
display anxiety- and depression-like behaviors coupled
with impaired serotonergic tone in the cortex (Aguilar-
Valles et al., 2018; Amorimet al., 2018b). It is noteworthy
that most of these studies have been conducted in
genetically modified animals in which eIF4E phosphor-
ylation is disrupted from development. However, treat-
ment with cercosporamide did cause CNS symptoms
after only 5 days of treatment (Aguilar-Valles et al.,
2018), and it has yet to be determined whether these
effects worsen after more chronic dosing. Interestingly,
tomivosertib has only been noted to cause gastrointesti-
nal side effects in humans (Hubbard et al., 2019), and no
depression-like symptoms have been reported. However,
it is not knownwhether this drug crosses the blood-brain
barrier in humans as it does in mice (Shiers et al., 2020).
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Restriction of future MNK inhibitors to the periphery
would be predicted to beneficially reduce sensory neuron
sensitization by targeting peripheral axons and nocicep-
tors in the dorsal root ganglion without eliciting CNS-
mediated adverse reactions.
1. Mitogen-Activated Protein Kinase–Interacting Ki-

nase Inhibitors in the Clinic. A broad array of small-
molecule MNK1/2 inhibitors have been identified to
date that encompass diverse chemotypes as represented
by Dreas et al. (2017), Matsui et al. (2018), Jin et al.
(2019), and Mishra et al. (2019). Well studied MNK
inhibitors include staurosporine, CGP57380, and the
natural product, cercosporamide (Fig. 4). These com-
pounds lack selectivity for MNK1/2, however, and are
mainly used as chemical tools for MNK target valida-
tion (Hou et al., 2012). This sectionwill focus on eFT508,
ETC-206, and BAY 1143269, three MNK1/2 inhibitors
that have entered clinical trials (Fig. 4), and an over-
view of the medicinal chemistry optimization process
for eFT508 and ETC-206 will be provided. The full
chemical structure of BAY 1143269 as well as details
surrounding its development have not been disclosed;
as such, a brief discussion of the structure activity
relationships of published analogs of BAY 1143269 will
be presented. We have chosen to detail medicinal
chemistry progress for MNK inhibitors here because of
the great potential for this target for neuropathic pain
treatment and because there are few existing reviews
on the topic. Comprehensive, recent reviews have been
published on mTOR (Roychowdhury et al., 2010;
Schenone et al., 2011) and AMPK (Cameron and
Kurumbail, 2016)medicinal chemistry andpharmacology.

eFT508 (tomivosertib) is being developed by eFFEC-
TOR Therapeutics as an orally dosed drug for the
treatment of multiple cancer types, including nonsmall
cell lung cancer (NSCLC), metastatic breast cancer,
and castrate-resistant prostate cancer (NCT03616834,
NCT03690141, NCT03258398). The drug discovery
effort leading to eFT508 commenced with a broad
search to identify optimal fragments that would provide
a scaffold for constructing collections of compounds for
biologic screening. In particular, molecular fragments
were selected that would be expected to facilitate
favorable stereoelectronic interactions with Phe159
and Cys225, atypical residues in the MNK1/2-ATP
binding site (Reich et al., 2018). This approach was
expected to generate compounds having both enhanced
MNK1/2 potency and kinome selectivity.

The benzamide 1 was identified early as a key
fragment because of its modest MNK1 inhibitory activ-
ity and favorable ligand efficiency and ClogP (Fig. 5).
Constraining the primary amide of 1 as the lactam
generated the isoindolinone scaffold 2 (Fig. 5), which
improved MNK1 potency while maintaining ligand
efficiency and ClogP. The reduced number of H-bond
donors in 2 was expected to have a favorable effect on
permeability (Reich et al., 2018). Lead fragment opti-
mization was ultimately achieved by making modifica-
tions to fragment 2 that maintained or improved upon
drug-like properties while only marginally reducing
MNK1 potency. These changes involved deconstruction
of the purine to the pyrimidine ring, replacement of the
benzene ring with a pyridone ring, and introduction of
alkyl groups at the C3 benzylic carbon, affording pyridone

