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ABSTRACT

Background: Head and neck squamous cell carcinomas (HNSC) are among the most common malignant tumors
with high incidence, relapse, and mortality rate. STAT proteins are implicated in various biological processes,
including cell proliferation, metastasis, and immune regulation.

Method: Various bioinformatics tools were used to explore the role of the STAT family in HNSC.

Result: The mRNA levels of STAT1/2/4/5A/6 were significantly upregulated in HNSC tissues. The levels of
STAT1/2/4/5A/6 could be used for the detection of HNSC. HNSC patients with a high level of STAT5A had a poor
overall survival and relapse-free survival. A moderate to high correlation was obtained between the STAT family
and HNSC. Genetic alteration revealed that STAT1/2/3/4/5A/5B/6 were altered in 6%, 5%, 7%, 8%, 6%, 6%,
and 4% of the queried TCGA HNSC samples, respectively. Immune infiltrations analysis suggested a significant
association between STAT5A expression and abundance of specific immune cells. Further, copy number alteration
of STAT5SA could certainly inhibit infiltration level. Moreover, a close correlation was obtained between STAT5A
level and the expression of immune markers in HNSC. Several kinase targets and transcription factor targets
of STATSA in HNSC were also identified. Enrichment analysis suggested that STATSA and co-expression genes
were mainly responsible for adaptive immune response, T cell activation, cytokine-cytokine receptor interaction,
chemokine signaling pathway, cell-adhesion molecules, and ribosome and RNA transport.

Conclusion: Our results provided additional data for the expression and clinical significance of the STAT family
in HNSC, and further study should be performed to verify these.

Introduction

STAT proteins are implicated in various biological processes, includ-
ing cell proliferation, metastasis, and immune regulation [7]. Seven

Head and neck cancer (HNC) is a collection of malignant tumors
occurring in the upper gastrointestinal tract, salivary glands, and thy-
roid [1]. Over 830,000 people are estimated to be diagnosed with HNC,
and over 430,000 people are estimated to die of HNC annually globally
[2]. About 90% of HNCs are head and neck squamous cell carcinomas
(HNSQC) [3]. Though aggressive therapies, including surgery, chemora-
diotherapy, and immunotherapy, were applied for HNSC, over 50% cu-
rative patients were present with relapse [4]. Worse still, the mortality
of HNSC is as high as 40-50% [5]. Once HNSC patients present with
recurrence and/or metastasis, the median overall survival (OS) hardly
exceeds 12 months [6]. These sobering findings demonstrate an urgent
need for novel approaches to HNSC.
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members have been identified, including STAT1/2/3/4/5A/5B/6. Data
increasingly reveal that variant STAT proteins and abnormally activated
STAT pathways are linked to various diseases, such as malignancies,
asthma and immune-related disease [7, 8]. Some proteins of the STAT
family were suggested as therapy targets for certain cancers due to their
significance in tumor initiation and progression [9]. Moreover, some
proteins of the STAT family were also suggested as the biomarkers for
the diagnosis and prognosis of cancers, including STAT1 and STAT2 for
pancreatic cancer and STAT5B and STAT®6 for lung cancer [10, 11].
Several studies have been performed to clarify the expression or the
functions of certain STAT family members in HNSC. For example, inhi-
bition of STAT3 could lead to greater cetuximab sensitivity [12]. Ac-
tivation of STAT4 could potentially mitigate lymphatic metastasis in
HNSC [13]. Moreover, gene-expression signature associated with recur-
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Fig 1. STAT family level in HNSC. The number in the figure was the number of datasets with statistically significant (p<0.01) mRNA over-expression (red) or
down-expression (blue) of the STAT family, which was obtain with the P-value of 0.05 and fold change of 2.

rent disease in HNSC was profiled to clarify the gene expression profile
of HNSC[14]. However, the role of the STAT family in HNSC was far
from fully illuminated. Therefore, we will systematically explore and an-
alyze STAT family expression and their diagnostic and prognostic value,
as well as their related regulatory networks in HNSC. Our findings will
provide additional data about the significant function of the STAT fam-
ily in the tumorigenesis and progress of HNSC.

