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Abstract

Background: The primary approach for defining disease in observational healthcare databases is 

to construct phenotype algorithms (PAs), rule-based heuristics predicated on the presence, 

absence, and temporal logic of clinical observations. However, a complete evaluation of PAs, i.e., 

determining sensitivity, specificity, and positive predictive value (PPV), is rarely performed. In this 

study, we propose a tool (PheValuator) to efficiently estimate a complete PA evaluation.

Methods: We used 4 administrative claims datasets: OptumInsight’s de-identified 

Clinformatics™ Datamart (Eden Prairie,MN); IBM MarketScan Multi-State Medicaid); IBM 

MarketScan Medicare Supplemental Beneficiaries; and IBM MarketScan Commercial Claims and 

Encounters from 2000-2017. Using PheValuator involves 1) creating a diagnostic predictive model 

for the phenotype, 2) applying the model to a large set of randomly selected subjects, and 3) 

comparing each subject’s predicted probability for the phenotype to inclusion/exclusion in PAs. 

We used the predictions as a ‘probabilistic gold standard’ measure to classify positive/negative 

cases. We examined 4 phenotypes: myocardial infarction, cerebral infarction, chronic kidney 

disease, and atrial fibrillation. We examined several PAs for each phenotype including 1-time (1X) 

occurrence of the diagnosis code in the subject’s record and 1-time occurrence of the diagnosis in 

an inpatient setting with the diagnosis code as the primary reason for admission (1X-IP-1stPos).

Results: Across phenotypes, the 1X PA showed the highest sensitivity/lowest PPV among all 

PAs. 1X-IP-1stPos yielded the highest PPV/lowest sensitivity. Specificity was very high across 

algorithms. We found similar results between algorithms across datasets.

Conclusion: PheValuator appears to show promise as a tool to estimate PA performance 

characteristics.
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1.0 Introduction

In observational research, rule-based phenotype algorithms (PAs) are one way to identify 

subjects in a dataset who may have a particular health outcome. Empirical evidence for the 

validation of these PAs has traditionally been performed using clinical adjudication of a 

patient’s health record for a small subset of the subjects. In most cases the validation results 

provide an estimate of the positive predictive value (PPV) for the PA but rarely estimate the 

remaining elements of the validation, namely sensitivity and specificity.1-4 The reason is 

often due to the time, expense, and practicality of examining a large set of records from both 

those with the phenotype and those without. This incomplete validation does not provide 

researchers with all the necessary information to ensure that they are using the correct 

approach to finding the correct subjects for their studies. In this study, we propose a method 

to estimate all the parameters of a PA validation using diagnostic predictive modeling.

Systematic reviews of PA validation studies provide examples of incomplete validation. 

Rubbo and colleagues performed a systematic review of PA validation for acute myocardial 

infarction (AMI).1 In their analysis of 33 validation studies, they found that, while all studies 

provided estimates of PPV, only 11 also provided estimates for sensitivity and 5 provided 

estimates for specificity. McCormick et al. examined 21 validation studies for acute stroke 

PAs where 15 determined sensitivity and 3 determined specificity.2 A systematic review of 

PAs for atrial fibrillation (AF) found, that out of 10 studies examined, 4 studies provided 

estimates for sensitivity and 2 for specificity.5 While PPV is a useful measure, it is 

dependent on the prevalence of the phenotype in the sampled population.6 Unless the data 

used in one’s research has the same phenotype prevalence, the PPV from the validation 

study may not be applicable. In addition to the lack of key measures of PA performance 

(e.g., sensitivity and specificity), Widdifield and colleagues found significant 

methodological differences in validation efforts for rheumatic diseases.4 For example, in the 

23 studies included in their analysis, about two thirds used diagnostic codes to determine 

cases and validated on medical records. The other one third of the studies used the reverse 

method. They emphasize how these differences may affect the validation results. Incomplete 

validation results and results from varying methodologies may significantly affect the use of 

PAs within observational research.

In addition to the high cost for PA validation using traditional methods, another challenge 

with reliance on source record validation is the assumption that results from validation 

studies is applicable to the data for the study of interest, whether that be a different dataset or 

a different time period with the same dataset. Terris et al. presented rationale for potential 

sources of heterogeneity between databases based on differences on the quality and quantity 

of data collected prior to entry within the database.7 They suggested that these possible 

sources of bias be included in any presentation of results using secondary data. Madigan et 

al. found significant heterogeneity in their results from comparative cohort studies.8 Their 

results also suggest that databases may have specific data collection methodologies and 

different performance characteristics for phenotypes. Understanding the performance 

characteristics of PAs within specific databases used in research is critical to understanding 

potential sources of possible bias-driven differences between studies using observational 

data.
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In addition to the time and expense of performing clinical adjudication on medical records 

associated with observational data, obtaining permission to view the detailed records is 

difficult and may produce results that are subject to selection bias. Kho and colleagues 

examined 17 studies where consent was obtained to view detailed medical records.9 They 

found significant differences between the patients whose records were obtained and those 

whose records were not.

The objective of this research was to develop a method for validating PAs for any phenotype 

without the need for clinical adjudication of patient records. This method would allow 

researchers to estimate the full performance characteristics (sensitivity, specificity, positive 

predictive value, and negative predictive value) for any algorithm in any dataset.

2.0 Methods

Data for this study were collected from 5 datasets: IBM® MarketScan® Commercial Claims 

and Encounters Database, ages 18-62 years (CCAE); IBM® MarketScan® Medicare 

Supplemental and Coordination of Benefits Database, ages 66 years and greater (MDCR); 

IBM® MarketScan® Multi-State Medicaid, ages 18-62 years (MDCD); Optum© De-

Identified Clinformatics® Data Mart Database – Date of Death (OptumInsight, Eden 

Prairie,MN); and Optum© de-identified Electronic Health Record Dataset (PanTher). CCAE 

and MDCD were limited to patients aged 18-62, while MDCR was restricted to patients 

greater than 66. Optum and PanTher were stratified by ages 18-62 years (Optum1862, 

PanTher 1862) and ages 66 years and greater (OptumGE66, PanTher66);Data were from 

subject records starting January 1, 2010 until June 30, 2018 with the exception of MDCD, 

which included data until December 31, 2016. Each database was transformed to the OMOP 

common data model (CDM). The full specification for each extract, transform, and load 

(ETL) procedure for each of the databases used in this study is publicly available at: https://

github.com/OHDSI/ETL-CDMBuilder. The OMOP CDM is an open community standard 

that normalizes the structure (e.g. tables, fields, datatypes) and content (e.g. vocabularies 

used across each clinical domain) for managing observational data, and is accompanied by 

community conventions for best practices of how to ETL from source data into the CDM. 

The OMOP CDM is a person-centric model that accommodates timestamped clinical 

observations from an array of clinical domains, including conditions, drugs, procedures, 

devices and measurements. For any ETL, source vocabulary codes require mapping to the 

OMOP standardized vocabularies (which are predominantly based on international standards 

such as SNOMED-CT, RxNorm, and LOINC); for all of these sources, the mappings used in 

the ETL were provided by the OHDSI community (as available at athena.ohdsi.org). Source 

data are routed to the appropriate clinical domain within the OMOP structure and augmented 

with the OMOP standard concepts. The Optum and IBM® MarketScan® databases used in 

this study were reviewed by the New England Institutional Review Board (IRB) and were 

determined to be exempt from broad IRB approval, as this research project did not involve 

human subject research.

The process was as follows:
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1. Develop a diagnostic predictive model for a phenotype: Diagnostic predictive 

models are used to estimate the probability that a specific outcome or disease is 

present in an individual.10 The output of the model is a set of weighted predictors 

for diagnosing a phenotype.

2. Determine the probability of a phenotype for each individual in a large group of 

subjects: The set of predictors from the model can be used to estimate the 

probability of the presence of a phenotype in an individual. We use these 

predictions as a ‘probabilistic gold standard’.

