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SUMMARY

Most drugs entering clinical trials fail, often related to an incomplete understanding of the 

mechanisms governing drug response. Machine learning techniques hold immense promise for 

better drug response predictions, but most have not reached clinical practice due to their lack of 

interpretability and their focus on monotherapies. We address these challenges by developing 

DrugCell, an interpretable deep learning model of human cancer cells trained on the responses of 

1,235 tumor cell lines to 684 drugs. Tumor genotypes induce states in cellular subsystems that are 

integrated with drug structure to predict response to therapy and, simultaneously, learn biological 

mechanisms underlying the drug response. DrugCell predictions are accurate in cell lines and also 

stratify clinical outcomes. Analysis of DrugCell mechanisms leads directly to the design of 

synergistic drug combinations, which we validate systematically by combinatorial CRISPR, drug-

drug screening in vitro, and patient-derived xenografts. DrugCell provides a blueprint for 

constructing interpretable models for predictive medicine.
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Graphical Abstract

In Brief

Kuenzi et al. develop DrugCell, an interpretable deep learning model that simulates the response 

of human cancer cells to therapy. DrugCell predictions might generalize to patient tumors and can 

be used to design synergistic drug combinations that significantly improve treatment outcomes.

INTRODUCTION

Each year dozens of new therapies enter clinical trials for the potential treatment of various 

types of cancer, but fewer than 4% will ultimately gain approval by the US Food and Drug 

Administration (Wong et al., 2019). Although many factors contribute to this challenge, a 

major failure is in understanding how or why a particular cancer responds to therapy. The 

problem becomes particularly acute for cancers that are not associated with strong targetable 

genetic drivers (e.g., BCR-ABL fusion, EGFR mutation, or EML4-ALK translocation), 

since cancers without these known drivers lack clear biomarkers with which to stratify drug 

response. A better basic understanding of the molecular pathways governing drug sensitivity 

would help greatly in determining which patients should be treated and with which drugs.

There has recently been a great deal of interest in applying advances in artificial intelligence, 

including machine learning and deep learning, to classic problems in biomedicine (Topol, 

2019). Whereas popular applications include disease diagnosis from biomedical images and 
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interpretation of electronic medical records (Esteva et al., 2019; Rajkomar et al., 2019; 

Wainberg et al., 2018), machine learning models are also of high interest in predicting drug 

responses (Barretina et al., 2012; Costello et al., 2014; Garnett et al., 2012; Iorio et al., 2016; 

Zeng et al., 2019). In a typical application (reviewed in Table S1), the model uses the ‘omics 

profile of a cell line or tissue sample as input to predict the 50% inhibitory concentration 

(IC50) of a drug. For example, Iorio et al. (2016) built elastic net models to predict the drug 

IC50 of cancer cell lines given their profiles of gene mutations and expression levels; a range 

of predictive accuracy is observed, depending on the compound. Using the same dataset, 

Cortés-Ciriano et al. (2016) showed that predictive performance could in some cases be 

improved using a random forest model linked to a measure of statistical confidence in each 

prediction. Deep neural networks (Baptista et al., 2020; Chiu et al., 2019; Menden et al., 

2013; Sakellaropoulos et al., 2019) and variational autoencoders (Rampášek et al., 2019) 

have also been applied to drug response prediction, with significant performance gains noted 

depending on the drug and disease context.

Owing to the significant molecular heterogeneity observed across tumors, there are often 

many different molecular features and feature combinations that can lead a model to predict 

a particular drug response. What these features are, and whether they are distinct or 

functionally interrelated, can be very difficult to interpret, however. The reason is that most 

machine learning models are “black boxes,” optimized for prediction accuracy without 

knowledge of or attention to the biological mechanisms underlying predicted outcomes 

(Ching et al., 2018). To address these difficulties, model interpretation is now a rapidly 

growing subfield within machine learning, with a growing arsenal of approaches for 

achieving models with not only high predictive accuracy, but also high descriptive accuracy 

(Murdoch et al., 2019). One major strategy has been to use prior knowledge or data to add 

structure to the model, which can then be interpreted. Applied to genomics, such a strategy 

has been used to recast the thousands of measured molecular features of a tumor as states on 

a much smaller number of functional modules (Cortés-Ciriano et al., 2016; Yang et al., 

2019). For example, a recent study mappedraw molecular measurements to a set of pre-

defined metabolic pathways drawn from prior knowledge bases; the states of these pathways 

predict antibiotic resistance in Escherichia coli, with particular pathway features emerging as 

candidate mechanisms of resistance (Yang et al., 2019). Organization of molecular features 

into predictive modules can also be accomplished using prior data as opposed to literature-

curated knowledge. Such an approach was recently exemplified by Deep-Profile, which 

analyzed a large collection of leukemia expression profiles to extract a low-dimensional 

representation of these data as a set of functional gene modules; these modules are then used 

as interpretable features for drug response prediction (Dincer et al., 2018). Apart from 

model-based approaches, a second major strategy to increase model interpretability has been 

to perform post hoc analysis of model features or feature weights to interpret the underlying 

drug response mechanisms (Chiu et al., 2019; Iorio et al., 2016; Murdoch et al., 2019). For 

example, the weights assigned to each input gene by a black-box neural network model are 

subjected to gene set enrichment analysis (Subramanian et al., 2005) to identify pathways 

regulating the predicted drug response (Sakellaropoulosetal., 2019). These pathways, 

however, were not used during modeling or validated experimentally.
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To more explicitly link the structure of a machine learning model to cellular functions, we 

recently developed a visible neural network (VNN) simulating a simple eukaryotic cell, 

Saccharomyces cerevisiae (Ma et al., 2018; Yu et al., 2018). This model, called DCell, was 

made mechanistically interpretable, or “visible,” by directly mapping the neurons of a deep 

neural network into a large hierarchy of known and putative molecular components and 

pathways. DCell is able to accurately predict the impact of genetic mutations on cellular 

growth response and, simultaneously, identify the most relevant molecular pathways driving 

those predictions. Building from this paradigm, we now describe DrugCell, a VNN that 

simulates the response of human cancer cells to therapeutic chemical compounds. DrugCell 

couples the inner workings of the model to the hierarchical structure of human cell biology, 

allowing for response predictions for any drug in any cancer and intelligent design of 

effective combination therapies.

RESULTS

Design and Training of an Interpretable Neural Network of Drug Response

The cellular drug response is a complex phenomenon that depends on both biological and 

chemical factors (Turner et al., 2015). Current black-box models of drug response that use 

both these factors have begun to reach the limits of predictive performance (Table S1). We 

therefore aimed to design a model that maintains this high level of predictive capability 

while gaining mechanistic interpretability of the model predictions. To capture both 

determinants of drug response in an interpretable model, we devised DrugCell as a neural 

network with two branches (Figure 1A, STAR Methods). The first branch was a VNN 

modeling the hierarchical organization of molecular subsystems in a human cell, drawn from 

2,086 biological processes documented in the Gene Ontology (GO) database (Ashburner et 

al., 2000) (Figure S1A). Each of these subsystems, from those involving small protein 

complexes (e.g., β-catenin destruction complex) to larger signaling pathways (e.g., MAPK 

signaling pathway) to overarching cellular functions (e.g., glycolysis), was assigned a bank 

of artificial neurons to represent the state of that subsystem (Figure 1B). Connectivity of 

neurons was set to mirror the biological hierarchy, so that neurons accept inputs only from 

child subsystems and send outputs only to parent systems, with connection weights 

determined during training. The use of multiple neurons per subsystem (here six, see STAR 

Methods) allowed cellular subsystems to be multifunctional, with distinct states able to 

adopt a range of values along multiple dimensions (Copley, 2012). The input layer of the 

hierarchy mapped to the mutation status of genes. The six neurons at the VNN output, 

corresponding to the root of the hierarchy, represented the embedded state of the whole cell 

based on its genotype (Figure 1B). In total, the VNN used 12,516 neurons distributed 

hierarchically across six distinct layers (STAR Methods, Figure S1B). The second branch of 

DrugCell was a conventional artificial neural network (ANN) embedding the Morgan 

fingerprint of a drug, a canonical vector representation of chemical structure (Figure 1C, 

STAR Methods) (Rogers and Hahn, 2010). Outputs from the two branches of the model, the 

VNN embedding cell genotype and the ANN embedding drug structure, were combined in a 

single layer of neurons, which were then integrated to generate the response of a given 

genotype to a particular treatment (Figure 1A).
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To train the model, we harmonized data from two large cancer drug screening resources: the 

Cancer Therapeutics Response Portal (CTRP) v2 and the Genomics of Drug Sensitivity in 

Cancer (GDSC) database (Seashore-Ludlow et al., 2015; Yang et al., 2013). The combined 

dataset consisted of 509,294 cell line-drug pairs, covering 684 drugs and 1,235 cell lines 

(Figure S1C, STAR Methods). All major tissue types were represented, with hematopoietic 

and lung lineages the most prevalent (Figure S1D). Each cell-line genotype was represented 

by a binary vector recording the mutational status (1 = mutated, 0 = non-mutated) of the top 

15% most frequently mutated genes in cancer (n = 3,008; median mutated genes per cell line 

= 73; Figure S1E). Each drug’s chemical structure was represented by an average of 81 

activated bits in the Morgan fingerprint vector, with each bit typically representing fewer 

than 10 molecular fragments (Figures S1F and S1G). DrugCell was trained to associate each 

genotype-drug pair with its corresponding drug response, measured by the area under the 

dose-response curve (AUC, STAR Methods). The DrugCell model and its codebase are 

available for public download on GitHub (https://github.com/idekerlab/DrugCell).