Methods
Patient information and datasets

Gene expression HNSC dataset GSE2379 [15] of Oncomine was ex-
tracted and analyzed in our study (May 8, 2020). The gene expression
profiles (level 3 data) of primary HNSC patients were extracted from
the TCGA database (https://tcga-data.nci.nih.gov/tcga/) (May 8, 2020).
Clinical data such as gender, age, survival, and outcome were also down-
loaded from the TCGA data portal. Further analyses were performed
with following bioinformatics analysis portals (TCGA visualization por-
tals).

Oncomine

Oncomine (https://www.oncomine.org/) is a cancer microarray
database which could be used for gene-expression profiles mining [16].
The mRNA level of the STAT family in HNSC patients and healthy peo-

ple was analyzed using Oncomine. The fold-change was set as 2, and the
P-value was set as 0.05.

UALCAN

UALCAN (http://ualcan.path.uab.edu/index.html) is the Cancer
Genome Atlas (TCGA) database visual web portal [17]. The mRNA level
of the STAT family in HNSC patients and healthy people and its correla-
tion with clinical pathological parameters, including gender and tumor
stage, was analyzed using UALCAN. These analyses were performed us-
ing TCGA HNSC dataset (n=520), and p-value <0.05 indicated that the
results were statistically significant.

Kaplan Meier-plotter

Kaplan Meier-plotter (KM-plotter, http://www.kmplot.com/) is a
comprehensive meta-analysis web port for the discovery and validation
of survival biomarkers [18]. The role of the STAT family in the prognosis
of HNSC patients was analyzed using the KM-plotter with the medium
STAT family expression as the group cut-off value. These analyses were
performed using the TCGA HNSC dataset (n=520), and p-value <0.05
indicated that the results were statistically significant.

cbioportal

cbioportal (https://www.cbioportal.org/) is a TCGA database
visual web portal for genomics analysis [19]. The genetic alteration
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Table 1

The mRNA levels of STAT family in HNSC (ONCOMINE).
TLR Fold Change P value t-test Reference
STAT1 3.090 3.104  9.25E-11 0.001  8.874 6.681  PMID:14729608 PMID: 14676830
STAT2 NA NA NA NA
STAT3 NA NA NA NA
STAT4 NA NA NA NA
STAT5A NA NA NA NA
STAT5B  NA NA NA NA
STAT6 NA NA NA NA
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Fig 2. STAT family level in HNSC. The relative level of STAT1(A), STAT2 (B), STAT3(C), STAT4(D), STAT5A(E), STAT5B(F), and STAT6(G) in HNSC tissues and

normal tissues.

and gene co-expression of STAT family in HNSC were explored with
cbioportal using the TCGA HNSC dataset (n=520). Mutation data
were obtained from whole exome sequencing. Mutation packager:
HNSC/20160128/gdac.broadinstitute.org HNSC.Mutation_Packager_
Raw_Calls.Level _3.2016012800.0.0.tar.gz. Genomic alterations of the
STAT family in HNSC, including mutations, CNAs (amplifications and
homozygous deletions), and changes in gene expression or protein
abundance, were analyzed. We also analyzed the effects of genetic
alteration of the STAT family on patients’ prognosis in the “survival”
module of cbioportal. p-value <0.05 indicated that the results were
statistically significant.

TIMER

TIMER (http://cistrome.org/TIMER/) is a TCGA database visual web
portal for analyses of tumor immunity [20]. The correlation analysis
between STAT5A with immune cells infiltrations (“Gene” module) as
well as immune biomarker level (“correlation” module) in HNSC were
acquired in TIMER, which is performed by spearman analysis. These
analyses were performed using the TCGA HNSC dataset (n=520), and
p-value <0.05 indicated that the results were statistically significant.

Linkedomics

LinkedOmics (http://www.linkedomics.org/ login.php) is a TCGA
database visual web portal for genomics analysis [21]. The genes signif-
icantly correlated with STAT5A in HNSC were explored with the “Link-
Finder” module using Spearman’s correlation coefficient. Moreover, the
enrichment analyses, including those of GO, KEGG pathways, kinase
targets, miRNA targets and transcription factor-targets of STAT5A, and
correlated genes, were explored with the “Link-Interpreter” module
using GSEA analysis. The “Link-Interpreter” module of LinkedOmics

could perform pathway and network analyses of differentially expressed
genes. Web-based Gene SeT AnaLysis Toolkit (WebGestalt) is one of the
most comprehensive functional category databases [22]. These analy-
ses were performed using the TCGA HNSC dataset (n=520). The rank
criterion was an FDR <0.05, and 500 simulations were performed.

