
Climate-Induced Migration and Unemployment in Middle-Income 
Africa

Valerie Muellera,b,*, Clark Grayc, Douglas Hoppingc

aSchool of Politics and Global Studies, Arizona State University, PO Box 873902, Tempe, AZ 
85297-3902, USA

bInternational Food Policy Research Institute, 1201 Eye Street, NW, Washington, DC 20005-3915, 
USA

cUNC Department of Geography, CB #3220, Chapel Hill, NC 27599-3220, USA

Abstract

One of the major unresolved questions in the study of vulnerability to climate change is how 

human migration will respond in low and middle-income countries. The present study directly 

addresses this lacuna by using census data on migration from 4 million individuals from three 

middle-income African countries over a 22-year period. We link these individuals to climate 

exposures in their origins and estimate climatic effects on migration using a fixed-effects 

regression model. We show that climate anomalies affect mobility in all three countries. 

Specifically, mobility declines by 19% with a 1-standard deviation increase in temperature in 

Botswana. Equivalent changes in precipitation cause declines in migration in Botswana (11%) and 

Kenya (10%), and increases in migration in Zambia (24%). The mechanisms underlying these 

effects appear to differ by country. Negative associations between precipitation anomalies, 

unemployment, and inactivity suggest migration declines may be due to an increased local demand 

for workers to offset production risk, while migration increases may be indicative of new 

opportunities in destinations. These country-specific findings highlight the contextually-specific 

nature of climate-migration relationships, and do not support claims that climate change is widely 

contributing to urbanization across Africa.
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1 Introduction

One of the major unresolved questions in the study of vulnerability to climate change is how 

human migration will respond in low and middle-income countries. Sea level rise is 
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expected to result in gradual displacement from low-elevation coastal areas (Wrathall et al., 

2019), but temperature increases and precipitation changes across the entire inhabited land 

surface will also likely influence human mobility in ways that are not yet well described 

(Hoffmann et al., 2019; Kaczan and Orgill-Meyer 2020). This issue is particularly salient in 

Sub-Saharan Africa, where a large fraction of the population remains directly or indirectly 

dependent on rainfed agriculture (Barrett et al., 2017) and where the consequences of 

climate change are expected to be negative and large (Schlenker and Lobell, 2010). This 

perceived vulnerability to displacement contributed to earlier predictions of a looming wave 

of “climate refugees” from low and middle-income countries, predictions that have not been 

realized (Gemenne, 2011).

To provide new insights to this issue, a growing literature uses demographic and 

econometric methods to directly measure climatic effects on human migration (Fussell, 

Hunter and Gray, 2014). The core approach of these studies is to observe a large sample of 

potential migrants alongside their climate exposures, and then isolate climatic effects on 

migration using multivariate methods that control for potential socio-demographic and 

contextual confounders to climate. These methods can then be extended to allow for 

nonlinearity in climate, differing vulnerability across subpopulations, and adaptation over 

time (Gray, Hopping and Mueller, 2020). These techniques have now been widely used to 

investigate climate-induced migration in particular country contexts (Henry, Schoumaker, 

and Beauchemin 2004; Gray and Mueller, 2012; Mastrorillo et al., 2016; Nawrotzki and 

DeWaard, 2018) as well as aggregate international migration flows across countries (Cai et 

al., 2016; Cattaneo and Peri, 2016).

This research confirms that adverse climate conditions tend to increase out-migration as 

expected, but also reveals many cases in which potential migrants are instead trapped in 

place, particularly in low-resource settings where migration is costly relative to household 

resources (Nawrotzki and Bakhtsiyarava 2017). However, when and where trapping occurs 

(versus displacement) remains unclear, in part because we lack studies that are able to 

compare internal migration across country contexts. Because the vast majority of global 

migration occurs within national borders (Bell et al., 2015), and because this is also expected 

to be true for climate migration into the future (Piguet, Pecoud, Guchteneire, 2011), studies 

that can examine these processes at continental and global scales are needed in order to 

understand the size, direction and heterogeneity of climatic effects on human migration 

(Hendrix, 2017).