Interpretable Modeling of Drug Response Has No Performance Loss

We first sought to assess the prediction accuracy of DrugCell using the Spearman correlation 

(rho) between predicted and observed AUC values in 5-fold cross validation (STAR 

Methods). The total accuracy over all cell line-drug pairs was rho = 0.80 (Figure 2A). 

Further insight was achieved by computing the prediction accuracy for each drug 

individually, revealing a subpopulation of drugs with very high prediction accuracy (30% of 

drugs with rho > 0.5) amid a much wider general distribution (range −0.29 to +0.83, median 

0.37). These accuracies were significantly higher than those achieved for elastic net (median 

rho = 0.35), a state-of-the-art regression technique used in many previous approaches to drug 

response prediction (Eskiocak et al., 2017; Iorio et al., 2016; Kuenzi et al., 2019; Potts et al., 

2015) (Figure 2B). DrugCell’s drug-by-drug predictive performance was not significantly 

different from that of a conventional black-box ANN with matching numbers of neurons, 

layers, and connections (Figure 2C). It was also comparable to previous efforts to 

incorporate chemical features of drugs into the response prediction (e.g., structure and 

physiochemical properties such as solubility, lipophilicity, and molecular weight), and it 

outperformed models that predict response using biological features alone (e.g., expression 

of biomarkers, point mutation, copy number variation, and microsatellites; Table S1). 

Finally, since knowledge of tissue type can be predictive of drug response even in the 

absence of other information (Iorio et al., 2016), we considered that some of the 

performance of these models might be due to their ability to recognize the tissue type of a 

cell line from its input data (i.e., its mutational profile). Accordingly, we compared DrugCell 

with an equivalent neural network model trained on drug structure and a tissue label only 

(STAR Methods). DrugCell vastly outperformed this tissue-only model (median rho = 0.18; 

Figure 2D), indicating that the model had learned information from somatic mutations 

beyond the tissue of origin.

Compounds for which DrugCell predictions were most accurate came from diverse target 

classes, including chemotherapeutics (e.g., vincristine, teniposide) and targeted therapies 

(e.g., GSK461364 targeting PLK1, KX2–391 targeting Src; Figure 2E). DrugCell 

maintained the specificity of the training data in that its predictions were specific to 
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individual classes of drugs (e.g., MEK inhibitor predictions were highly specific) and did not 

simply reflect general drug toxicity (Figure S2A). Predictive performance for a drug did not 

strongly correlate with the number of cell line-drug pairs used for training, nor with the 

structural complexity of a compound (number of activated bits; Figures S2B and S2C). We 

did find that compounds eliciting a larger range of cell-line responses tended to be more 

predictable (Figure S2D). Similarly, individual cell lines (Figure S2E) and tissue types 

(Figure S2F), which elicit a large range of responses, were in general highly predictable.

DrugCell Learns Mechanisms that Mediate Specific Drug Responses

Having evaluated predictive ability, we next turned to mechanistic interpretation. This task 

was aided by the two model branches, which dissect the effects of genotype on the 

configuration of cell systems (genotype embedding) from the effects of chemical structure 

on drug activity within the cell (drug embedding, Figure 1A). We visually inspected these 

embeddings by plotting the top two principal components (Figures 3A–3E). The genotype 

embedding from the VNN revealed a separation of genotypes according to mutations known 

to confer specific drug sensitivities, such as activating mutations in BRAF (Figure 3A) that 

promote sensitivity to the MEK inhibitor selumetinib (Figure 3B). The genotype embedding 

also distinguished mutations leading to drug resistance, such as mutations in EGFR (Yin et 

al., 2019), LKB1 (Shimamura et al., 2013), or BRAF (Ma et al., 2017) (Figure 3C) that 

confer resistance to the BET-family inhibitor JQ1 (Figure 3D). We similarly inspected the 

DrugCell embeddings of individual subsystems within the VNN and found that many were 

in agreement with subsystem activities measured experimentally by an independent analysis 

of protein abundances and phosphorylation states using reverse-phase protein arrays 

(RPPAs; Figure S3A; STAR Methods). For example, DrugCell accurately captured MAPK 

pathway activity within the subsystem embedding of Regulation of MAPK cascade (Figure 

S3B), which significantly correlated with ERK1/2 phosphorylation (Figure S3C). Overall, 

the majority of DrugCell subsystems were well correlated with the RPPA measurements of 

those subsystems (note bimodal distribution of correlation in Figure S3A). Other accurately 

captured subsystems included Proteolysis (Figure S3D), Regulation of PI3K signaling 
(Figure S3E), and Cell-cycle arrest (Figure S3F).

Inspection of the drug embedding from the ANN revealed a stratification of drugs based on 

their mechanisms of action within major drug target classes (Figure 3E). The distance 

between each pair of drugs in the chemical structure embedding did not correlate with their 

overall chemical similarity (Figure S4A), consistent with previous studies of drug activity 

and chemical structure (Breinig et al., 2015). Since the training data consisted solely of 

drugs and drug-like molecules, the chemical structural embedding did not stratify drugs on 

chemical features such as membrane permeability (Figure S4B), solubility (Figure S4C), or 

pharmacodynamic properties (Lipinski; Figure S4D). Together these results suggest that 

DrugCell is able to learn key features of the genotype that govern drug sensitivity and 

resistance, as well as features of chemical structure that govern drug biological activity.

Since DrugCell’s VNN is structured according to the hierarchy of biological subsystems 

comprising a human cell, its output (genotype embedding) is the result of state changes in 

particular subsystems within that hierarchy. To identify the most important of these 
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subsystems, we scored subsystems by the degree to which their states were significantly 

more predictive of a drug response than the states of their child subsystems using the relative 

local improvement in predictive power metric (RLIPP, STAR Methods) (Ma et al., 2018). As 

an initial proof of concept, we used RLIPP scoring to identify subsystems important for the 

cellular response to taxol (paclitaxel), an agent that stabilizes microtubules (Figures 2E and 

3F, Table S2). Among the top scores for paclitaxel, many subsystems were metabolic 

processes (hypergeometric p < 0.05; Figures 3G and 3H), including Response to cAMP (top 

score) along with Insulin secretion in response to glucose and Response to glucose. We 

confirmed by inspection that the states of these subsystems had the ability to stratify 

paclitaxel sensitive versus resistant cell lines (e.g., Response to cAMP subsystem, Figure 

3I). Given these underlying metabolic pathways, we hypothesized that paclitaxel efficacy 

might be modulated by metabolic perturbation. We therefore exposed A427 cells to three 

different treatments – paclitaxel, the glycolysis inhibitor 2-deoxyglucose (2-DG), or a 

combination of the two – and found that the combination was substantially more effective 

than either individual compound (Figure 3J).

A similar analysis was performed for the next (second-most) important subsystem, 

Regulation of ubiquitin-protein transferase activity (Figure 3G, Table S2). We combined 

paclitaxel with perturbation of ubiquitin-dependent protein degradation via the proteasome 

inhibitor bortezomib (Figure S5A). We found that these treatments were antagonistic, 

consistent with recent findings showing that glycolysis is subject to negative physical 

regulation by ubiquitin ligases at the cytoskeleton (Park et al., 2020). Ubiquitin and 

subsystems were also identified for docetaxel, a sister compound (Table S3). Notably, these 

DrugCell pathways were not identified by earlier analyses of genetic mutations (Table S4) 

and were distinct from those identified by differential mRNA expression analysis of 

paclitaxel sensitive versus resistant lines (Figures S5B and S5C). Unlike the glycolytic 

perturbations emerging from DrugCell analysis, that these treatments were antagonistic, 

consistent with recent findings showing that glycolysis is subject to negative physical 

regulation by ubiquitin ligases at the cytoskeleton (Park et al., 2020). Ubiquitin and 

subsystems were also identified for docetaxel, a sister compound (Table S3). Notably, these 

DrugCell pathways were not identified by earlier analyses of genetic mutations (Table S4) 

and were distinct from those identified by differential mRNA expression analysis of 

paclitaxel sensitive versus resistant lines (Figures S5B and S5C). Unlike the glycolytic 

perturbations emerging from DrugCell analysis, combination treatments suggested by 

differentially expressed pathways were not successful at enhancing paclitaxel efficacy 

(Figure S5D).

Moving beyond paclitaxel to examine the important subsystems identified for other drugs, 

we found that some of these subsystems corresponded to previously identified mechanisms 

of drug sensitivity, while many others were novel pathways warranting further investigation. 