Result
Defining the STAT family in HNSC

The mRNA level of STAT family in HNSC was got from Oncomine
and UALCAN. As shown in Fig. 1, the data of Oncomine revealed that
the mRNA level of STAT family was increased or decreased in differ-
ent types of cancers, including HNSC. Ginoset al. found that the STAT1
mRNA level was upregulated with a fold-change of 3.090 (P =9.25E-11,
Table 1) [14]. Another study also revealed that the STAT1 mRNA
level was 3.104 times in tumor tissues compared with normal tissues
[15]. However, there is no data about the expression of the other
STAT family proteins. According to the data from UALCAN, the mRNA
level of STAT1(Fig. 2A, P=1.62E-12), STAT2 (Fig. 2B, P=1.62E-12),
STAT4 (Fig. 2D, P=2.69E-6), STATSA (Fig. 2E, P=2.05E-6), and STAT6
(Fig. 2G, P=1.37E-4) were significantly upregulated in HNSC tissues.

The expression of the STAT family in subgroup group of HNSC patients

The above data suggest that STAT1/2/4/5A/6 were significantly up-
regulated in HNSC tissues. Thus, we further detected the correlation
between the STAT family and clinical pathological features in HNSC.
The pathological features were comprised of race, gender, age, tumor
grade, HPV status, nodal metastasis status, TP53 mutation status, and
cancer stage. As expected, STAT1 and STAT2 were upregulated in HNSC
patients in contrast to healthy individuals in subgroup analyses based
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Fig 3. The prognostic value of the STAT family in HNSC. (A) The overall survival curve of HNSC patients with high and low level of the STAT family. (B) The
relapse-free survival curve of HNSC patients with high and low level of STAT family.
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of STAT family in HNSC. (C,D) Kaplan-Meier plots comparing disease-free survival and overall survival in cases with/without STAT family alterations.
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The Kinase, miRNA and transcription factor-target networks of STAT5A in HNSC (LinkedOmics).

Enriched category Geneset LeadingEdgeNum P value

Kinase Target Kinase_LCK 20 0
Kinase_SYK 14 0
Kinase_TYN 23 0
Kinase_LYN 22 0
Kinase_BCR 6 0

miRNA Target CTGTTAC, MIR-194 20 0
TTGGAGA, MIR-515-5P, 36 0
MIR-519E 10 0
GTAAACC, MIR-299-5P 4 0
AGTCTAG, MIR-151 16 0
ATAACCT, MIR-154

Transcription Factor Target VS$IRF_Q6 57 0
VS$ELF1_Q6 62 0
V$PU1_Q6 56 0
VS$PEA3_Q6 60 0
VS$IRF_Q6 66 0

A Purity B Cell CD8+ T Cell CD4+ T Cell Macrophage Neutrophil Dendritic Cell
6 partial.cor = 0.381 > partial.cor = 0.481 . partial.cor = 0.569| | o partial.cor = 0.476 o partial.cor = 0.573 @ partial.cor = 0.594
p= ?.62_(—:—1.8 p= 7,790 29| 8 pe 1 10.0—28 . 3 p.= 2.‘7.80—4.7

a

°
e
-
i

© s
HNSG

S

STAT5A Expression Level (log2 TPM)

. 02 03
Infiltration Level

04

B
HNSC
* * * * * * %
* * * * %
* * * *
1.54
©
E Copy Number
c 10- B3 Arm-level Deletion
2 B3 Diploid/Normal
2 B3 Arm-level Gain
= High Amplication
€ 05+ é B3 High Amp
—
.| &L éé#*’ o, el éééh
B Cell CD8+TCell CD4+TCell Macrophage  Neutrophil  Dendritic Cell

Fig 5. Immune infiltration of STAT5A in HNSC. (A) The correlation between STAT5A and abundance of different immune cell levels in HNSC. (B) The correlation

between copy number alteration of STAT5A and immune cell infiltration in HNSC.

on race, gender, age, tumor grade, HPV status, nodal metastasis status,
TP53 mutation status, and cancer stage (Supplemental Fig. 1). Inter-
estingly, the mRNA level of STAT4 (Supplemental Fig. 2A), STAT5A
(Supplemental Fig. 2B), and STAT6 (Supplemental Fig. 2C) were upreg-
ulated in HNSC patients in contrast to healthy individuals in subgroup
analyses. Therefore, the levels of STAT1/2/4/5A/6 could be used for
the detection of HNSC.