3. Evaluating the performance characteristics of the PAs: We compare the predicted 

probability to the binary classification of a PA (the test conditions for the 

confusion matrix). Using the test conditions and the estimates for the true 

conditions, we can fully populate the confusion matrix and determine the full set 

of performance characteristics, i.e., sensitivity, specific, and predictive values.

PheValuator was programmed in R, and can be applied to any OMOP CDM v5-compliant 

database. The full documentation and source code to implement PheValuator is available at: 

github.com/ohdsi/phevaluator.

Process Steps:

1) Develop a diagnostic predictive model for a phenotype: A predictive model is 

developed using a set of labeled data where the label represents the presence or absence of 

the phenotype for each subject in the dataset. For the subjects labeled as having the 

phenotype, we used an extremely specific (“xSpec”) PA, ensuring that these subjects would 

have the phenotype with a very high likelihood. For the subjects to be labeled as not having 

the phenotype, we excluded any subjects with the diagnosis codes used to create the 

extremely specific PA for the phenotype, ensuring that these subjects would not have the 

phenotype with a high likelihood.

For this study, we tested our methods on four phenotypes, chronic kidney disease (CKD), 

atrial fibrillation (AF), acute myocardial infarction (AMI), and cerebral infarction.

1a) Creating the extremely specific (“xSpec”), sensitive, and prevalence 
cohorts:  xSpec Cohort: The first step in the process was to find subjects with a very high 

likelihood of having the phenotype. These subjects are used as ‘noisy labeled’ positives to be 

used in the predictive model. To achieve high specificity for the phenotype, we used a 

technique from a prior study which chose subjects with multiple occurrences of the 

phenotype in their medical record.11 For example, for the AMI xSpec cohort, we used a PA 

requiring five or more occurrences of a diagnosis of MI in a subject’s record with at least 

two occurrences being a diagnosis from an in-patient setting. For this PA we used diagnosis 

codes for specific sub-types of the phenotype. For example, for AMI we included the 

Systematized Nomenclature of Medicine (SNOMED) diagnosis code, “acute subendocardial 

infarction”, “acute non-ST segment elevation myocardial infarction”, and “acute ST segment 

elevation myocardial infarction” along with several other sub-types of AMI. We did not 

include the SNOMED ancestor diagnosis code, “Acute myocardial infarction”.
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Sensitive Cohort: We also developed a sensitive PA used to find a large proportion of the 

subjects in the database who may have the phenotype, so that they can be excluded when 

creating the ‘noisy negative’ labels. The PA to identify these subjects was a simple algorithm 

requiring 1 or more of the condition codes used to create the xSpec PA for the phenotype in 

the subject record.

Prevalence Cohort: The third PA we developed was for creating a cohort to allow us to 

determine the prevalence of the phenotype in the dataset. As an example, for AMI, the PA 

included all subjects with at least one diagnostic code for AMI or any of the sub-types of 

AMI. For AMI, we used the SNOMED diagnosis code, “acute myocardial infarction” and all 

the SNOMED descendants, e.g., “acute subendocardial infarction”.

1b) Creating the Target and Outcome Cohorts:  The next step was to create the target 

and outcome cohorts to be used as a dataset of subjects for the diagnostic prediction model 

as per the recommendations of Reps et al.12 The target cohort contains all subjects, both 

positive and negative for the phenotype, to be used in the model. The outcome cohort is used 

to label the subjects in the target cohort as positive for the phenotype. The process flow for 

this step was as follows:

1. Estimate the population prevalence of the phenotype in each database using the 

prevalence cohort. This was done in order to correctly determine the relative 

proportion of those positive and negative for the phenotype in the modeling 

dataset ensuring a well-calibrated model.

2. Construct the target population of subjects for the diagnostic predictive model.

a. ‘Positive labels’ for the phenotype: for the ‘positive labels’ to be used in 

the modeling process, we used subjects included in the xSpec cohort.

b. ‘Negative labels’ for the phenotype: we select a random set of subjects 

from the overall dataset excluding those in the sensitive cohort.

c. Balance the number of ‘positive labels’ and ‘negative labels’ to 

approximate the prevalence of the phenotype: Using the estimated 

population prevalence, we sample a defined number of ‘positive labels’ 

and a proportionate number of ‘negative labels’ to make the ratio the 

same as the prevalence. For example, if the prevalence was 10%, we 

included 1500 ‘positive labels’ and 9 X 1500 ‘negative labels’ for a 

total population of 15000.

3. Use the xSpec cohort as the outcome cohort to label the xSpec subjects in the 

constructed target population as “positive labels”, i.e., positive for the phenotype, 

and label the remaining subjects “negative labels”.

These steps are depicted in “A” of Figure 1.

1c) Creating a Diagnostic Prediction Model:  We used the Patient Level Prediction 

(PLP) R package to create a diagnostic prediction model for the phenotype.12 To inform the 

model, we extracted data from all time in each subject’s health record including conditions, 
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drugs, procedures, clinical observations, and occurrences of measurements. We used all 

available data in each data set for development of the prediction model. The covariates used 

were: age as a continuous variable; sex; presence/absence of in-patient or out-patient 

diagnosed condition classes based on the Systematized Nomenclature of Medicine-Clinical 

Terms (SNOMED-CT) hierarchy of conditions; presence/absence of drug exposures based 

on filled drug prescriptions and using the RxNorm naming system for generic and branded 

drugs; presence/absence of a clinical procedure based on the Current Procedural 

Terminology, 4th Edition (CPT-4); and the presence/absence of laboratory measurements. 

The machine learning algorithm used in this study was logistic regression with Least 

Absolute Shrinkage and Selection Operator (LASSO) L1-regularization.13 For model 

development, similar to the method used by Agarwal et al., we excluded all diagnosis codes 

used in the creation of the xSpec model.14 Thus, none of the codes used to create the 

positives (i.e., the codes used in the xSpec PA) or negatives in the population to be modeled 

would be included in the final model used to determine the probability of having the 

phenotype. The purpose for excluding these codes was to prevent circularity when testing 

the PAs to be used in research studies. The model was developed on a random selection of 

75% of the target cohort, the “train” subjects, and internally validated on the remaining 25% 

of the subjects, the “test” subjects. The PatientLevelPrediction package performs stratified 

sampling to ensure the proportion of outcomes in the training (75%) set is equal to the 

proportion of outcomes in the test (25%) set. Each machine learning algorithm within the 

PatientLevelPrediction package performs its own cross-validation within the “train” dataset 

for hyperparameter tuning. The implementation of LASSO logistic regression performs k-

fold cross-validation within a grid-search to identify an optimal regularization 

hyperparameter.15 Once a model is developed on “train” set, internal validation is conducted 

by applying the model developed from the train data on the test data and determining the 

model’s performance characteristics including discrimination, as measured by Area Under 

ROC curve, and calibration. The models developed were used if they showed excellent 

performance characteristics on internal validation, i.e., an area under the receiver operator 

characteristics curve (AUC) of greater than 0.95. The output of this step was a model 

comprising a set of weighted predictors that were used to determine the probability of the 

presence or absence of the phenotype in subjects.

This step is depicted in “B” of Figure 1.

2) Determining the probability of a phenotype for each individual in a large 
group of subjects: The next step was to develop a cohort of subjects to use for evaluating 

the performance characteristics of the PAs, the “evaluation cohort”. In traditional PA 

validation, the PA is compared against a group of subjects whose presence or absence of the 

phenotype is determined by clinical adjudication using the complete set of patient records. 