In particular, we examined 60 drugs for which pan-cancer diagnostic gene mutations had 

been reported by an earlier analysis of the GDSC dataset using type II error ANOVA 

modeling (Iorio et al., 2016). For a number of drugs, DrugCell recovered the previously 

reported diagnostic gene(s) within the top subsystem (4 drugs) or top 10 subsystems (14 

drugs, upper 0.4th percentile of subsystems). For the vast majority, however (56 drugs), 
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DrugCell achieved better predictive performance by consulting additional, or different, 

markers than had been previously reported (Table S4).

Given the extent of novel drug response pathways, we sought to systematically investigate 

the indicated mechanisms (Figure 4A; STAR Methods), focusing on trametinib, a MEK1 

inhibitor; olaparib, a PARP1 inhibitor; and nutlin-3, an MDM2 antagonist that stabilizes and 

activates p53. CRISPR knockouts of each of the three drug targets (MEK1, PARP1, TP53) 

were combined with knockouts of each gene in a custom CRISPR/Cas9 library, which had 

broad representation of cancer signaling pathways (MCF7 cells; Figure 4B). The top five 

important subsystems in the response to each drug were identified (RLIPP analysis; Figures 

4C–4E), along with the genes in those subsystems covered by the CRISPR library. 

Combinatorial disruption of MAPK1 with genes in trametinib subsystems (Figure 4C) 

resulted in significantly more cell killing than observed for genes from random unimportant 

subsystems (Figure 4F). A similar cell killing effect (Figure 4G) was observed for 

combinatorial disruption of PARP1 with genes in olaparib subsystems (Figure 4D). In 

contrast, combinatorial disruption of TP53 with genes in nutlin-3 subsystems (Figure 4E) 

had effects on cell growth that were not significantly different from random (Figure 4H). 

This result was expected, as TP53 knockout has the opposite effect compared with nutlin-3, 

which leads to p53 activation. These results, together with the preliminary results from 

paclitaxel, provide systematic support for the importance of top response pathways 

identified by DrugCell.

Identified Subsystems Represent Synergistic Drug Combination Opportunities

The parallel pathway inhibition theory of drug synergy (Yeh et al., 2009) holds that two 

drugs will be synergistic if they inhibit separate pathways that regulate a common essential 

function (Figure 5A). The branched architecture of the DrugCell model (Figure 1A) mirrors 

this parallel pathway structure, in that the biological activity of a drug is learned by the drug 

embedding branch, and the parallel pathways are learned by the genotype embedding branch 

(Figure 5B). Subsystems important for predicting a drug response may therefore represent 

synergistic drug combination opportunities. Exactly such parallelism was used to nominate 

the combination treatments in the above analysis (i.e., 2-DG as synergistic with paclitaxel).

To further explore this concept, we used RLIPP scores to rank subsystems regulating 

sensitivity to 25 drugs in the DeepSynergy database (Preuer et al., 2018), in which all pairs 

of 25 drugs had been tested across a panel of 39 cell lines (Figure 5C). We then analyzed the 

top 5 and bottom 5 DrugCell subsystems for each of these compounds to nominate 

synergistic and non-synergistic drug combinations. We found that drug combinations 

nominated by DrugCell were strongly and significantly enriched for synergistic cell killing 

outcomes, in contrast to combinations predicted to be non-synergistic or random 

combinations (Figure 5D).

One such example was etoposide, a topoisomerase inhibitor that leads to DNA damage 

(Table S5). Among the top etoposide subsystems were the major kinase signaling pathways 

PI3K-AKT (Regulation of PI3K activity, PI3K; Figure 5E) and RAFMEK-ERK (Negative 
regulation of ERK1/ERK2 cascade, ERK; Figure 5E). Indeed, etoposide synergized strongly 

with AKT and MEK inhibition across the majority of cell lines tested in DeepSynergy 
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(Figure 5F). We further validated the observed synergy by deleting the target of etoposide, 

TOP2, using CRISPR/Cas9 gene editing in A549 cells, either alone or in combination with 

core genes in PI3K-AKT signaling (PIK3CA) or RAF-MEK-ERK signaling (MAP2K1). We 

observed that deletion of TOP2 with either PIK3CA or MAP2K1 demonstrated significant 

loss of cell viability compared with single-gene knockout (Figure 5G). APC, whose 

subsystem (β-catenin destruction complex) was not identified by RLIPP (Table S5), did not 

show this same pattern (Figure 5G). Similarly, etoposide did not synergize with the 

proteasome inhibitor bortezomib (Figure 5F), consistent with the proteasome subsystem not 

being identified by DrugCell (Figure 5E).

Further inspection suggested that the relationship between PI3K signaling, ERK signaling, 

and etoposide sensitivity captured by DrugCell could be roughly approximated by a logic 

function integrating the mutational status of six genes (Figures 5H and 5I; STAR Methods). 

Among these, FLT1 (Das et al., 2005) and PIN1 (Mathur et al., 2011) had previously been 

shown to regulate etoposide response, whereas DUSP1, PIK3R4, SRC, and RPS6KA6 had 

not. Considered individually, any one of these genes was mutated rarely in cancer cell lines, 

with limited power to predict etoposide sensitivity versus resistance (mutation frequencies 

0.9%–8.9%; odds ratios <2; Figure 5J). Considered as an integrated circuit, however, these 

gene mutations converge on PI3K or ERK subsystems to create a powerful network-based 

biomarker of drug response (odds ratio 7.8; Figure 5J). We also noted that these two 

pathways represent only a portion of the full DrugCell model, which predicts etoposide 

sensitivity with an odds ratio of 14.3.

DrugCell Improves Progression-Free Survival of Patient-Derived Xenograft Models

We next wished to move beyond cell lines to predict and interpret drug responses in the in 
vivo setting of patient-derived xenograft models (PDX; Figure 6A, STAR Methods). To do 

so, we accessed the PDX Encyclopedia (Gao et al., 2015), in which 399 PDX tumors of 

varying tissue types had been screened against a total of 40 different monotherapies and 27 

combination therapies. The genotypes of each PDX had also been established (Gao et al., 

2015), which were provided to DrugCell to make response predictions to each monotherapy. 

We considered a PDX tumor to be sensitive to a therapy (DrugCell (+)) if its predicted AUC 

was beneath the median predicted for all PDX-drug pairs; otherwise this tumor was labeled 

as insensitive (DrugCell (−)). DrugCell (+) tumors demonstrated significantly longer 

progression-free survival (PFS) than DrugCell (−) tumors (2.19 versus 1.58 months, p = 9.4 

× 10−10, log rank test). However, given the overall insensitivity of these PDX tumors to 

monotherapy, corresponding to the short observed PFS observed for both DrugCell classes, 

we wished to evaluate how well DrugCell is able to suggest effective drug combinations. We 

used RLIPP scoring to rank subsystems by importance in mediating drug responses to six 

primary drugs, filtering this list to those that contained secondary drug targets. The observed 

PFS of each of these (primary, secondary) combinations was used to estimate the prediction 

sensitivity and specificity along a receiver operating characteristic curve (ROC; Figure 6A, 

STAR Methods). We found that DrugCell was able to accurately identify subsystems that 

correspond to effective drug combinations in PDX tumors (auROC = 0.75; Figure 6B) with 

relatively few false positives and negatives (Figure 6C).
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For example, DrugCell analysis of BKM-120, a PI3K inhibitor, identified Negative 
regulation of ERK1 + ERK2 cascade as an important subsystem for BKM-120 response, 

suggesting a combination of PI3K + MAPK pathway inhibitors (BKM-120 + encorafenib). 

This combination significantly increased PFS across the PDX panel compared with 

monotherapy (Figure 6D). Similarly, DrugCell identified DNA damage response, signal 
transduction by p53 class mediator resulting in cell-cycle arrest as an important subsystem 

for abraxane response, suggesting combination chemotherapy with an agent inducing DNA 

damage and cell-cycle arrest (abraxane + gemcitabine). This combination similarly 

significantly improved PFS (Figure 6D). For the combinations that were not prioritized by 

DrugCell (not in top 20% of subsystems by RLIPP), these combinations indeed failed to 

significantly improve PFS (Figures 6C and 6E). These results suggested that DrugCell has 

utility in guiding design of combination therapies in patient tumors.

DrugCell Predicts the Response of Estrogen Receptor Positive Metastatic Breast Cancer 
Patient stom TORand CDK4/6 Inhibitors

Last, we sought to evaluate whether DrugCell could be used clinically to stratify cancer 

patients into responsive and nonresponsive patient populations. We obtained and analyzed 

aggregated clinical trial data (Smyth et al., 2020) from 221 estrogen receptor (ER)-positive 

metastatic breast cancer patients who had undergone multiple rounds of therapy, including 

an ER antagonist (fulvestrant) in addition to treatment with an mTOR inhibitor (everolimus) 

or CDK4/6 inhibitor (ribociclib). For this analysis (STAR Methods), we predicted patient 

response to either mTOR or CDK4/6 inhibition using our pre-trained DrugCell model. We 

considered a patient to be DrugCell (+) if they were predicted to be sensitive to either 

therapy and DrugCell (−) if they were predicted to be insensitive to both therapies. DrugCell 

(+) patients had significantly longer overall survival than DrugCell (−) patients (48.2 versus 

33.6 months, p = 0.018; Figure 7A).