The present study directly addresses this lacuna by using census data on migration from 4 

million individuals from three African countries (Botswana, Kenya, and Zambia) over a 22-

year period. This lengthy study period increases the likelihood of observing events closer to 

the tail ends of the climate distribution and allows the estimation of an empirical model that 

can disentangle effects of cyclical trends from the effects of climate anomalies. Furthermore, 

employment information is collected in each of these countries over the study period, 

providing sufficient data to explore the extent labor market conditions influence migration 

responses to climate.
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Building on the approach of Thiede, Gray, and Mueller (2016), we link these individuals to 

climate exposures in their origin and estimate climatic effects on migration using a fixed-

effects regression model. This approach directly improves on previous studies which have 

variously focused on particular country contexts (Henry, Schoumaker, and Beauchemin 

2004; Gray and Mueller, 2012; Mastrorillo et al., 2016; Nawrotzki and DeWaard, 2018), 

examined urbanization as a proxy for migration (thus missing all rural-rural and urban-urban 

moves; Barrios, Bertinelli, and Strobl, 2006; Marchiori, Maystadt and Schumacher, 2012; 

Henderson, Storeygard and Deichmann 2017), examined temporary migration only (Mueller 

et al, 2020b), or used retrospective data over a short time period (Gray and Wise 2016). We 

show that climate anomalies affect mobility in Botswana, Kenya, and Zambia. Specifically, 

mobility declines by 19% with a 1-standard deviation increase in temperature in Botswana. 

Equivalent changes in precipitation cause declines in migration in Botswana (11%) and 

Kenya (10%), and increases in migration in Zambia (24%). We further show that migratory 

responses are context-specific, as local employment conditions vary with climate.

2 Literature Review

Previous demographic and econometric studies of climate-induced migration in Africa have 

largely consisted of sub-national or single-country case studies, drawing primarily on 

longitudinal or retrospective household survey data. Initiated by Henry, Schoumaker, and 

Beauchemin (2004) with a study from Burkina Faso, this literature has since grown to 

include studies from Nigeria (Dillon, Mueller and Sheu, 2011), Ethiopia (Gray and Mueller, 

2012), Uganda (Call and Gray, 2020), Tanzania (Hirvonen, 2016), Zambia (Nawrotzki and 

DeWaard, 2018; Mueller et al., 2020a), and South Africa (Mastrorillo et al., 2016), among 

other case studies. Using the shared methodological approach described above, these studies 

have revealed a mix of trapping and displacement processes, sometimes in the same study 

population. For example, Henry, Schoumaker, and Beauchemin (2004) found that rainfall 

deficits in Burkina Faso increased long-term migration to rural areas but decreased short-

term moves to distant destinations, while Gray and Mueller (2012) revealed that drought in 

Ethiopia increased men’s labor migration but reduced women’s marriage migration. 

Globally, studies investigating the effects of temperature on migration have often found 

displacement effects (Kaczan and Orgill-Meyer 2020), but in the African context 

displacement and trapping effects appear to be equally common (Dillon, Mueller and Sheu, 

2011; Hirvonen, 2016; Mastrorillo et al., 2016; Mueller et al., 2020b; Call and Gray, 2020). 

These studies have dramatically expanded our understanding of climate-induced migration 

in Africa, but a major limitation is that no two studies have used the same measurement and 

analysis approaches, severely limiting our ability to compare across national contexts.

Another set of studies, also drawing on the shared analytical approaches described above, 

has examined cross-national climatic effects on specific migration flows using macrodata on 

urbanization and international migration. These studies enable generalization across 

countries, but are limited to examining a (often small) subset of migration flows at 

aggregated scales that do not allow exploration of household and individual-level 

vulnerabilities. At least four studies have examined climatic effects specifically on 

urbanization in Africa, capturing urban growth associated with rural-urban migration as well 

as rural-urban reclassification and rural-urban differences in fertility and mortality. Barrios, 
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Bertinelli, and Strobl (2006) linked UN data on urbanization from developing countries at 

five-year intervals to external data on rainfall, revealing that drought increased urbanization 

in Africa but not other world regions. Marchiori, Maystadt, and Schumacher (2012) 

extended this work by using interpolated annual data on urbanization and international out-

migration, finding that temperature decreased urbanization and increased international 

departures but with no effect of rainfall. Cattaneo and Peri (2016) conducted a similar 

analysis using global-scale decadal data on the same outcomes, and found, in contrast to the 

previous study, that drought and temperature decreased both urbanization and emigration in 

Africa. Most recently, Henderson, Storeygard, and Deichmann (2017) showed that 

urbanization of subnational regions in Africa increased with drought, but only for regions 

where manufacturing for export was present. Taken together, these studies provide little 

clarity about the strength and direction of climate-migration relationships in Africa, which in 

part may reflect the limitations of using aggregate data. In these datasets, individual 

movements cannot be directly observed but only inferred from changing stocks of 

international migrants and changing urban fractions, thus missing large categories of 

migrants such as temporary and rural-rural movers.