Fig. 4. Chemical structures of MNK inhibitors. LE, ligand efficiency; MW, molecular weight; TPSA, topological polar surface area.
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aminal 3. Cocrystal structural analysis of 2 and its C3
methylated analog (unpublished data) indicate that the
presence of C3 alkyl groups induce a ring flip to relieve
steric interactions (Reich et al., 2018). This change of
binding mode enables out-of-plane C3 alkyl groups to be
oriented toward the MNK p-loop, an interaction that
facilitates a boost in potency. The amide functional group
within the pyridone ring system of three imparts a favor-
able effect on potency that has been attributed to a stereo-
electronic interaction between the lone pairs of the sulfur
atom of Cys225 (Dunitz interaction) and the amide
carbonyl. The pyridone ring incorporated into scaffold 3
also provides the benefit of reduced lipophilicity relative to
the analogous benzene analog 2. The pyrimidine-tethered
pyridone aminal template, exemplified by compound 3
(Fig. 5), was thus selected as the optimal starting point
for designing novel MNK inhibitors (Reich et al., 2018).
Pyridone aminal analogs of the general structure 4 were
designed by making modifications at three diversification
points (Fig. 5), which included the R1 of the pyrimidine
ring, the R2 of the pyridone ring, and R3/R4 of the
imidazolidinone ring. After preparing over 200 analogs
with varying combinations of functional groups, it was
discovered that compounds having a free amino group at
R1, a methyl group at R2, and a spirocyclic cycloalkyl
group at R3/R4 were found to deliver the most favorable
blend of MNK1/2 potency, minimal off-target activity,
and adequate permeability and metabolic stability
[WO2015200481, Reich et al. (2018)]. From the set of
optimized clinical candidates, eFT508 (R1 = NH2; R

2 =
CH3; R

3/R4 = spirocyclohexane) emerged as eFFECTOR
Therapeutics’ drug candidate and is currently be-
ing evaluated in multiple phase II clinical trials
(NCT03690141, NCT03616834, NCT03258398). As
mentioned above, this compound has pronounced
effects in many preclinical neuropathic pain models,

making it an excellent starting point for develop-
ment of a novel neuropathic pain drug.

Under development by AUM Biosciences, ETC-206 is
an orally bioavailable inhibitor of MNK1/2 that was
recently evaluated in phase I clinical trials for the
treatment of blood cancers (NCT03414450). The medic-
inal chemistry approach leading to the discovery of
ETC-206 began by selecting three previously identified
bicyclic fragments (5–7) having MNK1 inhibitory activ-
ity with desirable ligand efficiency values (Oyarzabal
et al., 2010; Yang et al., 2018) (Fig. 6). Guided by ligand-
protein–docking studies, collections of compounds were
prepared comprising C3- and C6-functionalized imida-
zolopyrazines 5, imidazolopyridazines 6, and imidazo-
lopyridines 7 (Fig. 6). It is noteworthy that aryl groups
were identified as optimal C3 substituents, as they
provided superiorMNKpotency relative to other groups
that were surveyed. Molecular modeling studies in-
dicate that the enhanced activity is attributed to the
favorable interaction of the aryl group with a hydropho-
bic pocket in the MNK1 and MNK2 binding sites (Yang
et al., 2018). The optimal C6 substituents included
piperazinobenzamides and morpholinobenzamides, as
is exemplified by analogs 8–10 andETC-206 (Figs. 4 and
6). The morpholine analogs 10 and ETC-206 were
prioritized because they had better drug-like properties
and performed well in in vitro drug metabolism and
pharmacokinetics assays. The activity of ETC-206 was
superior to that of 10 in cellular eIF4E phosphorylation
inhibition assays. Moreover, ETC-206 demonstrated
more favorable physicochemical properties and im-
proved kinase selectivity and was therefore selected as
AUM Biosciences’ drug candidate for leukemia. ETC-
206 was recently found to be safe in healthy human
volunteers (Teneggi et al., 2020). This compound has
not been evaluated in any preclinical pain models.

Fig. 5. (A) Key fragments and pyridone aminal 3. (B) Diversification points on pyridone aminal 4 and selected properties of eFT508. MW, molecular
weight; TPSA, topological polar surface area.

Fig. 6. Key scaffolds 5–7, optimized analogs 8–10, and selected properties of ETC-206.
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BAY 1143269 is a small-molecule inhibitor of MNK1/
2 that was discovered by Bayer using high-throughput
screening and subsequent chemistry optimization. The
compound is unique among known MNK inhibitors
owing to its unusually high selectivity for MNK1 over
MNK2 (MNK1 IC50 = 40 nM; MNK2 IC50 = 904 nM).
BAY 1143269 induces apoptosis in multiple NSCLC cell
lines, blunts the release of proinflammatory cytokines,
and exhibits antitumor activity in patient-derived
xenograft models. Because of these favorable attributes,
a phase I clinical trial was launched for the treatment of
NSCLC. However, because of project deprioritization
the clinical study was not completed (NCT02439346).
The full chemical structure of BAY 1143269 has not