We next interrogated the mechanisms underlying the differential sensitivity between 

DrugCell (+) and DrugCell (−) patients by performing an RLIPP analysis for both the 

mTOR and the CDK4/6 inhibitors. Notably, we found that both drug responses were 

modulated by ER-related subsystems (Figures 7B and 7C), consistent with their use in ER-

positive breast cancer (Hare and Harvey, 2017; Pernas et al., 2018). We also found that the 

major mechanisms of action of both drugs were among the top pathways, with PI3K 

signaling being especially important for response to mTOR inhibitors and CDK activity 

being important for CDK4/6 inhibitor activity (Figures 7B and 7C). Interestingly, TOR 

signaling was also identified for CDK4/6 inhibitors (Figure 7B), and CDK activity was 

identified for mTOR inhibitors (Figure 7C), suggesting that these drugs could be an effective 

combination therapy, a finding supported by recent preclinical studies (Michaloglou et al., 

2018; Occhipinti et al., 2020).

With respect to specific genetic alterations, we found that DrugCell (+) patients were much 

more likely to harbor AKT1 mutations than DrugCell (−) patients (Figure 7D). In contrast, 

DrugCell (−) patients had mutations in genes previously associated with drug resistance, 

including ESR1 (Reinert et al., 2017), RB1 (Condorelli et al., 2018), and PTEN (Costa et al., 

2020) (Figure 7D), suggesting that we had stratified patients based on a complex pattern of 
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mutations leading to therapy resistance. Strikingly, AKT1 mutation status alone was not 

predictive of therapeutic response, with AKT1-mutant patients actually trending toward 

shorter overall survival (35.8 versus 43.1 months), although this difference was not 

statistically significant (Figure 7E). This analysis illustrates how DrugCell can be used to 

effectively guide clinical treatment decisions with significantly greater precision and insight 

than single-gene marker studies.

DISCUSSION

Here we have explored an interpretable deep learning model of the structure and function of 

a human cancer cell in response to treatment. This work advances predictive modeling 

toward a systematic representation of the biological mechanisms underlying a drug response, 

a critical direction for precision medicine. Following a model prediction, access to a 

mechanistic interpretation engages the experimentalist or clinician in reasoning about 

biological function. For example, analysis of DrugCell’s model of etoposide identified a 

small set of subsystems important for the cellular response and for which targeted drugs 

were available (Figure 5). This analysis motivated us to perform subsequent experiments to 

target both genetically and pharmacologically topoisomerase II with either MAPK or PI3K 

pathways; both of these combinations showed significant synergistic effects. Such 

engagement of human reasoning and follow-up experimentation helps greatly to increase 

accountability and trust in the predictions of a machine learning model. In contrast, 

conventional black-box predictive modeling yields only a model output–the drug response–

without further information by which to build trust in the process.

DrugCell is a flexible model that is amenable to both automated and semi-automated 

combinatorial drug design. First, the importance of each cellular subsystem is scored by 

DrugCell during a response to monotherapy. These important subsystems are then annotated 

with second points of intervention, such as the PI3K or ERK pathway in the response to 

etoposide (Figures 5E–5G). To follow up on this analysis, drug combinations can be selected 

automatically based on the druggable targets present in top DrugCell subsystems. 

Alternatively, if DrugCell is being used in a clinical context, its recommendations can be 

provided to physician-scientists (e.g., a molecular tumor board) who consider the 

recommended combinations in light of other biological knowledge not explicitly used in 

modeling, such as potential toxicities and specific information about the case. After careful 

consideration of all relevant information, the ultimate treatment decision remains in the 

hands of the physician and the patient. Such need for human accountability is not unique to 

drug response prediction but is a central tenet of high-stakes applications of machine 

learning (Rudin, 2019).

Notably, previous models trained on monotherapy responses (Ammad-ud-din et al., 2017; 

Cortés-Ciriano et al., 2016; Iorio et al., 2016; Zhang et al., 2015) have not attempted to 

suggest combination therapies. Rather, drug combinations have been predicted using models 

of synergy trained directly on data from pairwise drug treatments (Preuer et al., 2018). This 

brute force approach faces the challenge of scalability, given the combinatorial number of 

pairwise and higher order drug combinations necessary for training.
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If the favorable performance observed in PDX samples (Figure 6) and ER-positive breast 

cancer patients (Figure 7) continues in further clinical studies, DrugCell and its successors 

have the potential to substantially expand the set of clinically meaningful mutations. 

DrugCell translates the mutational status of approximately 3,000 genes into treatment 

recommendations. Although we have not fully studied which of these genes are absolutely 

required for DrugCell prediction accuracy, RLIPP analysis suggests that many of them are

−1,467 of the 2,086 subsystems are assigned relatively high importance (RLIPP >10) for at 

least one drug, collectively covering 2,855 genes. This breadth of information contrasts with 

the fewer genes included in current cancer mutation panels such as MSKIMPACT or 

Foundation One CDx (468 and 324 genes, respectively), which were designed to be queried 

manually by a physician (Cheng et al., 2015; Harris, 2017). Moreover, since we currently do 

not understand the clinical implications of the majority of cancer mutations, there is little 

consensus on what genes should be included in these pan-cancer mutation panels (Nguyen 

and Gocke, 2017) or on how physicians should act on the results. An increase in the number 

of clinically meaningful cancer mutations, facilitated by interpretable machine learning 

models such as DrugCell, could further motivate the case for complete genomic sequencing 

of cancer patients (Katsanis and Katsanis, 2013; Kuenzi and Ideker, 2020).

Future work may also elect to integrate mutations with additional levels of molecular 

information such as epigenetic states, gene expression, or microenvironmental influences. 

This integration could be accomplished by pre-processing multiple layers of information to 

derive a profile of gene scores for each cell line or tumor, which would then be input to 

DrugCell. Extra levels of information could also be integrated by adding new visible or 

conventional neural network branches alongside existing ones. Alternatively, the effects of 

specific mutations on gene functions could be incorporated by a metric such as the 

Combined Annotation-Dependent Depletion score (Rentzsch et al., 2019) or by including 

gene structural domains as an additional layer of the hierarchy.

Another opportunity is to structure the DrugCell system hierarchy from ‘omics data rather 

than literature curation (GO), as has previously been done in budding yeast (Kramer et al., 

2014; Ma et al., 2018). A data-driven, rather than literature-curated, hierarchy has the 

potential to incorporate new gene-subsystem associations as well as entirely new subsystems 

into the model. It also has the potential to revise and tailor subsystem definitions in GO, 

which are generic, to their particular contexts relevant to cancer. For instance, we found that 

in its current form DrugCell contains a number of subsystems that have misleading labels 

based on GO naming conventions. For example, Labyrinthine development was among the 

top subsystems for trametinib, which was initially puzzling, but upon further inspection 

corresponds to MAPK cascade genes with well-known involvement in cancer proliferation 

(e.g., MAP2K1, MAPK1, GRB2, FGFR2). Incorporating data-driven hierarchies into 

DrugCell provides a route to relabel such subsystems and revise their specific gene contents. 

Finally, given that DrugCell inputs a full drug structure, it can potentially be used to design 

compounds de novo. Leveraging advancements in reinforcement learning for drug design 

(Zhavoronkov et al., 2019), it may then be possible to design compounds for maximal 

efficacy against any given genomic background.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Correspondence and requests regarding this manuscript should be sent to 

and will be fulfilled by the lead investigator Dr. Trey Ideker (tideker@ucsd.edu).

Data and Code Availability—DrugCell code and sample training data are available on 

GitHub (https://github.com/idekerlab/DrugCell) and the version of the codebase used in the 

manuscript is archived on Zenodo (https://zenodo.org/badge/latestdoi/250580982). The 

trimmed version of the Gene Ontology (GO) used as the architecture for DrugCell is 

visualized and available for download on the Network Data Exchange (NDEx; URL: http://

ndexbio.org/#/network/a20b3699-4862-11ea-bfdc-0ac135e8bacf) (Pratt et al., 2015). Other 

data sources used in this study are available from their original publications and web portals.

Materials Availability—This study did not generate any unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Culture and Reagents—A549, A427, and MCF7 cells were retrieved from the 

American Type Culture Collection (ATCC) and cultured in DMEM + 10% FBS or EMEM + 

10% FBS according to ATCC recommendations. All cell lines tested negative for 

mycoplasma contamination and were authenticated by short tandem repeat (STR) analysis. 

Paclitaxel (Selleckchem) was dissolved in DMSO (10mM) and diluted in media for use. 2-

deoxy-d-glucose (Selleckchem) was dissolved in media (100mM), filtered, and further 

diluted in media for use.