To our knowledge only four previous studies have directly examined climatic effects on 

individual moves in Africa in a cross-nationally comparable way. Gray and Wise (2016) 

used large-sample, retrospective survey data on internal and international migration from 

five African countries to show that both temperature effects varied across countries while 

precipitation effects were weak and inconsistent. Specifically, migration increased with 

temperature in Uganda, decreased with temperature in Kenya and Burkina Faso, and showed 

no consistent relationship with temperature in Nigeria and Senegal, and these effects tended 

to be stronger for internal migration than international. Nawrotzki, Schlak, and Kugler 

(2016) and Nawrotzki and Bakhtsiyarava (2017) used household-level census data on the 

departure of international migrants to document that international migration decreased with 

heat waves in Burkina Faso and increased with heavy precipitation in Senegal, particularly 

in areas with high rates of malnutrition. Most recently, Mueller et al. (2020b) used 

longitudinal household survey data on temporary migration from four East African countries 

to reveal that drought and heat decreased moves by urban residents only, suggesting a 

trapping process for this population. Taken together, these studies reveal far more evidence 

of migrant trapping than displacement, consistent with global-scale evidence by Cattaneo 

and Peri (2016) for poor countries. However these studies also reveal heterogeneity both 

between and within countries that is largely invisible to both the country-specific and 

aggregate approaches described above. Below, we extend this micro-level, cross-national 

approach to investigate the internal migration of 4 million individuals in three African 

countries, with attention to heterogeneity across both countries and socio-demographic 

groups.

Our three study countries, Botswana, Kenya and Zambia, share several characteristics that 

motivate us to examine them side by side. Namely, they are located in Sub-Saharan Africa 

and classified as middle-income by the World Bank (2020). Additionally, they all experience 

relatively high levels of internal migration as compared to other countries in the region (Bell 

et al., 2015; Lucas, 2016) and experienced relatively rapid urbanization, alongside 

improving population health and well-being, during our study period (United Nations, 2018; 
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World Bank, 2020). Nonetheless, the three countries are also quite distinct along other 

dimensions, motivating us to consider them separately, but side by side, in our analysis. 

Kenya remains the most rural (76% of population in 2010; United Nations, 2018) and 

agrarian, and thus may be disproportionately vulnerable to climate shocks to agriculture. 

Zambia remains the most underdeveloped and experienced a child mortality rate of 82 per 

1000 in 2010, 41% higher than Kenya and 65% higher than Botswana (World Bank, 2020). 

Botswana is the most urban (62% percent of population in 2010; United Nations, 2018) and 

educated (88% of adult with primary education in 2011; World Bank, 2020), but also 

experiences the most extreme climates, ranging from arid to semi-arid. Consistent with these 

differences, previous studies, which have yet to consider Botswana, have found strong 

evidence of climate-induced population trapping in Zambia (Nawrotzki and DeWaard, 2018; 

Mueller et al., 2020) but mixed evidence in Kenya (Gray and Wise, 2016). Below, we 

expand these studies through a direct comparison of all three countries.

3 Data

3.1 Migration

We construct the migration outcome based on individual-level census data from three sub-

Saharan African countries that is archived by IPUMS (Minnesota Population Center, 2015). 

IPUMS archives 5-10% randomized samples from various population censuses. From these 

censuses, we are able to examine the migration and employment behavior of approximately 

4 million working-age (18-49 years old) Africans, a sample which is representative of 49 

million in Botswana, Kenya, and Zambia over the period of 1989 to 2011.

Table 1 displays how the censuses are distributed over space and time.1 The censuses either 

ask the respondents whether they changed their district of residence 1 year prior to the 

interview or the number of years residing in his/her current location. They further inquire 

about the respondent’s previous district of residence. Where districts were not constant 

across time, we standardized them by consolidating districts that split based on time-

standardized maps developed by IPUMS. Taken together, these data can be used to create a 

binary migration variable, which takes a value of one if the individual migrated out of the 

origin district in the last year, and zero otherwise. Migration rates exceed 5% in Botswana 

and remain below 5% in the other countries in the most recent census years (Figure 1). For 

Kenya, we can additionally distinguish whether migrants are moving to a rural or urban 

destination in the new district in all census rounds.2 In this case, we also create a 

multinomial migration variable that distinguishes between non-migrants, migrants who 

moved to rural destinations, and migrants who moved to urban destinations.