been disclosed, but it has been depicted as a disubsti-
tuted imidazolopyridazine having the general structure
11. Analogs in the Bayer collection consist of C3-
substituted 2-benzofuranyl groups or derivatives thereof,
whereas C6 substituents are ethers (Fig. 7; 11: X = O)
or anilines (Fig. 7; 11: X = NH) (WO2013034570;
WO2013087581; and WO2013149909). A number of
analogs of BAY 1143269 inhibit MNK1 with single-
digit nanomolar potency, and this activity appears to
be easily modulated through tuning of the steric and
electronic properties of the pendant R group on 11
(Fig. 7). For example, when the potent aminocyclobutyl
ether group in compound 12 (MNK1 IC50 = 5 nM) is
replaced with an (aminomethyl)pyridyl ether group as in
13 (MNK1 IC50 = 94 nM), an almost 20-fold reduction in
potency is observed. Indeed, amino ether R groups
(Fig. 7; X = O) devoid of aromatic rings generally exhibit
the bestMNK1 inhibitory activity. In contrast to the aryl
ether series,many aniline derivatives (Fig. 7; 11: X =NH)
that contain aromatic rings within the R1 group of 11
exhibit excellent MNK1 activity, as exemplified by 14
(MNK1 IC50 = 1 nM). The tertiary alcohol 15 represents
a notable exception, as the additional methyl group
elicits a substantial decrease (60-fold) in MNK1 activity.
A small molecule that inhibits MNK as its primary

mechanism of action has yet to be FDA-approved for any
indication. This is, at least in part, due to the relatively
recent understanding of the role of MNK in cancer and
other diseases like neuropathic pain (Moy et al., 2017,
2018b; Megat and Price, 2018; Megat et al., 2019a;

Barragán-Iglesias et al., 2020; Shiers et al., 2020).
Moreover, a majority of known MNK inhibitors de-
veloped prior to eFT508 suffer from modest potency
(high nanomolar/low micromolar) while exhibiting ex-
tensive off-target kinase activity. However, the discov-
ery of eFT508 demonstrates that highly potent and
selective small-molecule MNK inhibitors can indeed be
developed, and ongoing clinical trials with both eFT508
and ETC-206 indicate that MNK inhibitors have good
safety profiles in humans. This bodes well for the future
vetting of this target in neuropathic pain clinical trials.

An unresolved question is whether a specific MNK1
inhibitor would be preferable over a dual MNK1/2
inhibitor for neuropathic pain. Some results with
MNK1-specific knockout in mice suggest that MNK1
is the key isoform for neuropathic pain (Megat et al.,
2019a; Shiers et al., 2020); however, MNK2 knockout
mice have never been tested in any pain assays, and
MNK2 selective compounds have not been described. It
is also important to note thatmost nociceptors appear to
express both MNK isoforms (Zeisel et al., 2018). At this
stage it is not possible to definitively discern which of
these approaches (MNK1 selective or dual inhibitor)
would be best for the development of a neuropathic pain
drug targeting MNK(s).

E. Integrated Stress Response Modulators

The ISR regulates translation initiation by phosphor-
ylating eIF2a, blocking eIF2B, and preventing the
recycling of GTP bound to eIF2 (Fig. 2A). As a result,
the phosphorylation of eIF2a leads to a repression of
general translation while enhancing translation of
certain mRNAs. Some of these induced gene products,
like ATF4 and CHOP, feed back onto the ISR to recover
from stress or, in dire cases, induce cell death. The
dephosphorylation of eIF2a is mediated by PP1 and its
regulatory subunits, constitutive repressor of eIF2a
phosphorylation (CreP) and GADD34 (Pakos-Zebrucka
et al., 2016) (Fig. 2A). Although CreP is constitutively
active in physiologic conditions, the expression of
GADD34 is dramatically induced by ISR and functions
to restore general translation.

Various pharmacotherapies have been developed to
target the phosphorylation of eIF2a to promote or
inhibit the ISR (Hetz et al., 2019) (Fig. 2, B and C).
Salubrinal, one of the first ISR modulators to be
developed, is a nonselective inhibitor of the PP1 phos-
phatase and thus prevents the dephosphorylation of
eIF2a, thereby maintaining or delaying the ISR (Boyce
et al., 2005). Salubrinal administration in naïve animals
produced heat hypersensitivity without any change in
mechanosensation (Khoutorsky et al., 2016). On the
contrary, salubrinal treatment after nerve injury and
chronic inflammation resolved pain hypersensitivity
(Yang et al., 2014; Yamaguchi et al., 2018). In other
words, inducing ISR in naïve animals resulted in heat
hypersensitivity, whereas inducing ISR after injury or