Prognostic value of the STAT family in HNSC

The prognostic value of different expressed STAT family in HNSC
were analyzed with KM-plotter. The results demonstrated that HNSC pa-
tients with high level of STAT5A (HR=1.51, 95%:1.15-1.97, P=0.0026)
had a poor overall survival (OS) (Fig. 3A). Interestingly, we found that
HNSC patients with a high level of STAT5A (HR=2.15, 95%:0.97-4.76,
P=0.053) had a poor relapse-free survival (RFS); however, the P-value
is over 0.05 (Fig. 3B). Further, STAT1/2/4/6 had no effect on the OS
and RFS of HNSC patients. Therefore, the level of STAT5A could be used
for predicting the prognosis of HNSC patients.

Co-expression and genetic alteration of the STAT family in HNSC

Fig. 4A shows the result of co-expression of the STAT family in HNSC.
A moderate to high correlation was obtained in the STAT family. Ge-
netic alteration revealed that STAT1, STAT2, STAT3, STAT4, STAT5A,
STATS5B, and STAT6 were altered in 6%, 5%, 7%, 8%, 6%, 6%, and 4% of
the queried TCGA HNSC samples, respectively (Fig. 4B). Further, genetic
alteration forms of the STAT family were composed of missense mu-
tation, truncating mutation, amplification, deep deletion, mRNA high,
mRNA low, protein high and protein low (Fig. 4B).However, these ge-
netic alterations would not affect the OS (Fig. 4C, P=0.547) and disease-
free survival (Fig. 4D, P=0.700) of HNSC patients.

Immune infiltrations analysis of STAT5A in HNSC

The above results revealed that STAT5A level was increased in
HNSC tissues and correlated with clinical pathological features. More-
over, the level of STAT5A could be used for predicting the prognosis
of HNSC patients. Therefore, STAT5A was selected for further analy-
sis. Previous studies have suggested the significance of STAT signaling
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Table 3
Correlation analysis between STATSA and gene biomarkers of immune cells in HNSC (TIMER).
None Purity
Immune cells Biomarkers Cor P-value Cor P-value
CD8+ T cell CD8A 0.593 o 0.585 ek
CD8B 0.595 o 0.584 b
T cell (general) CD3D 0.621 o 0.616 b
CD3E 0.66 o 0.655 b
CD2 0.657 o 0.649 b
B cell CD19 0.465 o 0.448 .
CD79A 0.448 e 0.43 .
Monocyte CD86 0.542 s 0.527 ek
CD115(CSF1R) 0.597 o 0.585 .
TAM CCL2 0.451 e 0.434 e
CD68 0.297 o 0.282 .
IL10 0.408 o 0.39 .
M1 Macrophage INOS (NOS2) 0.289 e 0.288 b
IRF5 0.409 o 0.416 .
COX2(PTGS2) -0.042 0.344 -0.033 0.464
M2 Macrophage CD163 0.451 ok 0.443 A
VSIG4 0.403 e 0.393 .
MS4A4A 0.468 o 0.455 b
Neutrophils CD66b (CEACAMS) 0.089 * 0.059 0.191
CD11b (ITGAM) 0.515 0.492
CCR7 0.57 o 0.566 .
Natural killer cell KIR2DL1 0.256 0.264 o
KIR2DL3 0.377 R 0.371 i
KIR2DL4 0.442 o 0.443 b
KIR3DL1 0.346 o 0.334 b
KIR3DL2 0.487 o 0.482 .
KIR3DL3 0.232 e 0.22 .
KIR2DS4 0.28 o 0.264 .
Dendritic cell HLA-DPB1 0.632 s 0.624 ok
HLA-DQB1 0.493 e 0.473 .
HLA-DRA 0.611 o 0.601 .
HLA-DPA1 0.62 o 0.609 b
BDCA-1(CD1C) 0.438 e 0.414 .
BDCA-4(NRP1) 0.28 o 0.269 .
CD11c (ITGAX) 0.485 o 0.473 b
Thi T-bet (TBX21) 0.623 o 0.611 .
STAT4 0.537 e 0.528 .
STAT1 0.397 o 0.388 b
IFN-g (IFNG) 0.479 0.463
TNF-a (TNF) 0.269 0.255
Th2 GATA3 0.345 o 0.333 .
STAT6 0.361 o 0.387 b
STAT5A - - - -
IL13 0.373 o 0.365 b
Tfh BCL6 0.206 o 0.231 b
IL21 0.445 e 0.424 .
Th17 STAT3 0.494 e 0.494 e
IL17A 0.273 o 0.258 .
Treg FOXP3 0.618 s 0.607 Hak
CCR8 0.52 e 0.501 .
STAT5B 0.574 o 0.575 .
TGFb (TGFB1) 0.014 0.752 -0.003 0.944
T cell exhaustion PD-1 (PDCD1) 0.621 o 0.613 b
CTLA4 0.574 o 0.567 b
LAG3 0.568 o 0.562 b
TIM-3 (HAVCR2) 0.603 o 0.592 .
GZMB 0.52 e 0.509 e