As this is not possible with large administrative datasets, we replaced clinical adjudication 

with the probability of the presence or absence of the phenotype as determined by the 

predictive model. First, we selected a large, random subset of subjects from the database. For 

our very large databases, we selected about 2,000,000 subjects for the evaluation cohort. We 

extracted covariates from this population from their entire health record based the predictors 

from the model developed in the previous step. We used the applyModel function of PLP on 
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the evaluation cohort to determine the probability of the presence of the phenotype. The 

output of this step was a large cohort of subjects each with a predicted probability for the 

phenotype.

This step is depicted in “C” of Figure 1.

3) Evaluating the Performance Characteristics of the PAs

Developing PAs for Testing:  We used a variety of PAs for testing. Many PAs for cohort 

development use variations of the phenotype condition codes with either high sensitivity or 

high specificity depending on the purpose of the cohort. Four commonly used PAs that we 

included in our testing were:

1. 1 or more occurrences of the diagnosis code for the phenotype (“≥1 X Dx 

Code”). The diagnostic codes used in this PA, as well as in 2, 3, and 4 below, 

were the same codes used in the PA for prevalence cohort.

2. 2 or more occurrences of the diagnosis code for the phenotype (“≥ 2 X Dx 

Code”)

3. 1 or more occurrences of the diagnosis code for the phenotype from a hospital 

in-patient setting (“≥1 X Dx Code, In-Patient”)

4. 1 or more occurrences of the diagnosis code for the phenotype from a hospital 

in-patient setting and determined to be the primary reason for hospital admission 

(“≥1 X Dx Code, In-Patient, 1st Position”)

We also developed several other PAs that included clinical procedures or laboratory 

measurements for the treatment of the phenotype along with diagnosis codes for the 

phenotype. As an example, for AF we developed a PA where subjects were selected based 

on having a procedure for cardioversion or atrial ablation along with a diagnosis code for 

AF. These PAs were developed to select a group of subjects with a very high likelihood of 

having the phenotype, i.e., minimal misclassification, as the performance of a clinical 

procedure would likely eliminate the presence of a diagnosis code as a “rule out” diagnosis 

or entered in the subject record in error.

This step is depicted in “D” of Figure 2.

Determining the values for True Positive, False Positive, True Negative, and False 
Negative from the Evaluation Cohort:  In this process, we used the probability of the 

phenotype determined by the diagnostic predictive model in place of a binary designation as 

a ‘probabilistic gold standard’. For example, the likelihood that, say, subject #1 has the 

phenotype would be higher if subject #1 had many diagnoses, clinical procedures, drug 

exposures, and laboratory measurements indicative of the phenotype (and thus possibly 

included in the predictive model) compared to, say, subject #2 with only diagnosis codes for 

the phenotype in his/her health record. In the case of subject #1, the procedure codes, for 

example, may bring greater assurance that the subject actually had the phenotype rather than 

simply had a diagnosis code as a “rule out” diagnosis, which may be more likely in subject 

#2. This may be seen as analogous to the process in traditional PA validations where the 
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adjudication of, say, three clinicians are used while employing the technique of “majority 

rules”. For a subject where three out of three clinicians deem a subject a case based on the 

information included the subject’s record and the subject is thereby designated a case, our 

method should deem this subject as having the phenotype with a probability near one. The 

advantage of our method becomes apparent in less clear situations. For example, when two 

out of the three clinicians agree that the subject is a case and one clinician disagrees, the 

designation for this subject would be as a case based on “majority rules” and, although one 

clinician did not consider the subject a case, he/she is treated as equivalent to the subject 

where all three clinicians agreed. Our approach provides the flexibility to designate this 

subject as having a 67% probability of being a case. Our method incorporates the inherent 

uncertainty that is present in a subject’s health record.

We continue our example from above to illustrate the use of probabilities for the confusion 

matrix (Figure 2E). We examined the cohort formed from the PA and found those subjects 

from the evaluation cohort created in the previous step who were included in the PA cohort 

(PersonIds 016, 019, 022, 023, and 025) and those from the evaluation cohort who were not 

included (PersonIds 017, 018, 020, 021, and 024). For each of these included/excluded 

subjects, we had previously determined the probability of the phenotype using the predictive 

model.

We approximated the values for True Positives, True Negatives, False Positives, and False 

Negatives as follows:

1. If the PA included a subject from the evaluation cohort, i.e., the PA considered 

the subject a “positive”, the predicted probability for the phenotype was added to 

the True Positives value and one minus the predicted probability for the 

phenotype was added to the False Positives value. For example, PersonId 016 

(Figure 2E) had a predicted probability of 99% for the presence of the 

phenotype, 0.99 was added to the True Positives (“99% correct”) and 1.00 - 0.99 

= 0.01 was added to the False Positives (“1% incorrect”). This was repeated for 

all the subjects from the evaluation cohort included in the PA cohort (i.e., 

PersonIds 019, 022, 023, and 025).

2. If the PA did not include a subject from the evaluation cohort, i.e., the PA 

considered the subject a “negative”, one minus the predicted probability for the 

phenotype for that subject was added to the True Negatives value and the 

predicted probability for the phenotype was added to the False Negatives value. 

For example, PersonId 017 had a predicted probability of 1% for the presence of 

the phenotype (and, correspondingly, 99% for the absence of the phenotype) and 

1.00 – 0.01 = 0.99 was added to the True Negatives (“99% correct”) and 0.01 

was added to the False Negatives (“1% incorrect”). This was repeated for all the 

subjects from the evaluation cohort not included in the PA cohort (i.e., PersonIds 

018, 020, 021, and 024).

After summing these values over the full set of subjects in the evaluation cohort, we filled 

the four cells of the confusion matrix and were able to estimate the PA performance 

characteristics.
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Calculating the Performance Characteristics of the Phenotype Algorithm:  The 

performance characteristics we calculated were:

1. Sensitivity defined as True Positives/(True Positives + False Negatives)

2. Specificity defined as True Negatives /(True Negatives + False Positives)

3. Positive Predictive Value defined as True Positives/(True Positives + False 

Positives)

4. Negatives Predictive Value defined as True Negatives /(True Negatives + False 

Negatives)

In the example in Figure 2F, the sensitivity, specificity, PPV, and NPV were 0.99, 0.63, 0.42, 

and 0.99, respectively.

We calculated the performance characteristics for each PA for the four phenotypes. All 

cohort definitions were created using the OHDSI ATLAS tool. JSON files for all the PAs 

used in this research are available upon request.

3.0 Results

The performance characteristics of the diagnostic predictive models used in this study for 

the four phenotypes are shown in Table 1. Each model showed excellent performance 

characteristics with areas under the Receiver Operator Characteristics curve at 0.98 and 

above for all phenotypes in each of the databases tested. This indicates that the models were 

able to effectively discriminate between the positive and negative labels. The calibration 

curves also showed excellent performance with intercepts at 0 and slopes close to unity, the 

ideal value. This indicates that the models were able to accurately predict outcomes across 

the full range of predicted probabilities. We found that the average predicted probability for 

cases in the test dataset ranged from an average of about 77% for AMI to 88% for cerebral 

infarction. The average predicted probability for non-cases was 2% or less for all phenotypes 

across the 4 databases tested.

We examined how PheValuator performed using four PAs that are common in the literature. 