Fig. 7. The general structure of BAY 1143269 (11) and related analogs
12–15.
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inflammation resolved pain hypersensitivity. It is possi-
ble that inhibiting protein synthesis under normal
circumstances leads to a reduction in proteins important
for proper cellular functioning, whereas repression of
global protein synthesis after injury or disease may
suppress expression of detrimental proteins and/or re-
duce ER load. These observations further suggest that
the context of eIF2a phosphorylation may represent
a fine balance between adaptive nociception and malad-
aptive chronic pain.
Salubrinal’s nonspecific effect on the PP1 holoenzyme

makes it a poor choice as a therapeutic and makes its
effects difficult to interpret as a tool compound. Since
GADD34 is potently induced after cellular stress,
selectively inhibiting GADD34 then would maintain
ISR specifically in stressed cells and tissues without
interfering with the constitutively active CreP in
healthy cells. This strategy is thereby predicted to limit
adverse side effects. In this regard, two small molecules,
guanabenz and Sephin1, have been used to target the
GADD34:PP1 complex while sparing the CreP:PP1
holoenzyme (Tsaytler et al., 2011). Guanabenz was
initially developed as an a-adrenergic agonist and is
clinically used as such to treat hypertension (Holmes
et al., 1983). It was repurposed for use as an ISR
promoter. However, clinical trials employing guana-
benz oral therapy in treating multiple sclerosis had to
be terminated prematurely because of severe side
effects associated with the adrenergic system, despite
promising effects in rodent models (Way et al., 2015;
Clayton and Popko, 2016). Sephin1 is preferred over
guanabenz owing to its better potency at promoting
ISR, a lack of adrenergic effect, and fewer adverse
effects (Das et al., 2015). Although no clinical trials
have yet been performed with Sephin1, preclinical
studies investigating cancer (Cao et al., 2019), amyo-
trophic lateral sclerosis (Das et al., 2015), multiple
sclerosis (Chen et al., 2019), viral infections (Fusade-
Boyer et al., 2019), and prion diseases (Thapa et al.,
2020) demonstrate encouraging results. The efficacy
of Sephin1 at resolving chronic pain remains to be
investigated.
The molecular targets of guanabenz and Sephin1 and

how they selectively inhibit GADD34:PP1 overCreP:PP1
are still debated in the literature. One hypothesis is that
Sephin1 and guanabenz directly bind to the N terminus
of GADD34, inducing a conformational change that
lowers the ability of GADD34:PP1 to bind phospho-
eIF2a (Carrara et al., 2017). Structural and biochemical
analysis of the GADD34:PP1 holoenzyme suggests that
GADD34 functions as a scaffold for PP1 and phospho-
eIF2a interaction (Choy et al., 2015) (Fig. 2D). Neither
salubrinal nor guanabenz treatment can dissociate the
GADD34:PP1 holoenzyme or impair its interaction with
phospho-eIF2a (Choy et al., 2015). Other reports argue
against direct binding of Sephin1 and guanabenz to
GADD34 altogether (Crespillo-Casado et al., 2017,

2018). Furthermore, through an unknown mechanism,
Sephin1 treatment induces ATF4 expression but, ironi-
cally, does not enhance the expression of CHOP, a well
established proapoptotic target of ATF4, and subsequent
cell death (Das et al., 2015; Hetz et al., 2019). More
recently, guanabenz and Sephin1 were shown to interact
with and allosterically modulate acid-sensing ion chan-
nel 3, which has been implicated in inflammatory pain,
proposing a novel mechanism of action for these drugs
(Callejo et al., 2020). From these studies, it is evident
that our current understanding of the available phar-
macological tools that target GADD34:PP1 is poor. The
identification of internal PEST repeats [a sequence rich
in proline (P), glutamic acid (E), serine (S), and threonine
(T)] on GADD34, a lack of these repeats in CreP, and its
importance in the binding of the GADD34:PP1 holoen-
zyme to phospho-eIF2a may represent a novel target for
future drug design (Brush and Shenolikar, 2008; Choy
et al., 2015) (Fig. 2D).