METHOD DETAILS

Defining a Hierarchy of Genes and Cellular Subsystems—To computationally 

represent cancer genotypes, we selected the top 15% most frequently mutated genes in 

human cancers according to the Cancer Cell Line Encyclopedia (CCLE) (Barretina et al., 

2012) among genes annotated to Gene Ontology (GO) terms (Ashburner et al., 2000). This 

procedure yielded 3,008 genes, henceforth called ‘DrugCell genes’, which were used in 

model construction. These genes were organized into a hierarchy of nested gene sets, 

representing cellular subsystems at different scales, based on terms extracted from the GO 

Biological Process hierarchy. Terms were retained from GO if they had at least 10 DrugCell 

genes and were distinct from all child terms, defined as having at least 30 DrugCell genes 

more than any child (both part_of and is_a hierarchical term relations were considered). 

Every other term was removed from the hierarchy, and instead its children were assigned 

directly to its parents to keep the hierarchy connected. To further reduce model complexity, 

we restricted the hierarchy to a maximal depth of five subsystems by removing all 

subsystems more than five parent-child relations above the bottom layer subsystems of the 

hierarchy (subsystems without any children). The resulting hierarchy, composed of 2,086 

subsystems, defined the branch of DrugCell for embedding of genotype (left branch in 

Figure 1A, also called the VNN; Figure 1B).
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Pharmacogenomics Data Processing and Morgan Fingerprint Encoding—To 

obtain a sufficiently large pharmacogenomic dataset for model training, raw drug sensitivity 

data were retrieved from the Genomics of Drug Sensitivity in Cancer database (GDSC) and 

the Cancer Therapeutics Response Portal v2 (CTRP) (Seashore-Ludlow et al., 2015; Yang et 

al., 2013). These data covered a total of 509,294 (cell line, drug) pairs. Among these data, 

24,923 pairs redundantly measured in the two repositories were left intact in the training 

dataset, as such replicates can be beneficial to reduce model over-fitting. Luminescence 

values were background corrected (media only), normalized to vehicle treatment (DMSO) at 

each compound concentration, and replicate values averaged. To standardize across the two 

datasets, we calculated the Area Under dose response Curve (AUC) normalized such that 

AUC = 0 represents complete cell killing, AUC = 1 represents no effect, and AUC > 1 

represents a treatment granting a growth advantage to the cells. Curves were created by 

connecting individual response points in a piecewise linear fashion, rather than using a 

sigmoid curve fit. We then normalized the AUC of this piecewise linear fit to the area under 

a null curve spanning the tested concentration range. The calculated AUC values were in 

high agreement with previous analyses of this dataset (r2 = 0.87) while correcting for 

artifacts introduced by forced sigmoid curve fitting seen in other studies (Seashore-Ludlow 

et al., 2015) (Figure S7A). No batch correction was performed in addition to AUC 

standardization. The correlation between AUC values present in both datasets was on par (n 

= 24,923; Spearman rho = 0.5) with previous studies (Hatzis et al., 2014; Pozdeyev et al., 

2016). To standardize drug representation across datasets, we queried the PubChem entry for 

each compound used in CTRP or GDSC to obtain an isomeric SMILES notation based on 

the drug name or InChIKey provided in the dataset. Compounds with no matches in the 

initial search were manually annotated. To computationally represent chemical structure we 

used RDKit (http://www.rdkit.org/) to calculate a Morgan fingerprint (radius = 2), which 

decomposes each chemical structure into molecular fragments by iteratively obtaining 

distinct paths through each atom of the molecule. These fragments were hashed into a bit 

vector of length 2,048 to be used for model training. Genotypes of each cell line were 

formulated from non-synonymous coding mutations as previously annotated and used by the 

Cancer Cell Line Encyclopedia (CCLE; http://portals.broadinstitute.org/ccle, 18q2 release) 

(Barretina et al., 2012). The dataset was filtered to represent only the top 15% most 

frequently mutated genes (n = 3,008). Each cell-line genotype was represented as a bit 

vector across the 3,008 DrugCell genes indicating the mutational status of each gene in that 

cell line (0 = wild type; 1 = mutated).

Neural Network Configuration, Training and Evaluation—The DrugCell VNN (the 

genotype embedding branch; Figures 1A and 1B) was configured following the DCell 

protocol (Ma et al., 2018) with minor modifications. Each subsystem s in DCell, and also in 

the hierarchy of subsystems in DrugCell (see above), is assigned a number k of neurons to 

represent its multidimensional state. This subsystem state, denoted by the output vector O(s) 

is defined as a function of the states of its c child subsystems and g directly annotated genes, 

concatenated in the input vector I(s).

O(s) = f W (s)I(s) + b(s)
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W (s) is a weight matrix of dimensions and k × k∗c + g  and b(s) is a weight vector of 

dimension k . W (s) and b(s) provide the parameters to be learned for subsystem s. The 

function f is a non-linear transformation based on hyperbolic tangent and batch 

normalization. Training of parameters is performed using an objective (loss) function based 

on mean-squared error and an optimization procedure based on standard gradient descent 

and back-propagation. All parameters are initialized uniformly at random between 0.001 and 

0.001.

In what follows, we focus on aspects of DrugCell that significantly build on or depart from 

the original DCell model (Ma et al., 2018). First, in parallel to the subsystem hierarchy used 

to embed genotype, DrugCell implements a drug embedding branch configured as a 

conventional artificial neural network with three hidden layers, with the neurons of each 

layer fully connected to the next (these three layers have 100, 50, and 6 neurons respectively, 

see Figure 1C). The input vector to this ANN is the 2,048-bit Morgan fingerprint of a drug 

(described above) and is fully-connected to the first hidden layer with 100 neurons. The final 

layer is a set of six neurons representing the drug embedding learned by DrugCell. These six 

neurons are concatenated with the six-neuron genotype embedding (see above) and fed to an 

additional hidden layer of six neurons, which feeds a final output layer of a single neuron 

representing the predicted drug response, O(DC), measured as a continuous valued AUC (see 

Figure 1A and Pharmacogenomics Data Processing and Morgan Fingerprint Encoding 

section, above). Second, the number of neurons per subsystem k (VNN branch, see above) is 

selected by training and evaluation of a progression of neural network models with 

increasing values of this parameter (k = 1; 3; 6; 9; 12; Figure S7B). The DrugCell model 

used for all subsequent analysis is configured with k = 6, as this value yielded the best 

Spearman rho between actual and predicted drug responses across all (cell-line, drug) pairs. 

The DrugCell model is implemented using the PyTorch library and trained using three GPU 

servers (two servers with Nvidia RTX 2080Ti with 4352 CUDA cores and 11Gb GDDR6 

RAM; one server with Tesla K80 with 4992 CUDA cores and 24Gb GDDR5 RAM).

Model predictive performance was evaluated using a standard training / validation / test 

procedure. The 509,294 (cell line, drug) pairs in the data were divided into five groups of 

approximately equal size. Five separate models were created, in which each of these groups 

was held out as the test data, and the remaining four groups were pooled for training and 

validation. During the training phase of each model, 5,000 random (cell line, drug) pairs 

were further withheld for use as a validation set on which model predictive performance was 

used as an early terminating condition; all remaining samples were designated as training. 

Each model was trained through a maximum of 300 epochs; performance on the validation 

data was evaluated after each epoch and training was terminated early in the event of 

decreasing model performance. The performance of each model was measured using 

Spearman rho between actual and predicted drug responses (AUC) in the test data and the 

final overall performance was reported (rho = 0.80) as the average rho across the five 

models. Following evaluation of model performance (Figure 2), we used a model trained 

using all 509,294 (cell line, drug) pairs to ensure maximal predictive power and 

interpretability (Figures 3 and 7).
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Implementation of Alternative Models for Comparison of Predictive 
Performance—We compared DrugCell to several alternative models trained using the 

same data as DrugCell: an elastic net (Figure 2B) and two fully connected neural network 

models (Figures 2C and 2D). A similar test procedure for 5-fold cross validation to that 

described above was used for evaluation of all these models. The elastic net model was 

implemented using the ElasticNetCV function in the scikit-learn library with cv = 5. A 

black-box neural network model (“Matched” in Figure 2C) was designed to have an 

identical hierarchical structure as DrugCell, but with the gene annotation inputs (gene-to-

subsystem assignments) randomly shuffled. The predictive performance was reported as an 

average Spearman (rho) across 10 such random models. A second black-box model (“Tissue 

only” in Figure 2D) was a fully connected neural network model, whose input was a 2,049-

bit vector concatenating the 2,048-bit Morgan fingerprint representation of each drug and a 

single bit indicating the tissue of origin for each cell line. All elements in the input layer 

were fed to a stack of five hidden layers, of which each has 1,000, 500, 200, 100, 50 neurons 

respectively. The final hidden layer of 50 neurons was connected to a single neuron 

representing the predicted drug response output. We further compared DrugCell’s predictive 

performance to that of five additional models, using the predictive performance reported in 

the corresponding publications rather than reimplementing those models directly in our 

study (Ammad-ud-din et al., 2017; Cortés-Ciriano et al., 2016; Iorio et al., 2016; Zhang et 

al., 2015) (Table S1).