We found that as the specificity of the PAs increased by including more parameters in the 

algorithm (e.g., increasing the specificity of the PA from ≥1 instance of a diagnosis code for 

the phenotype, “>=1 X DX Code”, to ≥1 instance of a diagnosis code for the phenotype in a 

hospital in-patient setting with the diagnosis code being the primary reason for discharge, “1 

X DX Code, In-Patient, 1st Position”), the results from PheValuator showed increases in 

specificity as well as decreases in sensitivity (Tables 2a and 2b). Chronic kidney disease 

(CKD) was one of the phenotypes we examined. We found that as the specificity of the PA 

increased, we saw small changes in specificity and large changes in sensitivity. The average 

specificity in the seven datasets tested increased from about 95.2% to 99.9%. The average 

sensitivity decreased from about 81.9% to about 11.0%. Along with sensitivity and 

specificity we saw increases in PPV as the specificity of the PA increased. For CKD, the 

average PPV for the >= 1X PA was about 52.8% and increased to 87.8% for the >=1X, IP, 

1st Pos. PA. Similar patterns of change were found in the other phenotypes tested.
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We next examined the performance of PheValuator with PAs using clinical procedure codes 

or laboratory measurements either stand-alone or combined with diagnosis codes. For CKD, 

we tested the use of renal dialysis, a procedure specific for CKD, as a PA. As expected, the 

sensitivity decreased dramatically to an average of about 8.6% while the specificity rose to 

nearly 100% (Table 3). With those changes we saw a large increase in the average PPV 

which increased to about 96%. We used estimated glomerular filtration rate (eGFR) as an 

indicator for CKD. For this PA, we predicted that sustained eGFRs <= 60 ml/min/1.73 m2 

would be strongly indicative of CKD as per clinical guidelines. However, we found that the 

PPV for 3 low eGFR measures during one year averaged about 62.5%. This low PPV was 

similar to that found by Kern and colleagues who concluded that diagnosis codes for CKD 

were specific but insensitive.16

For atrial fibrillation (AF) we examined a PA using a procedure code for atrial ablation or 

cardioversion, which is very specific for AF, plus a diagnosis code for AF. For this PA, we 

found very low values for sensitivity (~1%), very high values for specificity (~99.9%), and 

high values for PPV (~95%). We used a more complex PA to test AMI. For AMI we 

developed a PA that required the presence of coronary revascularization (using the CPT4 

procedure code for “Percutaneous transluminal revascularization of acute total/subtotal 

occlusion during acute myocardial infarction, coronary artery or coronary artery bypass 

graft, any combination of intracoronary stent, atherectomy and angioplasty”) in patients 

without evidence for concomitant procedures for insertion of a stent, coronary bypass, 

angioplasty, or atherectomy along with a diagnosis code for AMI during the same visit when 

the procedure occurred. For this highly specific PA, we again found low values for 

sensitivity (~4%) and high values for specificity (~99.9%) and PPV (~87%). We examined a 

very complex PA for cerebral infarction requiring the presence of a magnetic resonance 

imaging of computed tomography procedure along with a cerebral infarction diagnosis and 

thromboendarterectomy in the head or neck region followed by rehabilitation therapy. Using 

this highly specific PA we found results similar to other highly specific procedure codes with 

low sensitivities (<1%), high specificities (~99.9%), and high PPVs (~93%).

We examined how the results from PheValuator compared to results previously published for 

traditional PA validation (Table 4a).. Rubbo and colleagues performed a systematic review 

of PA validation studies.1 We examined several of the studies to see how the results from 

their PA validation compared with PheValuator. Wahl and colleagues developed a PA for 

AMI using standard codes (i.e., ICD-9 410.XX) from an hospital inpatient visit with a length 

of stay between 3 and 180 days.17 They excluded subsequent AMI codes from their PA (i.e., 

ICD-9 410.X2). Their validation was limited to PPV where they found a result of 88.4% 

(177/200 subjects; 95%CI: 83.2, 92.5%). Using a similar PA, we found lower average PPVs 

across 5 datasets of 62.6% (range: 56.0-69.8). Choma et al developed a PA using similar 

AMI codes as Wahl without excluding subsequent AMI codes and required a length of stay 

greater than 2 days.18 They determined the PPV for this PA to be 92.8% (313/337 subjects; 

95% CI: 89.6, 95.2). For this PA we again found lower average PPVs of 69.4% (range: 

62.8-76.3). Finally we compared our results to Cutrona et al using a PA of standard AMI 

codes in the principal or primary position on facility claims for hospitalizations excluding 

subsequent AMI codes and without specifying a length of stay.19 Their results showed a 
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PPV of 86.0% (123/143 subjects; 95% CI: 79.2%, 91.2%). Using a similar algorithm, we 

found an average PPV of 69.9% (range: 58.9-78.7).

In addition to comparing our results to those from traditional validations of MI algorithms, 

we also compared our results to prior validation work on CKD and cerebral infarction (Table 

4b). Nadkarni and colleagues validated two phenotype algorithms for CKD using data from 

electronic health record systems at three clinical sites.20 In the first algorithm they used 

diagnosis and procedure codes plus glomerular filtration rate measurements. At one site 

(Mount Sinai Hospital) they found a PPV of 0.960 (95% CI: 0.940, 0.973). They found 

similar results at the other 2 clinical sites. Using a similar algorithm, our approach found a 

mean PPV of 0.811 (range: 0.692-0.873). We found similar results for NPV as was found in 

the traditional validation. They also validated an algorithm using diagnosis codes only. They 

found a lower PPV, 0.629 (95% CI: 0.578, 0.677) using this algorithm. We found a similar 

mean value for PPV, 0.716 (range: 0.626-0.890) across 5 datasets. Wahl et al developed and 

validated an algorithm for cerebral infarction.17 In their algorithm they used diagnosis codes 

for cerebral infarction and required a length of hospital stay of 3 days or greater. Their 

validation produced a PPV of 0.874 (95% CI: 0.820, 0.917). Our validation, using a similar 

algorithm, found a PPV of 0.599 (range: 0.566-0.635).

To understand how changes in the xSpec PA affect the diagnostic predictive model, we 

examined 4 different, increasingly specific, versions of the xSpec PA for AF in the MDCR 

database (Table 5). The least specific algorithm we tested required 2 condition codes for AF 

in the subject’s health record. The most specific algorithm, and ultimately the xSpec PA we 

used for our cross-database testing, required 10 condition codes for AF in the subject’s 

health record. These xSpec PAs were examined using the common PAs we tested previously, 

e.g., “>=1 X Dx Code”. We found that, in general, as the xSpec PA became more specific for 

AF, i.e., increasing from requiring 2 to 10 AF condition codes in the subject’s health record, 

the sensitivity of the common PA increased, the specificity remained relatively unchanged, 

and the PPV decreased.

4.0 Discussion

The results of this study provide support for the PheValuator tool as an alternative 

mechanism for estimating the performance characteristics of PAs. The results show how 

increasing the specificity of a PA changes the sensitivity of the algorithm. In many cases, the 

sensitivity may be lowered to such a great extent as to call into question whether studies 

using these very specific PAs are experiencing selection bias. We were able to demonstrate 

that the tool can evaluate PAs that are derived from data elements other than diagnostic 

condition codes such as procedures and clinical laboratory measures. We also found similar, 

albeit more conservative, estimates for PPV in our comparison between the results achieved 

through PheValuator and results from traditional PA validations.

We tested this method on one electronic health record (EHR) database and four insurance 

administrative claims databases. While the results were similar in many cases, we did 

observe source-specific performance differences when testing PAs that involved hospital in-

patient records. This finding is likely attributable to differential capture of the phenotype in 

Swerdel et al. Page 11

J Biomed Inform. Author manuscript; available in PMC 2020 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the source data, but may also be reflective of biased estimates from the ‘probabilistic gold 

standards’ given that each source had a differently fitted predictive model. In either case, 

observing different performance across sources should stimulate further exploration to 

assess the generalizability of the PA. In this example, since the EHR dataset is sourced by 

general and specialty practices and does not fully capture hospital care, a PA requiring 

hospital records would be expected to have lower sensitivity than a private-payer claims 

dataset for which most inpatient services are expected to be captured. The performance 

estimates from PheValuator can enable relative comparisons between data sources and PAs 

to understand the tradeoff in types of measurement error that may exist when applying a PA 

to a source for observational research.