Another approach to target the ISR has been to
dampen its effect on general translation. ISR inhibitor
(ISRIB) is commonly used to reverse the effects of
phospho-eIF2a (Sidrauski et al., 2013) (Fig. 2B). Al-
though ISRIB can reduce the translation of ATF4, awell
known target of the ISR, it does not immediately reverse
the phosphorylation of eIF2a, implying that ISRIB’s
effects on translation may be eIF2a-independent. Re-
cent biochemical and structural analysis has revealed
that ISRIB targets the b- and d-subunits of eIF2B and
enhances its GDP exchange activity, replenishing the
ternary complex and reducingATF4 translation (Sekine
et al., 2015; Sidrauski et al., 2015; Wong et al., 2018).
Moreover, ISRIB aids in the generation of new eIF2B
complexes from its subunits by binding together two
eIF2B tetrameric subcomplexes (Costa-Mattioli and
Walter, 2020) (Fig. 2C). However, ISRIB’s activity is
limited by the amount of free eIF2B that is not already
sequestered by phospho-eIF2a (Hetz et al., 2019). In
conditions in which phosphorylation of eIF2a far
exceeds eIF2B levels, the potency of ISRIB significantly
decreases, suggesting that ISRIB works ideally in mild
ISR conditions (Rabouw et al., 2019). Furthermore,
ISRIB is hard to formulate and not orally bioavailable,
making it a suboptimal choice for clinical applications in
its current form (Sidrauski et al., 2013; Halliday et al.,
2017; Hetz et al., 2019). However, owing to its safety
profile, high potency, and the ability to penetrate the
CNS, ISRIB is still an invaluable tool to study ISR-
regulated translation (Hetz et al., 2019; Costa-Mattioli
and Walter, 2020). Other compounds, including eIF2B
activator (2BAct) (Wong et al., 2019), trazodone
(Halliday et al., 2017), and dibenzoylmethane (Halliday
et al., 2017), have recently been identified as eIF2B
activators but more research is needed to identify their
molecular targets and characterize their pharmacologi-
cal properties in multiple experimental models, includ-
ing chronic pain.
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Cancer, diabetes, inflammation, and neurodegenera-
tion have all been associatedwith stimulation of the ISR
(Pakos-Zebrucka et al., 2016). However, the effect of
phosphorylation of eIF2a in mediating pain hypersen-
sitivity has only recently begun to be uncovered. The
first study we are aware of that associated eIF2a
phosphorylation with nerve injury–induced neuro-
pathic pain found a clear sign of increased ISR signaling
in the injured axons of rats and mice. However, this
study did not investigate a causative role of the pathway
in the SNI or spinal nerve ligation models in which
these observations were made (Melemedjian et al.,
2011). The first evidence for a causative role of the
ISR in neuropathic pain came from diabetic neuropathy
models. In the streptozotocin-induced type I diabetic rat
model, phosphorylation of eIF2a, along with its ER
kinase, PERK, and markers of unfolded protein re-
sponse, were significantly elevated in sciatic nerves,
contributing to mechanical allodynia in these animals
(Inceoglu et al., 2015). Alleviation of ER stress using
a chemical chaperone, 4-phenylbutyric acid, reduced
the phosphorylation of eIF2a and rapidly resolved pain
hypersensitivity (Inceoglu et al., 2015). Similarly, in-
trathecal administration of the ISR inhibitor, ISRIB,
alleviated mechanical hyperalgesia in streptozotocin-
induced diabetic mice and rats (Barragán-Iglesias et al.,
2019). The exact by-product of diabetes that mediates
ISR and hyperexcitability in nociceptors remains to
be pin-pointed. One such candidate is methylglyoxal
(MGO), a metabolite of glycolysis that is elevated in
diabetes and is implicated in pain associated with
diabetic neuropathy. In addition to activating transient
receptor potential ankyrin 1 cation channel channels at
high concentrations, MGO, even at low concentrations,
increases the phosphorylation of PERK and eIF2a
particularly in isolectin B4+ nociceptors and induces
mechanical hypersensitivity (Barragán-Iglesias et al.,
2019). In vitro, low-concentration MGO (1 mM) sensi-
tizes DRG neurons in addition to activating the ISR.
Resolution of ISR activation using systemic delivery of
ISRIB and/or 4-phenylbutyric acid ameliorates mechan-
ical hypersensitivity induced by low-dose MGO treat-
ment. Altogether, these results suggest that targeting
the ISR is a viable strategy for combating pain in diabetic
neuropathy.
In addition, chronic inflammation after intraplan-

tar administration of CFA induces the ISR as well
as mechanical and thermal hyperalgesia in rodents
(Khoutorsky et al., 2016). Mutation of the serine 51
residue to alanine prevents the phosphorylation of
eIF2a, and homozygous mutation (eIF2aS51A/S51A) is
lethal (Scheuner et al., 2001). Naïve heterozygous
mutants (eIF2a+/S51A) have increased threshold to
noxious heat stimulation without any change in
mechanical sensitivity (Khoutorsky et al., 2016). This
loss of heat sensitivity is a result of reduced TRPV1
currents despite no change in TRPV1 protein levels,