Ranking Important Subsystems in DrugCell—To quantitatively determine important 

subsystems for drug response prediction, we adopted the Relative Local Improvement in 

Predictive Power (RLIPP) score as described previously for DCell (Ma et al., 2018). Briefly, 

for each subsystem in DrugCell we constructed and compared two different L2-norm 

penalized linear regression models of drug response local to that subsystem. The first 

regression model predicts drug response using the neuron values that represent the state of 

the subsystem under the different genotypes. The second regression model predicts drug 

response using the neuron values that represent the states of the subsystem’s children. Both 

models are optimized to predict drug response, but with consecutive layers of neurons 

located at and below the subsystem of interest in DrugCell. Performance is calculated as the 

Spearman correlation (rho) between the actual and predicted drug responses for each of the 

two alternative linear regression models (AUC). TheRLIPP score isthen defined as the ratio 

of Spearman rho of the firstlinear model to that of the second linear model. RLIPP > 1 

reflects that the state of the parent subsystem has more predictive power for drug response 

than the mere concatenation of the states of its children, indicating the importance of the 

parent subsystem in learning.

Comparing Important DrugCell Subsystems to Predictive Biomarkers 
Reported by Alternative Models—Beyond a comparative assessment of predictive 

accuracy (see above), we wished to compare the genes and subsystems nominated by 

DrugCell to genetic markers reported previously. For this comparison, we focused on 

predictive models published by the GDSC (elastic net and random forest; Table S4) (Iorio et 

al., 2016) in a previous analysis of the same cell-line drug response data as examined by our 

study (see Pharmacogenomics Data Processing and Morgan Fingerprint Encoding above). 
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We focused on 60 drugs for which GDSC had published predictive gene mutations that were 

relatively frequent in tumors (top 15% of mutated genes in the integrated GDSC and CTRP 

dataset, see above). For each of these drugs, we listed the genetic mutations identified as 

predictive biomarkers in the GDSC study, along with the corresponding DrugCell subsystem 

containing that gene and its RLIPP score. Separately, we examined the top three subsystems 

reported by DrugCell according to RLIPP score. For every gene in one of these subsystems, 

we determined the maximum weight connecting that gene to the neuron of that subsystem 

that is most relevant to the observed drug response (AUC); the top three genes by weight 

were reported (Table S4). To select the most relevant neuron to drug response, we first found 

the principal component that has the strongest Spearman correlation with the observed drug 

response. We then determine the neuron with the highest loading (eigenvalue) to that 

principal component as the most relevant neuron to that response.

Viability Assays—Cell viability assays were conducted according to the manufacturer’s 

specifications for CellTiter-Glo Luminescent Cell Viability Assay (Promega). Cells were 

seeded at 1,000 cells/well in a 384-well microtiter plate and treated after 24 hours. Drugs 

were diluted in the respective culture medium at the indicated concentrations. Cells were 

treated for 72h before the addition of CellTiter-Glo reagent and read on a Synergy HT Multi-

Detection Microplate Reader (Biotek).

Combinatorial CRISPR-Cas9 Gene Knockouts and Systematic Evaluation—For 

gene knockout experiments, the CRISPR-Cas9 nuclease was stably integrated at the AAVS1 

‘safe harbor’ locus in MFC7 cells. LentiCas9-Blast (Addgene plasmid # 52962; http://

n2t.net/addgene:52962; RRID:Addgene_52962) and lentiCRISPR v2 (Addgene plasmid # 

52961; http://n2t.net/addgene:52961; RRID:Addgene_52961) were gifts from Dr. Feng 

Zhang (Sanjana et al., 2014). MCF7-Cas9 cells were tested for Mycoplasma contamination, 

expanded, and frozen into multiple aliquots so that experiments could be performed at low 

passage numbers. Cells were grown in DMEM, 10% FBS, and hygromycin to select for 

Cas9 expression, which was confirmed by capillary western (Wes, Protein Simple). A 

custom library of double gRNA constructs (gene + non-targeting, gene + gene) was used 

which covers all single and pairwise combinations of 3 primary genes (MEK1, PARP1, and 

TP53) versus 176 secondary genes. These secondary genes were designed to be broadly 

representative of major cancer-related processes including proliferative signaling, cell cycle 

progression, transcription regulation, and DNA repair with special attention to druggable 

targets and tumor suppressor genes. Double (primary, secondary) gRNA constructs were 

designed as described previously (Shen et al., 2017) with three distinct 20-bp gRNAs per 

target gene (Table S6) along with three non-targeting controls for a total of 3 × 3 = 9 

constructs per gene or gene pair. The library was packaged into lentiviruses, and MCF7 cells 

were infected at an MOI of 0.3 to ensure each cell had zero or one double gRNA construct. 

Puromycin selection (2.5 μg/mL) was started two days after transduction and the 

concentration was reduced by half upon each splitting to a final concentration of 0.625 

μg/mL, which was maintained for the remainder of the experiment. Following initial 

puromycin selection, cells were maintained in exponential growth by harvesting and 

removing a fraction of cells every two days. DNA was extracted from cells after 21 days of 

growth with a Blood and Cell Culture DNA Mini Kit (Qiagen) according to manufacturer 
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protocols. To assess the relative frequencies of gRNAs before and after selection, integrated 

DNA encoding the gRNA sequence was PCR amplified and prepared for HiSeq4000 

sequencing (Illumina) according to manufacturer protocols. Standard Illumina primers were 

used for library preparation, and sequencing was conducted to generate 100-bp reads in a 

paired-end fashion. After sequencing, data quality was assessed with FastQC. Fitness effects 

of gene knockouts were determined as previously described (Shen et al., 2017) and 

normalized to the median fitness for non-targeting guides. Experiments were performed in 

biological duplicate.

To systematically validate the identified mechanisms of sensitivity to trametinib, olaparib 

and nutlin-3, we first ranked subsystems by importance in DrugCell simulation of each 

compound (RLIPP analysis, see above). This ranking was filtered to retain the top five 

subsystems that contained sufficient (three or more) secondary genes in our CRISPR library. 

These subsystems were all among the top 25 overall subsystems (top 1%) identified for each 

drug. We then examined the fitness effects resulting from pairwise knockout of the major 

target of each compound (MAP2K1, PARP1 and TP53) together with each CRISPR library 

gene present in a top subsystem (up to a maximum of five genes). These pairwise knockout 

effects were compared to the effects of pairwise knockout of the major target of each 

compound together with knockout of genes in five random subsystems selected from among 

those with low RLIPP scores < 2.

QUANTIFICATION AND STATISTICAL ANALYSIS

Assessing the Correspondence of Learned Subsystem Embeddings to 
Measured Subsystem Activities—To assess whether the subsystem states that 

DrugCell had learned are representative of experimentally measured activities of these 

subsystems, we adapted an expression-based analysis similar to that piloted by our previous 

DCell proof-of-concept (Ma et al., 2018). We obtained reverse phase protein array (RPPA) 

data (Li et al., 2017) covering 899 cell lines from the Cancer Cell Line Encyclopedia 

(CCLE), including the majority of cell lines for which genotypes and drug responses were 

used to train the DrugCell model. For each subsystem, we created a subsystem activity score 

similar to other methods that have been described for pathway-based gene expression 

analysis (Hwang, 2012; Yang et al., 2014). Here, we calculated the “RPPA activity” of each 

subsystem as the simple sum of signal intensities across all proteins and phosphorylation 

sites mapping to that subsystem. We then trained a random forest regression model to 

predict this RPPA activity using the top 6 principal components of that subsystem’s 

DrugCell embedding as features. We compared the predictive performance of these 

individual subsystem models to models trained to predict the RPPA activity of random sets 

of genes of matched sizes (Figure S3A).

Differential Expression Analysis—We performed differential expression analysis, 

which is commonly used to identify pathways regulating drug sensitivity (Kang et al., 2004; 

Nutt et al., 2000; Suzuki et al., 2014), to identify pathways mediating paclitaxel sensitivity. 

Raw RNAseq count data were obtained from CCLE (http://portals.broadinstitute.org/ccle) 

for the top 25 most paclitaxel sensitive and 25 most paclitaxel resistant cell lines. Raw 

counts were transformed to log2 counts per million (log-CPM) and genes with low 
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expression levels were removed (CPM < 0.1) as previously described (Chen et al., 2016). 

Data were normalized using the trimmed mean of M-values (TMM) method (Robinson and 

Oshlack, 2010). Differential expression was determined by linear modeling using limma 

(Ritchie et al., 2015). Pathways enriched for differentially expressed genes were determined 

using DAVID (Huang et al., 2007). We identified 125 genes that were significantly 

differentially expressed (q < 0.05) when contrasting the 25 most paclitaxel-sensitive cell 

lines with the 25 most paclitaxel-resistant cell lines (Figure S5B). Pathways enriched for 

these genes included RNA splicing and cell division (Figure S5C), consistent with previous 

studies (Bani et al., 2004; Liu et al., 2017; Moos and Fitzpatrick, 1998), as well as pathways 

responding to ionizing radiation and DNA replication.