Based on our comparisons with the 3 studies examining the PPV’s for AMI, it appears as 

though PheValuator may produce a more conservative estimate of the performance 

characteristics of PAs.17-19 However, strict comparisons between our results and those from 

traditional PA validations may be prone to bias. The datasets used in our studies are likely 

very different than those used in prior studies. For example, the data we used to inform our 

models were from 2010 onward. Those in the prior studies were from data collected between 

1999 to 2009. At least one major difference was that during this period US claims datasets 

transitioned from the use of International Classification of Diseases, Ninth Revision, 

Clinical Modification (ICD-9) to ICD-10. Cutrona et al. used an administrative dataset from 

hospital claims data which would likely have different data quality characteristics from 

insurance claims data. As there are likely differences in the prevalence of AMI between the 

datasets used in this study and those from the 3 studies compared, PPV, which is prevalence 

dependent, would be impacted. The small sample size used in traditional validation studies 

will also impact the precision of results. In our analyses we used evaluation cohorts with 

sample sizes of about two million subjects.

An advantage to the use of this method for PA performance measurement is that any number 

of PAs may be tested on each database to provide relative advantages and disadvantages of 

each. The use of validation results from published PAs is limited to the specific PA tested. If 

changes to the PA are required for study-specific reasons, the published results are no longer 

directly applicable. Consider, for example, if the study to be conducted required some 

limitation on prior therapeutic interventions, such as no prior statin use. In this case, the 

results from the validation studies for the PAs would likely be very different from the 

performance characteristics of the PAs used in the study to be conducted. Using 

PheValuator, this new PA for AMI with no prior statin use could be readily tested and would 

provide information on how the new criteria impacted, say, PA sensitivity. The tool also 

allows for a comparative examination of the impact of added PA elements on performance. 

For example, we found that including a diagnosis code from a hospital in-patient visit 

improved the PPV for AMI with only a small impact on sensitivity while the same PA 

change for AF produced only a moderate gain in PPV with a large impact on sensitivity 

(Table 2b).

As the models are developed using the data available within the dataset, the tool provides an 

estimate of PA performance based on the level of quality of the data in hand. If data is sparse 

within the dataset, the model will have less information to discriminate between cases and 
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non-cases and may produce poor quality models.21 PheValuator provides a set of 

performance characteristics for the model developed which provides a level of confidence as 

to the validity of the results from PAs.

The importance using PA performance characteristics from a population similar to that in 

which the research is to be conducted may be illustrated in the CKD PA validation (Table 

2a). When using the PA for “1 X Dx Code, In-Patient, 1st Position”, we found that the PPVs 

for the 7 datasets were quite similar with a narrow range of values between 84% and 91%. 

However, there was significant dissimilarity in the values for sensitivity where the values 

ranged from 4% to 25%. The highest sensitivity was in the MDCD population. MDCD 

enrollees with CKD have been shown to have poorer outcomes and have higher rates of 

hospitalization.22 Using performance characteristics from a PA validated on a population 

very different than those in MDCD would likely give disease burden estimates much higher 

than is actually the case. This example also underscores the need for a complete set of 

performance characteristics as the similarities between the PPV estimates may be 

misleading.

PheValuator may also be used as a way to enhance PAs. During the PheValuator process, a 

diagnostic prediction model is developed. The selected predictors from the model may be 

useful to consider as candidate criteria to include within a PA. For example, for AMI, the 

model included the procedure codes “Measurement of Cardiac Sampling and Pressure, Left 

Heart, Percutaneous Approach”, “Dilation of Coronary Artery, One Artery with Drug-

eluting Intraluminal Device, Percutaneous Approach”, and “Percutaneous transluminal 

coronary angioplasty”. If the goal of the PA is to achieve an algorithm with a very high 

specificity, the investigator may want to include these procedures to locate those with AMI.

Understanding the performance characteristics of the xSpec PA used for model development 

is important as this algorithm ultimately determines the predicted probability of the subjects 

in the evaluation cohort used to test PAs used in studies. In our comparisons between 

increasingly specific xSpec PAs for AF in MDCR, we found that the more specific the xSpec 

PA is for AF, the less likely the model will infer false negatives and the more likely the 

model will infer false positives. This makes intuitive sense as the more specific the xSpec 

model the more “particular” the model will be when inferring a subject is positive based in 

his/her health record. In our research, we chose the most conservative PA, based on the 

highest PA specificity, for our testing.

Misclassification is a part of the systematic error of a study. PheValuator can be used to gain 

a better understanding of the level of possible misclassification by estimating the sensitivity 

and specificity of the PAs for the phenotype used within a study. These performance 

characteristics may support a researcher in the design of a study by allowing for exploration 

of alternative PAs with more preferable sensitivity or specificity. It can also support 

researchers in study execution by providing an estimate of measurement error that can be 

incorporated into the statistical analysis or communicated in study limitations.

CKD provides an interesting example of one of the limitations of this method: PheValuator 

uses predictive modeling to create a ‘probabilistic gold standard’ based on binary features 
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extracted from the structured data available in the data, which may not reflect the desired 

health status for the patient. If the phenotype is undiagnosed and untreated, PheValuator will 

not form a model with a strong capability for detecting false negatives. In the case of CKD, 

clinical guidelines indicate that those with eGFR values <= 60 ml/min/1.73 m2 should be 

considered to have CKD. Nadkarni et al found that ICD-9 codes for CKD had a PPV of 

about 63% based on their PA validation.20 In our data, we found that the PPV for subjects 

with a sustained low eGFR was about 63%, i.e., PheValuator considers 37% of those with a 

laboratory measurement indicative of CKD to be false positive. For CKD, it is possible that 

instead some of these 37% false positives are in fact undiagnosed patients who are in need of 

treatment but not yet receiving it.

There are a number of other limitations to this method and its validation. This approach is 

not applicable in situations where there is only a single concept that is used to define a 

disease as the xSpec PA and the predictive model would both require use of that concept, 

which would introduce circular logic. This method relies on the use of predictive models that 

use all patient data for assessing probability of a phenotype. We found that errors in 

prediction were higher in subjects with sparse data records. This issue occurred both at the 

micro level (e.g., specific subjects within a database) as well as at the macro level (e.g., 

comparisons between databases). The development of the prediction models is also 

dependent on the quality of the data in the dataset, which can vary substantially.23 The 

models generated within any phenotype show significant differences between datasets. As 

we noted, while traditional PA validation from a specific dataset may not apply to any 

particular observational datasets, e.g., due to prevalence differences, the results from 

PheValuator should be used with caution between datasets. Source record verification was 

not conducted as part of the validation of PheValuator in this study.

5.0 Conclusions

PheValuator represents a novel approach to phenotype evaluation by providing an automated 

process using a probabilistic gold standard for estimating the performance of phenotype 

algorithms. We believe PheValuator may be a useful tool when phenotype algorithm 

evaluation is required but manual chart review is infeasible or prohibitively expensive, and 

when multiple phenotype algorithms require comparison across a network of databases. 

Future work can seek to improve the predictive modeling approach within PheValuator, and 

to further validate the approach using additional phenotypes and data sources and comparing 

with source record review. Current results suggest PheValuator shows promise as a useful 

tool for researchers seeking to generate reliable evidence from observational data.
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AMI Acute Myocardial Infarction

AUC Area Under Receiver Operator Characteristics Curve

CCAE IBM® MarketScan® Commercial Claims and Encounters Database

CDM Common Data Model

CKD Chronic Kidney Disease

CPT-4 Current Procedural Terminology, 4th Edition

eGFR estimated Glomerular Filtration Rate

ICD-9 International Classification of Diseases, Ninth Revision

IRB Institutional Review Board

LASSO Least Absolute Shrinkage and Selection Operator

MDCD IBM® MarketScan® Multi-State Medicaid

MDCR IBM® MarketScan® Medicare Supplemental and Coordination of 

Benefits Database

NPV Negative Predictive Value

PA Phenotype Algorithm

PLP Patient Level Prediction

PPV Positive Predictive Value

SNOMED Systematized Nomenclature of Medicine
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Figure 1: 
The First Portion of the PheValuator Process Flow Creating the Target and Outcome Cohorts 

to be used in Training the Diagnostic Predictive Model for Developing the Probabilistic 

Gold Standard Phenotype Data set to be used in Phenotype Algorithm Evaluation.