suggesting that phospho-eIF2a controls TRPV1 ac-
tivity by possibly modulating regulatory or accessory
proteins (Khoutorsky et al., 2016). Upstream kinase
mutants of PERK, PKR, and GCN2 show a similar
phenotype (Khoutorsky et al., 2016). Although these
data demonstrate a novel role of eIF2a and its kinases
in mediating heat nociception via TRPV1, they do
not entirely address the role of ISR in modulating
CFA-induced thermal and mechanical hyperalgesia.
Roughly 45% of A-fibers (neurofilament 200+) and
40% of nonpeptidergic sensory (isolectin B4+) ex-
press phospho-eIF2a after CFA administration com-
pared with about 20% of TRPV1+ nociceptors, suggesting
that eIF2a phosphorylation may also be contributing to
inflammation-induced tactile hypersensitivity via dis-
tinct mechanisms (Khoutorsky et al., 2016). Hence,
more work is needed to better understand whether the
ISR is a tractable pain target for chronic pain disorders
other than diabetic neuropathy.

1. Inhibiting Eukaryotic Initiation Factor 2a Kinases.
Four kinases (PKR, PERK, GCN2, and HRI) phosphor-
ylate eIF2a, among which the bulk of the literature has
focused on inhibitors of PERK and PKR and their role in
pain hypersensitivity. Consistent with effects observed
in eIF2a phosphorylation mutant mice, systemic ad-
ministration of PKR inhibitor (PKRi) in healthy mice
produces hypoalgesia to radiant heat stimulation with
no effect on mechanical sensitivity (Khoutorsky et al.,
2016). Although PKRi inhibits PKR-mediated phos-
phorylation of eIF2a, off-target inhibition of cyclin-
dependent kinases (CDKs) has also been reported in
the literature (Chen et al., 2008). CDKs have previously
been implicated in pain pathophysiology (Pareek et al.,
2006; Liu et al., 2015; Rozas et al., 2016; Hsieh et al.,
2019). Thus, with the use of PKRi to study the effect of
PKR and eIF2a on pain pathophysiology, its effect on
CDKs must also be considered.

GSK2606414 and GSK2656157 are two small mole-
cules that have been widely used to inhibit PERK
activation (Hetz et al., 2019). A recent study found that
GSK2606414 attenuated mechanical and thermal
hyperalgesia associated with neuroinflammation in
a bone cancer pain model (Mao et al., 2020). Both of
these compounds have excellent potency and show
promising pharmacokinetics in vivo. However, recent
reports demonstrate that GSK2606414 and GSK2656157
also inhibit receptor-interacting protein kinase 1
[receptor-interacting serine/threonine protein kinase
1 (RIPK1)] and the tyrosine kinase receptor KIT, again
questioning the specificity of these compounds (Smith
et al., 2015; Rojas-Rivera et al., 2017; Mahameed et al.,
2019). A screen for a novel compound with better
selectivity for PERK identified two compounds, AMG44
and AMG52, albeit with lower potency than the pre-
viously identified GSK inhibitors (Smith et al., 2015;
Hetz et al., 2019). AMG44 andAMG52 are comparable to
GSK inhibitors in preventing PERK activation, and they
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are also orally bioavailable (Smith et al., 2015). These
compounds bind to the ATP-binding region of PERK and
induce a conformational change that traps PERK in an
inactive state. In light of favorable pharmacodynamics
and kinetics of AMG44 and AMG52 along with better
specificity for PERK (Smith et al., 2015; Rojas-Rivera
et al., 2017), AMG44 and AMG52 should be preferred
when studying PERK-eIF2a signaling. Tissue distribu-
tion of systemic AMG44 and AMG52 treatment remains
to be investigated, so an open question is whether these
compounds efficiently cross the blood-brain barrier.

F. Localized Translation in Peripheral Axons as
a Therapeutic Target

Spatial control of mRNA localization and trafficking
is dictated by specific sequences in the 39UTR known as
zipcodes, which interact with RNA-binding proteins.
These proteins can then shuttle mRNAs to synaptic
sites along axons and/or dendrites, allowing for local-
ized translation of proteins at distal sites (Kiebler and
Bassell, 2006). Localized translation accompanied by
post-translational modifications (i.e., phosphorylation,
methylation, or sumoylation) allows individual synap-
ses to remodel their synaptic proteome in an activity-
dependent manner, a key feature of synaptic plasticity
(Biever et al., 2019).
The same holds true in the peripheral nervous system.