1Table A.1 delineates the size of the census samples, as well as the number of observations dropped due to the age restriction, coding 
errors, and missing information on the migration status and origins of migrants. The original study design included five additional 
countries. Burkina Faso, Cameroon, and Mali were dropped from the analysis, because a significant portion of the migrant sample was 
missing origin information (e.g., 30% in Burkina Faso, 33% in Cameroon, and 58% in Mali). Mozambique and Uganda were dropped 
because analysis of the CRU data revealed implausibly high values of year-to-year correlations, consistent with a large fraction of the 
raw climate values being interpolated.
2Rural and urban definitions are determined by the Kenya National Bureau of Statistics.
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3.2 Demographics

These censuses also collected information on the gender, age, marital status, and completed 

education of each household member. We use this information to construct control variables 

for the regression analysis and to classify the sample into subpopulations. Analysis by 

subpopulation informs the extent to which specific groups are disproportionately affected by 

climate. Of particular interest are comparisons of the mobility patterns between men and 

women, youth (18-34) and non-youth (35-49), and those with and without a primary 

education.

We also use information on individuals’ employment status from the censuses to understand 

whether a reduction in income opportunities caused by climate anomalies underlies observed 

migration patterns. The reference period for the employment status variable is 7 days for 

Kenya and Zambia. Since the reference period differs across years for Botswana, we omit it 

from the analysis on employment. The categorical responses to the employment status 

question are converted into a multinomial outcome, which indicates whether the individual 

was employed, unemployed, or inactive at the time of the survey. A person is considered 

employed if they have paid employment, with the exception given to those who have 

agricultural holdings. Inactivity and unemployment both reflect that a person is not working, 

but individuals defined as having an inactive employment status are typically not searching 

for work. We provide statistics on the demographics of the population, as well as the 

proportion of people employed, unemployed, or inactive by country in Table A.2.

3.3 Climate

The migration and demographic data from the censuses were merged with high-resolution 

gridded climate data from the Climate Research Unit’s (CRU) Time Series (Harris et al, 

2014). CRU is a monthly global dataset at 0.5 resolution (50km at the equator) that is 

derived by interpolating data from a network of over 4000 stations, including a large number 

in Sub-Saharan Africa (UEACRU et al., 2015). CRU data are considered to provide reliable 

climate information in Africa (Zhang, Kornich, and Holmgren, 2013), as well as offer 

significant predictors of migration in the region (Gray and Wise, 2016; Nawrotzki, Schlak, 

and Kugler, 2016; Nawrotzki and Bakhtsiyarava, 2017; Nawrotzki and DeWaard, 2018). 

Climate variables created from the CRU database are consistently more predictive of social 

outcomes than the Modern-Era Retrospective Analysis for Research and Applications data 

(MERRA) (Gray and Wise, 2016) and of similar predictive power to the use of the Climate 

Hazards Group InfraRed Precipitation and Temperature with Stations data (CHIRPS/

CHIRTS) (Randell, Gray, and Grace, 2020).

Before merging the socioeconomic and climate data sources by origin district, we first 

extract the precipitation and temperature from CRU as annual spatial means at the district 

level using spatially harmonized shapefiles from IPUMS designed to be consistent across 

census years. We then transform these values into annual standardized climate anomalies (z-

scores) relative to a constant 1981-2010 reference period. These values capture the 

magnitude and direction of climate shocks relative to the local historical climate, and have 

been shown to be stronger determinants of internal migration in Africa than raw climate 

values (Gray and Wise, 2016; Mueller et al., 2020b). Our preferred specification uses one-
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year lagged precipitation and temperature anomalies. However, we also perform sensitivity 

analyses, altering the definition and timing of climate to instead include the raw climate 

values and contemporaneous anomalies, respectively3. We further explore whether nonlinear 

effects of anomalies on migration exist, by adding quadratic terms to our main specification. 