T – Target Cohort; O – Outcome Cohort; TAR – Time-At-Risk;
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Figure 2: 
The Last Portion of the PheValuator Process Flow Using Test Phenotype Algorithms along 

with the Probabilistic Gold Standard Phenotype Data for Developing the Performance 

Characteristics of the Phenotype Algorithm.

p(O) – Probability of Outcome; TP – True Positive; FN – False Negative; TN – True 

Negative; FP – False Positive
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Table 1:

Performance Characteristics of the Diagnostic Predictive Models used to Create Probabilistic Gold Standard 

Datasets

Phenotype Database AUC
Calibration

Intercept
Calibration

Slope

Average
Predicted

Probability
Case

Median
Predicted

Probability
Case

Average
Predicted

Probability
Non-Case

Median
Predicted

Probability
Non-Case

Chronic Kidney Disease

CCAE 0.997 0 1.00 0.87 1.00 0.00 0.00

Optum1862 0.996 0 1.05 0.84 1.00 0.00 0.00

OptumGE66 0.977 0 1.02 0.79 0.97 0.04 0.01

MDCD 0.997 0 1.02 0.88 1.00 0.00 0.00

MDCR 0.988 0 1.01 0.85 1.00 0.03 0.00

PanTher1862 0.993 0 1.02 0.81 0.98 0.01 0.00

PanTherGE66 0.982 0 1.01 0.78 0.94 0.03 0.00

Atrial Fibrillation

CCAE 0.999 0 0.98 0.86 0.98 0.00 0.00

Optum1862 0.999 0 0.97 0.87 0.97 0.00 0.00

OptumGE66 0.992 0 1.00 0.84 0.94 0.02 0.00

MDCD 0.996 0 0.98 0.78 0.91 0.00 0.00

MDCR 0.996 0 1.01 0.88 0.99 0.02 0.00

PanTher1862 0.998 0 1.01 0.84 0.96 0.00 0.00

PanTherGE66 0.994 0 1.02 0.84 0.95 0.03 0.00

Myocardial Infarction

CCAE 1.000 0 1.00 0.84 0.97 0.00 0.00

Optum1862 1.000 0 0.98 0.86 0.97 0.00 0.00

OptumGE66 0.994 0 1.05 0.74 0.91 0.01 0.00

MDCD 0.998 0 1.01 0.76 0.92 0.00 0.00

MDCR 0.994 0 1.04 0.77 0.94 0.01 0.00

PanTher1862 0.998 0 1.03 0.76 0.94 0.00 0.00

PanTherGE66 0.984 0 1.02 0.68 0.83 0.02 0.00

Cerebral Infarction

CCAE 1.000 0 1.01 0.90 1.00 0.00 0.00

Optum1862 1.000 0 1.02 0.90 0.99 0.00 0.00

OptumGE66 0.999 0 1.04 0.87 0.99 0.01 0.00

MDCD 0.999 0 0.99 0.88 1.00 0.00 0.00

MDCR 0.998 0 1.00 0.91 1.00 0.01 0.00

PanTher1862 0.996 0 0.99 0.82 0.99 0.00 0.00

PanTherGE66 0.991 0 1.01 0.79 0.97 0.01 0.00

AUC – Area Under Receiver Operator Characteristics Curve; CCAE - IBM® MarketScan® Commercial Claims and Encounters Database, ages 

18-62 years; MDCR - IBM® MarketScan® Medicare Supplemental and Coordination of Benefits Database, ages 66 years and greater; MDCD - 

IBM® MarketScan® Multi-State Medicaid, ages 18-62 years; Optum1862 - Optum© De-Identified Clinformatics® Data Mart Database – Date of 
Death, ages 18-62 years; OptumGE66 - ages 66 years and greater; PanTher1862 - Optum© de-identified Electronic Health Record Dataset, ages 
18-62 years; PanTherGE66 - Optum© de-identified Electronic Health Record Dataset, ages 66 years and greater
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Table 2a:

Performance Characteristics of Four Phenotype Algorithms using Diagnostic Condition Codes to Determine 

Chronic Kidney Disease and Atrial Fibrillation on Multiple Datasets using PheValuator. The continuous 3-

color heat map for the data in the table was defined as Red (value = 0), Yellow (value = 0.5), and Green (value 

= 1).

Chronic Kidney Disease  Atrial Fibrillation

Phenotype
Algorithm Database Sens PPV Spec NPV  Sens PPV Spec NPV

>=1 X HOI

CCAE 0.798 0.445 0.990 0.998  0.924 0.281 0.990 0.999

Optum1862 0.822 0.497 0.985 0.997  0.912 0.399 0.989 0.999

OptumGE66 0.856 0.601 0.888 0.969  0.948 0.478 0.906 0.995

MDCD 0.903 0.484 0.974 0.997  0.930 0.323 0.984 0.999

MDCR 0.840 0.501 0.910 0.981  0.956 0.360 0.890 0.997

PanTher1862 0.711 0.592 0.990 0.994  0.908 0.480 0.991 0.999

PanTherGE66 0.806 0.575 0.929 0.976  0.930 0.459 0.912 0.994

>= 2 X HOI

CCAE 0.707 0.551 0.994 0.997  0.818 0.341 0.993 0.999

Optum1862 0.760 0.581 0.990 0.996  0.799 0.463 0.993 0.998

OptumGE66 0.802 0.653 0.916 0.959  0.887 0.525 0.927 0.989

MDCD 0.841 0.578 0.983 0.996  0.783 0.386 0.990 0.998

MDCR 0.757 0.574 0.940 0.973  0.890 0.400 0.914 0.992

PanTher1862 0.679 0.624 0.992 0.994  0.857 0.514 0.993 0.999

PanTherGE66 0.778 0.596 0.937 0.973  0.895 0.478 0.922 0.991

>=1 X HOI, In-Patient

CCAE 0.282 0.673 0.999 0.993  0.466 0.390 0.997 0.998

Optum1862 0.371 0.745 0.998 0.988  0.480 0.511 0.996 0.996

OptumGE66 0.372 0.794 0.981 0.888  0.569 0.550 0.958 0.961

MDCD 0.579 0.670 0.992 0.989  0.631 0.419 0.993 0.997

MDCR 0.417 0.699 0.981 0.940  0.623 0.436 0.948 0.975

PanTher1862 0.231 0.769 0.999 0.985  0.269 0.545 0.998 0.993

PanTherGE66 0.296 0.718 0.986 0.922  0.357 0.502 0.972 0.950

1 X HOI, In-Patient, 1st Position

CCAE 0.127 0.837 0.999 0.991  0.359 0.422 0.998 0.997

Optum1862 0.132 0.895 0.999 0.984  0.313 0.551 0.998 0.995

OptumGE66 0.093 0.907 0.998 0.848  0.355 0.591 0.978 0.943

MDCD 0.252 0.861 0.999 0.980  0.444 0.513 0.997 0.996

MDCR 0.093 0.907 0.998 0.848  0.355 0.591 0.978 0.943

PanTher1862 0.040 0.901 0.999 0.981  0.136 0.617 0.999 0.992

PanTherGE66 0.035 0.838 0.999 0.897  0.158 0.560 0.990 0.936

Sens – Sensitivity ; PPV – Positive Predictive Value ; Spec – Specificity; NPV – Negative Predictive Value; Dx Code – Diagnosis code for the 

phenotype; CCAE - IBM® MarketScan® Commercial Claims and Encounters Database, ages 18-62 years; MDCR - IBM® MarketScan® 

Medicare Supplemental and Coordination of Benefits Database, ages 66 years and greater; MDCD - IBM® MarketScan® Multi-State Medicaid, 

ages 18-62 years; Optum1862 - Optum© De-Identified Clinformatics® Data Mart Database – Date of Death, ages 18-62 years; OptumGE66 - ages 
66 years and greater; PanTher1862 - Optum© de-identified Electronic Health Record Dataset, ages 18-62 years; PanTherGE66 - Optum© de-
identified Electronic Health Record Dataset, ages 66 years and greater
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Table 2b:

Performance Characteristics of Four Phenotype Algorithms using Diagnostic Condition Codes to Determine 

Myocardial Infarction and Cerebral Infarction on Multiple Datasets using PheValuator. The continuous 3-color 

heat map for the data in the table was defined as Red (value = 0), Yellow (value = 0.5), and Green (value = 1).