Translation machinery, including mRNA, translation
initiation factors (eIF2a, eIF4E, and eIF5), and free
ribosomes, which cluster into polyribosomal plaques,
have been identified in peripheral sensory axons in both
invertebrates (Giuditta et al., 1968, 1991; Piper andHolt,
2004; Eyman et al., 2007; Mathur et al., 2018) and
vertebrates (Droz and Leblond, 1963; Koenig et al., 2000;
Zheng et al., 2001; Verma et al., 2005; Court et al., 2011)
(Fig. 8). It is thought that this axonally localized protein
synthesis machinery prepares sensory neurons to rap-
idly respond to injurious stimuli via the rapid synthesis
of proteins that then regulate the excitability of the
peripheral terminal or injured site along the axon. One
point supporting this conclusion is the sheer distance
between the sensory neuron soma and axon terminal,
which can be up to 1 m long. Given what is known about
axonal transport rates for proteins synthesized in the
soma, it is simply not possible for gene expression at this
location to explain the rapid, local effects that are seen in
most preclinical models and in human volunteer studies.
It is also clear that local blockade of protein synthesis at
the site of peripheral terminals has a profound effect on
inhibiting nociceptive sensitization, whereas transcrip-
tional inhibitors have no effect ( Price et al., 2007;
Melemedjian et al., 2010, 2014; Ferrari et al., 2013,
2015a,b; Moy et al., 2017; Barragán-Iglesias et al., 2018).
In further support of this idea,DRGneurons in vitro form
axonal growth cones within 20 minutes of axotomy, an
effect that is impaired after application of protein
synthesis but not transcriptional inhibitors (Verma

et al., 2005). These collective findings indicate that rapid
changes in protein synthesis can happen within the
peripheral axons of sensory neurons, and these localized
changes in gene expression likely control plasticity
events that alter nociceptive thresholds. There is, how-
ever, a major issue with this idea—although ribosomes
have been observed in peripheral axons, they are sparse
and do not have the arrangement that is found, for
instance, in dendritic spines that links their subcellular
anatomy to plasticity events (Steward and Schuman,
2003; Biever et al., 2019).

Interestingly, recent work supports that transla-
tional activity in sensory neuron axons may be regu-
lated by Schwann cells. In addition to providing myelin
and other supporting functions in normal conditions
and controlling axonal regeneration via the recruitment
of the immune system and phagocytosis of axonal debris
after injury, Schwann cells can transfer their ribosomes
to sensory neuron axons after axotomy (Court et al.,
2008, 2011) (Fig. 8). Polyribosomal plaques in sensory
axons are organized along the boundary between the
neuronal membrane and myelin sheath, which may be
reflective of Schwann-cell ribosomal transfer (Koenig
et al., 2000). Although unknown, it is possible that other
Schwann-cell translation machinery is transferred to
axons, such as mRNAs and protein. Exosomes are
secreted from Schwann cells and internalized by pe-
ripheral axons after injury and are hypothesized to
contain mRNA transcripts (Lopez-Verrilli et al., 2013).
Accordingly, it is difficult to delineate neuron-specific
mRNAs in sensory nerves because the majority of the
transcripts are also present in Schwann cells.

Fig. 8. Evidence for localized translation in sensory axons in neuropathic
pain. 1) Translation machinery is present in sensory neuron axons, such as
mRNA, ribosomes, translation initiation factors (eIF2a, eIF4E, and eIF5),
and translation regulators (ERK, p38, mTOR). 2) Sensory neuron mRNAs
(ex: Nav1.8) are trafficked and translated locally in peripheral axons leading
to ectopic activity. 3) Ribosomes and exosomes from Schwann cells (SCs) are
trafficked into sensory axons (blue arrows). In myelinated axons, these
ribosomes form ribosomal plaques that are located near the myelin-axon
border. We hypothesize the same occurs between nonmyelinating SCs and
nociceptive axons [i.e., in Remak bundles (top right panel)]. It is possible that
the SC-axon cytoplasms become continuous after axotomy, forming a syncy-
tium in which SCs aid in axonal translation during recovery.
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Recently, a new pain organ composed of a cutaneous
glial network was found in the subepidermal layer of the
skin (Abdo et al., 2019). This glial matrix is comprised of
SOX10-positive Schwann cells that appear to ensheath
free nerve endings and convey noxious thermal and
mechanical information (Abdo et al., 2019). Importantly,
SOX10-positive Schwann cells are also found along the
length of peripheral nerves andmay function similarly to

those in the skin. It is hypothesized that Schwann cells
share a cytoplasm with axons (López-Leal et al., 2016),
forming a syncytium that merges the transcriptomes of
both Schwann cell and sensory neuron. This syncytium
may be important in localized protein synthesis after
nerve injury. Together, these findings may offer a new
avenue for therapeutic development. This is obviously
speculative at this point; however, if some of the