We lastly examine whether migration patterns differ by the type of climate event, replacing 

the lagged climate variables with variables that the capture the numbers of cold, hot, wet, 

and dry months over the prior 24 months. These variables are derived based on thresholds of 

1 standard deviation following Thiede, Gray and Mueller (2016).4

Figure 1 displays the values for the one-year lagged climate anomalies that occurred in each 

census year. Almost all of the districts in our sample experienced a warm spell in recent 

years, consistent with observed trends under climate change. However, the magnitudes of the 

anomalies were more pronounced in half of the districts in Botswana, with values exceeding 

1 standard deviation from the historical mean. There is more spatial and temporal variation 

in the precipitation anomaly variables within the three countries. The most recent censuses 

show wet spells were experienced throughout the three countries. Whereas exposure to drier 

spells is captured across districts in earlier census rounds. Our analysis takes advantage of 

the spatial and temporal variation across space in the climate anomaly variables to identify 

the impacts of climate on migration.

4 Methodology

We estimate the following country-specific logistic regression model to examine how 

climate anomalies affect mobility:

log πmi(t)d, t
πni(t)d, t

= α + δd + δt + βXi(t)d, t . (1)

The main outcome is the odds of moving out of the district(πmi(t)d,t)relative to the odds of 

not moving (πni(t)d,t) for individual i(t) from origin district d and in census year t. Xi(t)d,t 

signifies the explanatory variables in the model, which include the time-varying climate 

variables as well as socio-demographic controls such as age categories (15-19, 20-24, 25-29, 

30-34, 35-39, 40-44, 45-49), and whether the individual is male, has ever married, and has 

completed at least a primary education. The addition of district and year fixed effects, 

captured by δd and δt in (1), reduces the potential for bias in our parameter estimate of 

interest β driven by the omission of time-invariant characteristics at the district level (e.g., 

labor market structure) and time-variant factors (e.g., demographic transition), respectively. 

All analyses include weights to account for within-census randomized sampling by IPUMS, 

and standard errors are further adjusted for clustering of the outcome at the origin district 

level.

Previous studies suggest that climate affects the vulnerability of individuals in complex 

ways. Youth and women are often retained by a household when exposed to a climatic 

3We refrain from including contemporaneous and lagged climate variables in the same model, given the high temporal correlation of 
temperature in Zambia (Table A.3).
4For example, the number of cold (hot) months encompasses months in which the temperature z score was less than −1 (more than 1).
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shock, possibly due to the concurrent decline in the returns to their labor and/or their marital 

contracts (Dillon, Mueller, and Sheu, 2011; Gray and Mueller, 2012; Thiede and Gray, 

2017). Gray and Mueller (2012) and Mastrorillo et al. (2016) also find that the asset-poor are 

more inclined to migrate in response to a drought; however, the cost of relocation can also 

limit one’s capacity to adapt (Nawrotzki and DeWaard, 2018). We provide the results from 

(1) stratifying the sample by youth (18-34) and non-youth (35-49), female and male, and 

those with and without a primary school education to detect socio-demographic vulnerability 

to climate-induced migration. Completion of primary school serves as a proxy for wealth in 

the analysis, as the censuses do not collect asset information about the individuals prior to 

their migration episodes.

We further expand the above framework in (1) to examine whether migratory responses are 

urban-bound in Kenya. We consider a new dependent variable, which distinguishes between 

whether a person stayed in his/her origin district or moved to a rural or urban location in 

another district. Given the categorical nature of the dependent variable, we estimate a 

multinomial logistic model to quantify the effect of climate variability exposure on the 

migration to rural and urban destinations. This approach overcomes limitations posed in 

previous work, which has used aggregate urbanization data to examine climate-migration 

relationships in Africa (Poelhekke, 2011; Henderson, Storeygard and Deichmann, 2017).

We lastly examine whether changes in employment coincide with the observed climate 

migration responses. We estimate the employment-climate responses in Kenya and Zambia 

by also using a multinomial logistic model. The dependent variable differentiates between a 

person being employed, inactive, or unemployed. In the analysis, we restrict the sample to 

non-migrants to reflect how localized changes in climate variables may have influenced the 

labor market prior to migration. We provide more detail on the interpretation of the 

coefficients of the model for the purpose of explaining the extent climate serves as a push or 

pull factor in Section 5.3.

5 Results

5.1 Climate Influences on Migration

Table 2 displays the odds ratios and standard errors from the country-specific logistic 

regression models. Botswana is the only country where migration changes with temperature. 