in immunology [23]. Here, we conducted immune infiltrations analysis
of STATS5A in HNSC. The data suggested a significant association be-
tween STAT5A expression and the abundance of B cells (Cor=0.381,
P=6.62¢e-18), CD8+ T cells (Cor=0.481, P=7.70e-29), CD4+ T cells
(Cor=0.569, P=1.48e-42), Macrophages (Cor=0.476, P=1.10e-28),
Neutrophils (Cor=0.573, P = 3.30e-43), and Dendritic cells (Cor=0.594,
P=2.78e-47) (Fig. 5A). Additionally, we also found that copy number
alteration of STATSA could certainly inhibit infiltration level (Fig. 5B).
Interestingly, there is a close correlation between STATS5A level and the
expression of immune markers in HNSC (Table 2). Therefore, STATS5A
may exert a specific function in immune infiltration of HNSC microen-
vironment.

Kinase targets and transcription factor targets of STAT5A in HNSC

The above results suggested a significant role of STAT5A in HNSC.
Thus, we further explored the Kinase targets and transcription fac-
tor (TF) targets of STAT5A in HNSC. As shown in Table 3, the most
significant five Kinase targets of STAT5A in HNSC are Kinase_LCK,
Kinase_SYK, Kinase_TYN, Kinase_LYN, and Kinase_ BCR. Moreover, the
gene sets enriched for kinase LCK are mainly linked to antigen receptor-
mediated signaling pathway, immune response, T cell receptor signal-
ing pathway, and T cell activation (Fig. 6). With regard to the TF tar-
gets of STATS5A in HNSC, the results suggested V$IRF_Q6, V$ELF1_Q6,
V$PU1_Q6, VSPEA3_Q6, and V$IRF_Q6 as the top 5 significant targets.
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Fig 6. PPI network of kinase_LCK networks. PPI network and functional analysis about the gene sets of kinase_LCK networks. The different colors for the network

nodes indicate the biological functions of the set of enrichment genes.

Interestingly, the gene sets enriched for TF V$IRF_Q6 are mainly linked
to immune response, antigen receptor-mediated signaling pathway, T
cell receptor signaling pathway, T cell activation, and leukocyte differ-
entiation (Fig. 7).

Enrichment analysis of STAT5A in HNSC

The above results suggested a significant role of STAT5A in HNSC.
Thus, we conducted enrichment analysis of STAT5A in HNSC. We first
explored co-expression genes correlated with STATSA with the data of
TCGA HNSC patients with LinkedOmics. The results in a volcano plot
found that 10,151 genes were correlated with STAT5A were obtained in
HNSC, including 6132 genes that were positively linked to STAT5A and
4042 genes that were negatively linked to STATSA (Fig. 8A). The heat
map in Fig. 8B and C shows the 50 significant gene sets positively and

negatively linked to STAT5A (Fig. 8B and C). GO analysis conducted
by GSEA suggested that STAT5A and co-expression genes were mainly
responsible for adaptive immune response, T cell activation, leukocyte
proliferation, rRNA metabolic process, cytokine receptor binding and ac-
tivity, translation factor activity, antigen binding, and immunoglobulin
binding (Fig. 8D-F). Further, KEGG analysis conducted by GSEA sug-
gested that STAT5A and co-expression genes were mainly responsible
for cytokine-cytokine receptor interaction, chemokine signaling path-
way, cell adhesion molecules, ribosome, Th17 cell differentiation, and
RNA transport (Fig. 8G).