Fig. 9. Personalized treatment approaches for chronic pain. After injury and disease, translational regulation mechanisms alter protein synthesis,
which forms the basis of enhanced excitability in sensory neurons and potentially also in central networks. As a result, patients with chronic pain
experience evoked and spontaneous pain. Since the plasticity after injury and disease is unique to its pathology, we propose that individualized
treatment avenues that specifically target the underlying pathology would best alleviate pain. To determine the course of treatment, skin biopsies can
be obtained and analyzed for inflammatory mediators and translational regulators as well as sequenced for RNA profiling. Based on these personalized
analyses of underlying molecular mechanisms, therapeutic development and decision making can be improved.
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mysteries of local translation in long sensory axons are
ultimately explained by Schwann cell–axon interactions
in which mRNA, ribosomes, and other material are
exchanged, these mechanisms could potentially be
exploited for therapeutic benefit.
An area ripe for future discovery is determining how

localized translation is linked to nociceptor excitability
and spontaneous activity. The differential contribution
of translation in the axonal compartment versus in the
soma in persistent pain conditions has not been de-
termined. It is possible that both are important, but
more detailed insight would be useful. For instance, if
localized translation at the site of nociceptor endings in
neuromas is a major contributor to neuropathic pain in
this clinical setting, localized applied drugs may be
highly efficacious. This improves some aspects of the
safety window compared with a systemically adminis-
tered drug. However, if translation regulation signaling
along the neuron axon and into the soma is required to
drive neuropathic pain in patients with neuromas then
the locally administered drug approach will obviously
not work. Advancing our understanding of how localized
changes in gene expression control nociceptor excitabil-
ity in chronic pain conditions will move the field forward.

VII. Future Opportunities

Aside from the development of nonaddictive, nonopioid
analgesics, one of the most significant unmet needs in
pain clinical care is for improved individualized
approaches to pain management. There are no existing
clinical diagnostic tools to predict whether a person will
develop chronic pain and/or which medications will work
for any given patient. Moreover, we do not have reliable
tools to gain insight into underlying molecular disease
mechanisms in individual patients with chronic pain.
Developing such tools would have obvious utilities. They
would increase our ability to identify people at risk of
developing chronic pain, they would enhance our ability
to effectively treat certain types of chronic pain disorders,
and they would aid future drug development efforts
because molecular mechanisms of chronic pain in people
would be better understood. Above, we have argued that
translation regulation signaling is a key feature of many
types of chronic pain.We have also argued that targeting
translation signaling pathways is a viable route to treat
different types of chronic pain. Although dysregulated
translation in peripheral neurons is a common theme of
many chronic pain types, the specific alterations in
signaling observed in different conditions offer unique
opportunities to link diagnostics with therapeutics.
One way that this can be exploited is through the use

of skin biopsies as a window into molecular pathology
driving chronic pain in individual patients (Fig. 9). Skin
biopsies are invasive but can be performed, and the
samples are filled with the free nerve endings of
sensory neurons. As we have described in detail above,

alterations in translation regulation signaling appear to
occur along the course of the nociceptor, so these
molecular mechanisms can be examined in these bi-
opsies. Samples could be assessed for panels of trans-
lation signaling molecules to gain insight into changes
in signaling between painful and nonpainful skin or
between patients with standardized pain and nonpain
populations. Another possibility is that changes in
mRNA trafficking may be linked to specific types of
chronic pain, and these could be assessed in individual
patients using microarrays or RNA sequencing. To that
end, we have recently shown that many sensory neuro-
nal mRNAs are readily detected in distal human nerves
using an RNA sequencing approach (Ray et al., 2019).
Although preliminary, because of small sample sizes
and inexact medical records, these mRNA signatures
seem to change in diseases like diabetes that cause
neuropathic pain (Ray et al., 2019).

Based on the current state of the science, we propose
that there are three near-term opportunities for de-
velopment of novel, nonopioid pain therapeutics that
manipulate translation regulation signaling. The first
of these is metformin. The preclinical and clinical
rationales for pivotal clinical trials for this drug are
strong. Given the current state of the science, there are
tremendous opportunities for metformin to be very
useful in the prevention of neuropathic pain caused by
chemotherapeutic drugs and in the treatment of pain
diseases like fibromyalgia. The second are MNK inhib-
itors. As stated above, we think that peripherally
restricted MNK inhibitors likely need to be developed,
but this class of drugs has tremendous potential as
a treatment of nondiabetic neuropathic pain. Finally,
there is a clear rationale for developing inhibitors of the
ISR as diabetic neuropathic pain drugs. A variety of
approaches can be taken to achieve ISR inhibition in
this context. As these drugs move toward the clinic for
a variety of diseases, we will learn more about their
safety and tolerability. It is possible that a triumvirate
of translation regulation targeting therapeutics will
transform chronic pain treatment in the coming decade.
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