Acute Myocardial Infarction  Cerebral Infarction

Phenotype
Algorithm Database Sens PPV Spec NPV  Sens PPV Spec NPV

>=1 X HOI

CCAE 0.761 0.598 0.997 0.999  0.811 0.268 0.994 0.999

Optum1862 0.723 0.530 0.995 0.998  0.808 0.227 0.990 0.999

OptumGE66 0.643 0.534 0.973 0.982  0.837 0.252 0.938 0.996

MDCD 0.676 0.468 0.990 0.996  0.836 0.299 0.980 0.998

MDCR 0.665 0.553 0.977 0.985  0.797 0.317 0.950 0.994

PanTher1862 0.630 0.479 0.994 0.997  0.741 0.479 0.994 0.998

PanTherGE66 0.574 0.431 0.971 0.984  0.739 0.419 0.966 0.991

>= 2 X HOI

CCAE 0.585 0.769 0.999 0.998  0.649 0.425 0.998 0.999

Optum1862 0.495 0.693 0.998 0.996  0.647 0.335 0.995 0.999

OptumGE66 0.382 0.644 0.990 0.971  0.665 0.340 0.968 0.991

MDCD 0.454 0.628 0.996 0.993  0.697 0.421 0.990 0.997

MDCR 0.418 0.674 0.991 0.975  0.632 0.436 0.976 0.989

PanTher1862 0.519 0.582 0.997 0.996  0.604 0.590 0.997 0.997

PanTherGE66 0.447 0.501 0.983 0.979  0.619 0.500 0.980 0.987

>=1 X HOI, In-Patient

CCAE 0.674 0.737 0.999 0.998  0.670 0.486 0.998 0.999

Optum1862 0.623 0.693 0.998 0.997  0.628 0.439 0.997 0.999

OptumGE66 0.521 0.655 0.987 0.977  0.649 0.446 0.980 0.991

MDCD 0.573 0.593 0.995 0.994  0.632 0.494 0.993 0.996

MDCR 0.544 0.649 0.987 0.980  0.624 0.501 0.982 0.989

PanTher1862 0.267 0.641 0.999 0.993  0.255 0.634 0.999 0.995

PanTherGE66 0.265 0.541 0.991 0.972  0.302 0.562 0.992 0.977

1 X HOI, In-Patient, 1st Position

CCAE 0.633 0.788 0.999 0.998  0.633 0.529 0.998 0.999

Optum1862 0.581 0.754 0.999 0.997  0.588 0.479 0.998 0.998

OptumGE66 0.445 0.711 0.991 0.974  0.604 0.492 0.984 0.990

MDCD 0.499 0.666 0.997 0.993  0.560 0.544 0.995 0.996

MDCR 0.445 0.711 0.991 0.974  0.604 0.492 0.984 0.990

PanTher1862 0.205 0.702 0.999 0.993  0.191 0.686 0.999 0.994

PanTherGE66 0.185 0.592 0.995 0.970  0.228 0.604 0.995 0.975

Sens – Sensitivity ; PPV – Positive Predictive Value ; Spec – Specificity; NPV – Negative Predictive Value; Dx Code – Diagnosis code for the 

phenotype; CCAE - IBM® MarketScan® Commercial Claims and Encounters Database, ages 18-62 years; MDCR - IBM® MarketScan® 

Medicare Supplemental and Coordination of Benefits Database, ages 66 years and greater; MDCD - IBM® MarketScan® Multi-State Medicaid, 

ages 18-62 years; Optum1862 - Optum© De-Identified Clinformatics® Data Mart Database – Date of Death, ages 18-62 years; OptumGE66 - ages 
66 years and greater; PanTher1862 - Optum© de-identified Electronic Health Record Dataset, ages 18-62 years; PanTherGE66 - Optum© de-
identified Electronic Health Record Dataset, ages 66 years and greater
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Table 3:

Performance Characteristics of Phenotype Algorithms using Diagnosis codes plus Clinical Procedures to 

Determine Health Outcomes of Interest on Multiple Datasets using PheValuator. The continuous 3-color heat 

map for the data in the table was defined as Red (value = 0), Yellow (value = 0.5), and Green (value = 1).

Phenotype
Algorithm (HOI) Database Sens PPV Spec NPV

Dialysis Alone (CKD)

CCAE 0.094 0.954 0.999 0.991

Optum1862 0.088 0.967 0.999 0.983

OptumGE66 0.031 0.984 0.999 0.840

MDCD 0.261 0.965 0.999 0.980

MDCR 0.058 0.970 0.999 0.908

PanTher1862 0.047 0.947 0.999 0.981

PanTherGE66 0.023 0.930 0.999 0.896

Low Glomerular Filtration Rate (CKD)

CCAE 0.013 0.543 0.999 0.985

Optum1862 0.050 0.705 0.999 0.976

OptumGE66 0.024 0.547 0.997 0.868

MDCR 0.078 0.706 0.991 0.802

Atrial Fibrillation plus Atrial Ablation/Cardioversion (AF)

CCAE 0.010 0.979 0.999 0.996

Optum1862 0.008 0.968 0.999 0.992

OptumGE66 0.006 0.953 0.999 0.917

MDCD 0.003 0.924 0.999 0.992

MDCR 0.005 0.949 0.999 0.940

PanTher1862 0.014 0.956 0.999 0.991

PanTherGE66 0.008 0.899 0.999 0.926

Coronary Artery Revascularization Alone (AMI)

CCAE 0.062 0.967 0.999 0.995

Optum1862 0.073 0.944 0.999 0.993

OptumGE66 0.037 0.916 0.999 0.955

MDCD 0.037 0.905 0.999 0.987

MDCR 0.026 0.915 0.999 0.959

PanTher1862 0.017 0.771 0.999 0.991

PanTherGE66 0.010 0.667 0.999 0.964

Cerebral Infarction plus Thrombo-endarterectomy (Cerebral Infarction)

CCAE 0.005 0.976 0.999 0.997

Optum1862 0.004 0.930 0.999 0.996

OptumGE66 0.003 0.894 0.999 0.976

MDCD 0.002 0.974 0.999 0.990

MDCR 0.002 0.900 0.999 0.972

PanTher1862 0.002 0.942 0.999 0.993

PanTherGE66 0.001 0.923 0.999 0.968

Sens – Sensitivity ; PPV – Positive Predictive Value ; Spec – Specificity; NPV – Negative Predictive Value; CKD – Chronic Kidney Disease; AMI 

– Acute Myocardial Infarction; CCAE - IBM® MarketScan® Commercial Claims and Encounters Database, ages 18-62 years; MDCR - IBM® 

MarketScan® Medicare Supplemental and Coordination of Benefits Database, ages 66 years and greater; MDCD - IBM® MarketScan® Multi-