Synergy Determinations—Drug combination profiling data across a diverse cell line 

panel were obtained from DeepSynergy (http://www.bioinf.jku.at/software/DeepSynergy/) 

(Preuer et al., 2018), which used the Loewe model of additivity (Loewe, 1953) to evaluate 

the interaction of 583 different drug combinations across 39 human cancer cell lines. We 

used these DeepSynergy data to systematically evaluate the ability of DrugCell to pair a 

primary drug D1 with a synergistic second agent D2 by targeting top subsystems mediating 

sensitivity to the primary drug (see text and Figure 5). We collected protein target 

information for drugs from the Therapeutic Target Database (Wang et al., 2020), yielding 

targets for 283 drugs on which DrugCell had been trained in cell lines and 32 drugs 

considered by Deep Synergy. The 25 drugs in the intersection of these sets were used for 

systematic evaluation. For each drug in the set of 25 drugs D1 = di ∣ i = 1…25 , we gathered 

a set of predicted synergistic target genes, Gi = ∪j = 1
5 GOA si

j , based on their membership 

in the top 5 subsystems by RLIPP score si1, si2, …, si5 , where GOA(s) is a set of genes 

contained in a subsystem s according to the Gene Ontology Annotation. We then collected a 

set of secondary drugs, yi1, yi2, …, yim , targeting any gene in Gi and compiled a set of 

synergistic drug combinations, di × D2
j = di, yi1 , di, yi2 , …, di, yim . Across all 25 primary 

drugs in D1, the set of synergistic secondary drugs, D2 = ∪i = 1
25 D2

j, led to 75 predicted 

synergistic drug pairs with corresponding observed DeepSynergy scores. We repeated the 

process for the bottom 5 RLIPP subsystems to predict a set of non-synergistic secondary 

drugs, D2′ = ∪i = 1
25 D′2i , leading to 70 predicted non-synergistic drug pairs with 

corresponding observed DeepSynergy scores. Finally, we compared the distribution of the 

synergy scores of the predicted synergistic pairs, the predicted non-synergistic pairs, and the 

remaining 76 drug pairs in DeepSynergy (Figure 5J).

Translation of Continuous Cell Response (AUC) to Binary Cell Response—In 

addition to Spearman correlation, we characterized DrugCell’s predictive performance by 

the ability to separate cells into binary sensitive versus resistant response classes (Figures 

5H–5J, Table S7). For this purpose, we binarized DrugCell’s continuous predictions of drug 

response (AUC) as follows. Let Oi(d) represent the actual response of cell line i exposed to 

drug d, reflecting the area under dose response curve (AUC), and let Oi
(DC)(d) represent the 
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corresponding predictive output of DrugCell. We then seek a drugspecific threshold, td, that 

maximizes balanced accuracy over all cell lines:

td = argmaxx mean
∣ i ∣ Oi

(DC)(d) ≤ x and Oi(d) ≤ x ∣
Ol(d) ≤ x ,

∣ i ∣ Oi
(DC)(d) > x and Oi(d) > x ∣ ∣

i ∣ Oi(d) > x

DrugCell’s prediction is then translated to a binary drug response Bi
(DC) ∈ 0: sensitive, 1: 

resistant }) by use of td:

Bi
(DC) = 1, Oi

(DC)(d) > td
0, otℎerwise

Identification of Boolean Logic Combinations—We developed an approximate 

Boolean logic representation of how two subsystems, Regulation of PI3K activity and 

Negative regulation of ERK1/ERK2 cascade (henceforth called subsystems s and t), mediate 

the prediction of etoposide response in DrugCell. To achieve this Boolean representation, the 

continuous DrugCell prediction of drug AUC for each cell-line sample i Oi
(DC) ≥ 0  was 

translated to a binary drug response B(DC) ∈ 0:: etoposide sensitive, 1: etoposide 

resistant}) by use of a threshold (see above). Here, a threshold of 0.82 was selected as it 

maximizes balanced accuracy when using DrugCell for binary classification of etoposide 

response over all samples:

Observed Etoposide Response 
(AUC > 0.82?)

0 1

DrugCell Predicted Reponse 

B(DC):O(DC) > 0.82?
0 500 58 Balanced accuracy = MEAN 

[(500/724), (372/430)] = 0.78

1 224 372 Odds Ratio = (500/58)/
(224/372) = 14.32

In the above table, the same threshold was applied to both the predictions (rows) and the 

observations (columns). We also translated the multi-dimensional output vector of each 

subsystem Oi
(s), Oi

(t)  to a binary state Bi
(s), Bi

(t) ∈ 0: unaltered, 1: altered}) using O(s) or O(t)

as features to classify B(DC) using a k-nearest neighbor (KNN) classifier with k = 10 (Cover 

and Hart, 1967). The output of this classifier was taken as the binary value of the subsystem, 

Bi
(s) or Bi

(t). For each subsystem, we selected three exemplary genes with high importance to 

the subsystem output, creating a vector of gene binary mutation states:

v i
j = xi

j, yi
j, zi

j , wℎere j ∈ s, t and x, y, z ∈ 0: unmutated, 1: mutated
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These gene exemplars were defined as the three gene inputs most heavily weighted by 

DrugCell in connection to the neuron of s or t with the highest coefficient of variation over 

all i. The above procedure thus yielded binarized values for six genes, two subsystems, and 

one drug response. For each possible combination of binary gene inputs, v ′, the (typically 

multiple) corresponding samples were examined to compute a consensus value CV
(j)

, for the 

states of the two subsystems and the DrugCell output (j ∈ s, t, DC ) according to the 

following rule:

C v ′
(j)

= 1, P B(j) = 1 ∣ v = v ′ > P B(j) = 1
0, otℎerwise

This process yielded a logical truth table which was expressed as a minimal set of Boolean 

logic gates (Figure 4F) using the technique of Karnaugh maps (Karnaugh, 1953).

PDX Tumor Analysis—For each PDX tumor, measured mutations in DrugCell genes 

were used as input to DrugCell to predict the response to 6 drugs belonging to compound 

classes that DrugCell had previously seen (abraxane, binimetinib, encorafenib, INC-280, 

BKM-120, and BYL-719) and had combination data available, which altogether had been 

treated in 13 pairwise combinations with secondary drugs from diverse target classes. Since 

AUC data does not exist for in vivo experiments, tumor size was used as a surrogate for 

AUC. We then performed RLIPP analysis to identify subsystems mediating response to each 

of the 6 drugs included in this analysis. For each of the 13 available drug combinations, we 

defined a set of pathways that would lead to the design of that particular combination. We 

then scanned over 100 different RLIPP values, and at each cutoff compared the identified 

pathways with the pathways defined for each of the tested combinations to see if it had been 

identified. We considered a combination to be ‘effective’ if it significantly improved 

progression free survival as compared to the tested single drugs (p < 0.05, log-rank test). The 

observed PFS of each of these (primary, secondary) combinations was used to evaluate 

sensitivity and specificity as the number of top ranking DrugCell subsystems was 

progressively increased, yielding estimates of prediction sensitivity and specificity along a 

ROC curve for the combination panel.

Breast Cancer Patient Analysis—We obtained aggregated clinical trial data (Smyth et 

al., 2020) from Project GENIE (Genomics Evidence Neoplasia Information Exchange), an 

international genomics registry and data sharing platform established by the American 

Association for Cancer Research. This resource contained mutational profiling data and 

clinical outcomes for 457 metastatic breast cancer patients following multiple rounds of 

therapy. We removed patients from the dataset if they had not been treated with a targeted 

therapy (mTOR or CDK4/6 inhibitors). Such filtering produced a total of 221 estrogen 

receptor (ER)–positive metastatic breast cancer patients who had undergone treatment with 

an mTOR inhibitor (everolimus), a CDK4/6 inhibitor (ribociclib), or both compounds in any 

round of therapy. We predicted patient response to either mTOR or CDK4/6 inhibition using 

our pre-trained DrugCell model and the mutational profiles of each patient. We classified a 

patient as DrugCell (+) if they were predicted sensitive (≤ median predicted AUC across all 
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patients) to either therapy (and had been treated with that particular therapy). Conversely, we 

classified patients as DrugCell (−) if they were predicted insensitive to both therapies. We 

used a log-rank test (p < 0.05) to determine the significance of the associated treatment 

outcomes (overall survival).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Development of an interpretable deep learning model of human cancer cells

• Model interpretations represent synergistic drug combination opportunities

• Predicted combinations improve progression-free survival in PDX models

• Response predictions stratify ER-positive breast cancer patient clinical 

outcomes
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Figure 1. DrugCell Design
(A) DrugCell uses a modular neural network design that combines conventional artificial 

neural networks (ANN) with a visible neural network (VNN) to make drug response 

predictions.