Discussion

The STAT family has been found to be involved in human cancer
tumorigenesis, progression, metastasis, survival, and resistance to treat-
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ment [24]. In gastric cancer, STAT5A could facilitate the tumorigenesis
of tumor cells [25]. STAT3 was suggested as a novel drug target for can-
cer therapy [26]. In HNSC, inhibition of STAT3 could lead to greater
cetuximab sensitivity [12]. Moreover, activation of STAT4 could poten-
tially mitigate lymphatic metastasis in HNSC [13]. However, the role
of STAT family in HNSC was far from fully illuminated. Therefore, our
study was performed.

The level of STAT family in HNSC was first detected, which suggested
that the mRNA levels of STAT1/2/4/5A/6 were significantly upregu-
lated in HNSC tissues. We also found that the level of STAT1/2/4/5A/6
could be used for the detection of HNSC. Moreover, HNSC patients with
high levels of STAT5A had a poor overall survival and relapse-free sur-
vival. As a matter of fact, some of the STAT family had been found to
be as biomarkers for cancers. In breast cancer, individual STATs may
function as a biomarker predicting favorable prognosis [27]. Pang et al.

found that STAT2 was a marker significantly associated with the progno-
sis of pancreatic cancer [11]. Moreover, high STAT4 level demonstrated
a better disease-free survival in gastric cancer [28].

Another important finding of our study was that STATS5A was as-
sociated with immune cell infiltrations and that copy number alter-
ation of STAT5A could certainly inhibit infiltration level. Our result
was consistent with previous data. Rani et al. found that STAT5A was
involved in the development of Tregs [29]. Moreover, sustained acti-
vation of STAT5A was linked to anti-tumor immunosuppression [29].
In hepatocellular carcinoma, STAT5A was associated with immune-
related biological processes [30]. In fact, certain immune cells or im-
mune biomarkers associated with STAT5A had been suggested as the
immune-therapy targets for HNSC. PD-L1 expression could predict ben-
efit from checkpoint inhibitor therapy in HNSC [31]. Another study
demonstrated CTLA4 as a novel therapeutic strategy in HNSCC [31].
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Therefore, STAT5A may exert a specific function in immune infiltration
of HNSC microenvironment.

Several kinases targets, including Kinase LCK, Kinase SYK, Ki-
nase_TYN, Kinase_LYN, and Kinase_.BCR, were also identified. Inter-
estingly, these kinases were associated with cell-cycle arrest, apopto-
sis, mitosis, and immune response [32-34]. Additionally, kinase LCK
is a positive regulator of inflammatory signaling and is suggested as
the potential target for cancer treatment [35]. Moreover, LCK is the
major contributor to the development and activation of T-cells [36].
Thus, STAT5A regulated immune infiltration in HNSC through kinase
LCK.

We also identified several transcription factor targets of STAT5A in
HNSC, including V$IRF_Q6, V$ELF1_Q6, V$PU1_Q6, V$SPEA3_Q6, and
VS$IRF_Q6. These transcription factor targets in tumor cells could result
in cell cycle disorder and affect cell aberrant proliferation, decreased
differentiation, decreased apoptosis, and rapid multiplication and de-
velopment [37]. In nasopharyngeal carcinoma, ELF1 could promote tu-
mor cell proliferation and metastasis [38]. In colorectal carcinoma, Pea3
facilitate tumor cell invasion and metastasis. However, these transcrip-
tion factor targets have rarely been studied in HNSC. Therefore, STATSA
and these transcription factors may also regulate cell proliferation and
invasion in HNSC.

There are some limitations in this study. The sample data were basi-
cally derived from the TCGA database, and it would be better to verify
the result with other databases. In addition, we did not perform experi-
mental verification.

Conclusion

Overall, our results provided additional data for the expression and
clinical significance of the STAT family in HNSC, and further study
should be performed to verify these findings.
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