State Medicaid, ages 18-62 years; Optum1862 - Optum© De-Identified Clinformatics® Data Mart Database – Date of Death, ages 18-62 years and 
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OptumGE66 - ages 66 years and greater; PanTher1862 - Optum© de-identified Electronic Health Record Dataset, ages 18-62 years and 
PanTherGE66 - ages 66 years and greater
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Table 4a:

Performance Characteristics of 3 Phenotype Algorithms Replicating Those From Prior Publications to 

Determine Acute Myocardial Infarction on Multiple Datasets using PheValuator

Comparison Database Sens PPV Spec NPV

Wahl

From Paper
1 - 0.884 (95% CI: 0.832, 0.925) - -

CCAE 0.343 0.698 0.999 0.996

Optum1862 0.323 0.642 0.999 0.995

OptumGE66 0.359 0.641 0.990 0.970

MDCD 0.364 0.561 0.996 0.991

MDCR 0.373 0.636 0.991 0.973

PanTher1862 0.100 0.642 0.999 0.992

PanTherGE66 0.129 0.560 0.996 0.968

Mean: 0.284 0.626 0.996 0.984

Choma

From Paper
2 - 0.928 (95% CI: 0.896, 0.952) - -

CCAE 0.332 0.763 0.999 0.996

Optum1862 0.303 0.716 0.999 0.995

OptumGE66 0.310 0.701 0.994 0.967

MDCD 0.324 0.643 0.998 0.991

MDCR 0.321 0.686 0.994 0.971

PanTher1862 0.074 0.720 0.999 0.992

PanTherGE66 0.087 0.628 0.998 0.966

Mean: 0.250 0.694 0.997 0.983

Cutrona

From Paper
3 - 0.860 (95% CI: 0.792, 0.912) - -

CCAE 0.610 0.787 0.999 0.998

Optum1862 0.565 0.752 0.999 0.997

OptumGE66 0.430 0.710 0.991 0.973

MDCD 0.480 0.664 0.997 0.993

MDCR 0.444 0.692 0.991 0.976

PanTher1862 0.201 0.700 0.999 0.993

PanTherGE66 0.180 0.589 0.995 0.969

Mean: 0.416 0.699 0.996 0.986

1
Standard codes for acute myocardial infarction (i.e., ICD-9 410.XX) excluding subsequent AMI codes (i.e., ICD-9 410.X2) from an hospital 

inpatient visit with a length of stay between 3 and 180 days or death if length of stay is less than 3 days (Wahl et al 17)

2
Standard codes for acute myocardial infarction from an hospital inpatient visit with a length of stay > 2 days (Choma at al 18)

3
Standard codes for acute myocardial infarction in the principal or primary position on facility claims for hospitalizations excluding subsequent 

AMI codes (Cutrona et al 19)

Sens – Sensitivity ; PPV – Positive Predictive Value ; Spec – Specificity; NPV – Negative Predictive Value;; CCAE - IBM® MarketScan® 

Commercial Claims and Encounters Database, ages 18-62 years; MDCR - IBM® MarketScan® Medicare Supplemental and Coordination of 

Benefits Database, ages 66 years and greater; MDCD - IBM® MarketScan® Multi-State Medicaid, ages 18-62 years; Optum1862 - Optum© De-

Identified Clinformatics® Data Mart Database – Date of Death, ages 18-62 years; OptumGE66 - ages 66 years and greater; PanTher1862 - 
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Optum© de-identified Electronic Health Record Dataset, ages 18-62 years; PanTherGE66 - Optum© de-identified Electronic Health Record 
Dataset, ages 66 years and greater
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Table 4b:

Performance Characteristics of Phenotype Algorithms Replicating Those From Prior Publications to 

Determine Chronic Kidney Disease and Cerebral Infarction on Multiple Datasets using PheValuator

Comparison Database Sens PPV Spec NPV

Nadkarni et al (CKD) Conditions, Procedures, GFR 
Measurements

From Paper
1 - 0.960 (95% CI: 

0.940, 0.973) - 0.933 (95% CI: 
0.909, 0.951)

CCAE 0.001 0.814 0.999 0.989

Optum1862 0.001 0.866 0.999 0.980

OptumGE66 0.002 0.873 0.999 0.806

MDCR 0.001 0.692 0.999 0.895

Mean: 0.001 0.811 0.999 0.918

Nadkarni et al (CKD) Conditions

From Paper
1 - 0.629 (95% CI: 

0.578, 0.677) - 0.543 (95% CI: 
0.507, 0.578)

CCAE 0.331 0.626 0.998 0.993

Optum1862 0.310 0.700 0.997 0.986

OptumGE66 0.402 0.890 0.988 0.873

MDCD 0.349 0.700 0.994 0.976

MDCR 0.376 0.666 0.978 0.931

Mean: 0.354 0.716 0.991 0.952

Wahl et al (Stroke) Conditions, >=3 Days LOS

From Paper
2 - 0.874 (95% CI: 

0.820, 0.917) - -

CCAE 0.253 0.607 0.999 0.997

Optum1862 0.247 0.600 0.999 0.996

OptumGE66 0.277 0.635 0.993 0.971

MDCD 0.249 0.589 0.997 0.988

MDCR 0.290 0.566 0.992 0.976

Mean: 0.263 0.599 0.996 0.986

1
Nadkarni et al 20

2
Wahl et al 17

Sens – Sensitivity ; PPV – Positive Predictive Value ; Spec – Specificity; NPV – Negative Predictive Value; HOI – Health Outcome of Interest; 

CKD – Chronic Kidney Disease; CCAE - IBM® MarketScan® Commercial Claims and Encounters Database, ages 18-62 years; MDCR - IBM® 

MarketScan® Medicare Supplemental and Coordination of Benefits Database, ages 66 years and greater; MDCD - IBM® MarketScan® Multi-

State Medicaid, ages 18-62 years; Optum1862 - Optum© De-Identified Clinformatics® Data Mart Database – Date of Death, ages 18-62 years; 
OptumGE66 - ages 66 years and greater
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Table 5:

Comparison of Performance Characteristics of 4 Extremely Specific (xSpec) Phenotype Algorithms Used for 

Atrial Fibrillation Diagnostic Predictive Model Development in the IBM® MarketScan® Medicare 

Supplemental and Coordination of Benefits Database, ages 66 years and greater. The continuous 3-color heat 

map for the data in the table was defined as Red (value = 0), Yellow (value = 0.5), and Green (value = 1).

Test
Phenotype
Algorithm

xSpec
Phenotype
Algorithm Sens PPV Spec NPV

>=1 X AF

2 X AF 0.898 0.449 0.886 0.988

3 X AF 0.921 0.430 0.883 0.991

5 X AF 0.933 0.409 0.879 0.993

10 X AF 0.956 0.360 0.890 0.997

>= 2 X AF

2 X AF 0.815 0.482 0.909 0.979

3 X AF 0.844 0.467 0.907 0.984

5 X AF 0.856 0.444 0.904 0.986

10 X AF 0.890 0.400 0.914 0.992

>=1 X AF, In-Patient

2 X AF 0.527 0.512 0.948 0.951

3 X AF 0.553 0.502 0.947 0.957

5 X AF 0.558 0.475 0.945 0.960

10 X AF 0.623 0.436 0.948 0.975

1 X AF, In-Patient, 1st Position

2 X AF 0.354 0.535 0.968 0.936

3 X AF 0.377 0.533 0.968 0.942

5 X AF 0.380 0.504 0.967 0.946

10 X AF 0.447 0.472 0.968 0.965

AF + Ablation/Cardioversion

2 X AF 0.004 0.955 0.999 0.907

3 X AF 0.005 0.963 0.999 0.913

5 X AF 0.005 0.960 0.999 0.918

10 X AF 0.005 0.949 0.999 0.940

Sens – Sensitivity ; PPV – Positive Predictive Value ; Spec – Specificity; NPV – Negative Predictive Value; AF – Atrial Fibrillation
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