(B) Binary encodings of individual genotypes are processed through a VNN with 

architecture guided by a hierarchy of cell subsystems, with multiple neurons assigned per 

subsystem.

(C) Compound chemical structures are processed through an ANN using the Morgan 

fingerprint as input features.
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Figure 2. Predictive Performance
(A) Predicted versus actual drug responses across all (cell line, drug) pairs studied. Box 

plots show the 25th, 50th, and 75th percentiles of values in each bin; whiskers show 

maximum and minimum values.

(B–D) Scatterplots of the predictive performance (Spearman rho between actual and 

predicted drug response across 684 drugs) of DrugCell versus three alternative models: (B) 

elastic net, (C) matched black-box neural network, and (D) tissue-only black-box neural 

network. Points represent individual drugs; points above the diagonal represent drugs better 

predicted by DrugCell.

(E) Waterfall plot of predictive performance for each drug in the dataset (y axis), ranked 

from highest to lowest (x axis). “High confidence” drugs are highlighted in red (rho > 0.5). 

The inset shows the performance for the top 10 best predicted drugs.
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Figure 3. Characterization of Cancer Cell States Learned by DrugCell
(A–D) Genotype embeddings of each cell line, showing the first two principal components 

(PC). Points are cell lines, with colors indicating specific drug responses or genetic markers 

according to the panel. (A and C) Green denotes cell lines harboring mutations in BRAF or 

in EGFR, BRAF, or LKB1, respectively. Gray denotes cell lines without mutations in these 

genes. (B and D) Blue-to-red gradient represents the response to selumetinib or JQ-1, 

respectively. Gray denotes cell lines not tested against that drug.

(E) Drug structure embedding. Points are drugs, with colors indicating drug target classes.
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(F) Genotype embeddings of each cell line as in (A–D), but with blue-to-red gradient 

representing response to paclitaxel.

(G) Waterfall plot of top 5% of subsystems (x axis) important for paclitaxel response by 

RLIPP score (y axis). Subsystems capturing metabolic pathways are highlighted in red.

(H) Visualization of select subsystems highlighted in (G), comprising a sub-hierarchy of the 

full DrugCell model. Red is used to trace the branches of the hierarchy related specifically to 

regulation of glycolysis.

(I) Response to cAMP subsystem embedding. Points are cell lines, blue-to-red gradient 

represents response to paclitaxel.

(J) Boxplot of the relative cell viability of treatment with DMSO, paclitaxel, 2-deoxyglucose 

(2-DG), or the combination at the indicated concentrations in A427 cells. Data are 

representative of drug treatments performed in biological and technical triplicates. The 

boxes represent the interquartile range (IQR) bisected by the median, whiskers represent the 

maximum and minimum range of the data that do not exceed 1.5 times the IQR. ***p < 

0.0001 from a t test.
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Figure 4. Systematic Validation of Identified Mechanisms of Sensitivity Using CRISPR/Cas9
(A) Workflow of systematic analysis using CRISPR/Cas9.

(B) Heatmap of the area under the fitness curves for 176 cancer genes in combination with 

MAP2K1, PARP1, and TP53.

(C–E) Bar plots of the RLIPP scores of the top five subsystems for (C) trametinib, (D) 

olaparib, and (E) nutlin-3.

(F–H) Boxplots of the area under the fitness curve following CRISPR/Cas9-mediated 

knockout of (F) MAP2K1, (G) PARP1, and (H) TP53 in combination with highly weighted 

genes within the top five subsystems identified by DrugCell for each parent drug compared 

with random. Select genes are labeled. The boxes represent the IQR bisected by the median, 

and whiskers represent the maximum and minimum range of the data that do not exceed 1.5 

times the IQR. *p < 0.05 from a t test, NS denotes not significant.
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Figure 5. Discovery and Validation of Synergistic Mechanisms
(A) Parallel pathway theory of drug synergy, in which a pathway 2 is targeted by the 

mechanism of action (MoA) of drug A, and synergy is achieved by simultaneously targeting 

parallel pathway 1 with drug B.

(B) Logic learned by DrugCell for drug A, in which pathway 1 arises as a predicted 

mechanism of the VNN.

(C) Workflow demonstrating systematic design and assessment of pairwise combinations of 

drugs.

(D) Boxplots of DeepSynergy synergy scores for predicted drug combinations, predicted 

non-synergistic combinations, and random combinations. The boxes represent the IQR 

bisected by the median, and whiskers represent the maximum and minimum range of the 

data that do not exceed 1.5 times the IQR. ***p < 0.0001.

(E) Representative subsystems used by DrugCell to simulate etoposide sensitivity (red 

nodes), along with a negative control branch (white node). RLIPP scores are displayed 

inside each node. Subsystem names are abbreviated.

(F) Bee swarm plot of the Loewe synergy scores observed upon combination of etoposide 

with MK2206, PD325901, or bortezomib. Drug combinations were chosen based on 

subsystems identified in (E). Red dotted line indicates the mean of all Loewe synergy scores 

in the dataset (Figure S6). ***p <0.0001. *** without bars represent t test against the 

synergy score distribution of the full dataset (Figure S6), or bortezomib negative control, as 

indicated. Red points are cell lines for which synergy is observed. Blue points are cell lines 

for which antagonism is observed.
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(G) Boxplots of the relative cell growth of A549 cells following CRISPR/Cas9-mediated 

knockout of MAP2K1, PIK3CA, or APC (negative control) in combination with TOP2 or a 

non-targeting control (NT). Data are reflective of two independent transductions. ***p 

<0.0001, *p <0.1, **p <0.01.

(H) Boolean logic circuit approximating how the mutational status of genes in the PI3K and 

ERK subsystems is translated to an etoposide response by DrugCell.

(I) Truth table showing translation of PI3K and ERK states to a binary drug response output. 

The percentage of observed sensitive versus resistant cells for each state is shown. Dotted 

line indicates baseline percentage of etoposide-resistant samples among all cell lines.

(J) Odds ratios of etoposide response prediction for DrugCell, the ERK and PI3K logic 

functions from (H), and individual genes from (H). Percentages of cell lines with an 

alteration to that biomarker are also shown. Odds ratios are against a background of cell 

lines that are wild type with respect to this circuit.
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Figure 6. Guiding Combination Therapy in Patient-Derived Xenograft Tumors
(A) Flowchart of analysis procedure.

(B) ROC curve of DrugCell performance in distinguishing effective from ineffective drug 

combinations.

(C) Error matrix for point indicated in (B) demonstrating best performance of DrugCell 

against the PDX dataset.

(D) Survival curves for drug combinations predicted to be effective by DrugCell (true 

positives) showing a significant improvement in progression-free survival.

(E) Survival curves for drug combinations predicted to be ineffective by DrugCell (true 

negatives) showing a lack of improvement in progression-free survival. p values indicate 

significance by log rank test. ***p <0.0001, NS indicates not significant.
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Figure 7. Guiding CDK4/6 and mTOR Inhibitor Therapy in ER-Positive Breast Cancer Patients
(A–C) (A) Survival curves for DrugCell (+) and DrugCell (−) patients treated with CDK4/6 

or mTOR inhibitors in any line of therapy. The p value indicates significance by log rank 

test. (B, C) Important subsystems used by DrugCell to simulate (B) mTOR or (C) CDK4/6 

inhibitor sensitivity. Dotted line abbreviates parent subsystems at subsequent layers of the 

hierarchy. RLIPP scores are displayed inside each node.

(D) Scatterplot of the absolute (x axis) and percentage (y axis) difference in mutation 

frequencies of genes between DrugCell (+) and DrugCell (−) patients. Red points represent 

genes mutated more frequently in DrugCell (+) patients. Blue points represent genes 

mutated more frequently in Drug-Cell (−) patients. Point size is proportional to overall 

mutation frequency in the patient population.
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(E) Survival curves for AKT1-mutant and wild-type patients treated with CDK4/6 or mTOR 

inhibitors in any line of therapy. The p value indicates significance by log rank test.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Paclitaxel Selleckchem S1150

2-deoxyglucose Selleckchem S4701

Critical Commercial Assays

CellTiter-Glo Luminescent Cell Viability Assay Promega G7572

Blood and Cell Culture DNA Mini Kit Qiagen Cat No./ID: 13323

Deposited Data

DrugCell hierarchy This paper http://ndexbio.org/#/network/a20b3699-4862-11ea-
bfdc-0ac135e8bacf

Experimental Models: Cell Lines

A549 ATCC CCL-185

A427 ATCC HTB-53

MCF7 ATCC HTB-22

Oligonucleotides

lentiCRISPRv2 Sanjana et al., 2014 Addgene Plasmid #52961

lentiCas9-Blast Sanjana et al., 2014 Addgene Plasmid #52962

See Table S6 for gRNA sequences

Software and Algorithms

limma Ritchie et al., 2015 https://bioconductor.org/packages/release/bioc/html/limma.html

DrugCell algorithm This Paper https://github.com/idekerlab/DrugCell
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