The result for temperature signifies that the odds of mobility decrease by 19% when 

Botswanians are exposed to a 1 standard deviation (SD) increase in temperature. Yet, the 

magnitude of this effect and its statistical significance are sensitive to the model 

specification. Since the value of the standard deviation for temperature is 1°C, we can 

interpret the magnitude of the temperature effect to be larger when replacing the 1-year 

lagged climate anomaly with the 1-year lagged climate level (Table A.4). A quadratic model 

(Table A.5) and a model using contemporaneous anomalies (Table A.6) suggest effects of 

similar size, however, the parameters are measured imprecisely. Replacing the temperature 

anomaly with variables capturing the number of cold and hot months in the past 24 months 

also supports a story of immobility, particularly during cold spells (Table A.7).
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We next turn to the results for precipitation, which affects migration in all countries. 

Increases in rainfall correspond with a reduction in migration in Botswana and Kenya, and 

an augmentation of migration in Zambia. The findings remain consistent in sign and 

significance when substituting raw precipitation values for precipitation anomalies (Table 

A.4), but not when using contemporaneous instead of lagged precipitation (Table A.6) or a 

quadratic model (Table A.5), with one exception. We find that linear and squared 

precipitation terms are both positively associated with migration in Zambia. Lagged 

precipitation, therefore, appears to have a robust effect in Botswana, Kenya, and Zambia. In 

Botswana and Kenya, a 1 SD increase in precipitation causes a moderate decline in 

migration of 10-11%, versus an increase in migration as large as 24% in Zambia.5

We lastly describe the results for control variables. Migration decreases with age in all 

countries. In particular, there is a lower likelihood of moving among individuals over the age 

of 34 relative to the youngest age group (15-19), however, heterogeneity exists with respect 

to which age groups under 34 are more inclined to migrate. The age effects are consistent 

with broader migration trends related to age of marriage (Jensen and Thornton, 2003; 

Hertrich, 2017), educational attainment (Kristensen and Birch-Thomsen, 2013; Elder et al., 

2015), and employment (Kristensen and Birch-Thomsen, 2013; Temin et al., 2013).

Gender, marital status, and education are also strongly associated with migration in 2 of the 

3 countries. The models reveal men tend to migrate more than women. The percentage 

difference in the odds of moving for men relative to women ranges between 4% and 13%. 

Young men and women also appear to be less mobile when they are married. Those who 

have never been married are between 7% to 21% more likely to move. Similarly, education 

is positively correlated with migration in most countries. The Kenya model exhibits the 

greatest effect, where having at least a primary education doubles the odds of moving 

relative to those lacking an education.

5.2 Vulnerability across the Demographic and Spatial Spectrum

We further explored whether exposure to climate anomalies led to varied migratory 

responses by gender, age (18-34 versus 35-39), and education (with and without a primary 

education). Figure 2 exhibits the heterogeneous migratory responses for Botswana, the only 

country where the measured temperature consequences are statistically significant for the 

full sample (all country statistics are included in Tables A.8–A.10). The statistics testing the 

difference in the coefficients across sub-samples confirm that there is a greater tendency for 

those that lack a primary education to be immobile (Table A.11).6

5Inferences based on origin-clustered standard errors may be misleading when the number of origins is fewer than 30 (Cameron, 
Gelbach, and Miller, 2008) or if there is spatial dependency of the climate anomalies at higher levels of aggregation. We therefore 
perform Wald tests which determine whether the climate parameters are statistically different than zero using wild bootstrap clustered 
standard errors (Roodman et al., 2019). We find the temperature parameter in the Botswana model becomes statistically significant at a 
higher critical threshold of 11 percent. The precipitation parameters are statistically significant at the 6, 8, and 1 percent critical values 
for Botswana, Kenya, and Zambia, respectively. We also repeat the Wald tests using wild bootstrap standard errors clustered at the 
regional level for Kenya and Zambia, where regional identifiers are provided by IPUMS. The precipitation parameters remain 
statistically significant for Kenya and Zambia at the 10 and 1 percent critical levels, respectively. Results are available from the authors 
upon request.
6Our inferences are based on z statistics from a fully interacted model. The interacted model allows us to explicitly test whether the 
differences in the migration effects across sub-samples in Figure 2 are statistically different (Tables A.11–A.13). Each interacted 
model adds a set of variables that interact the stratifying variable (male, youth, and primary education) with all of the covariates and 
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Figure 2 also displays the precipitation effects by demographic group. All demographic 

groups move due to increases in precipitation in Zambia, but the magnitudes statistically 

differ for men and youth (Table A.12). The reverse effect occurs in the remaining 2 

countries: Botswana and Kenya. There are no obvious differences in the mobility patterns of 

different groups, with the exception of men and the educated in Botswana (Table A.11). Men 

are less likely affected by precipitation anomalies, while the opposite is true for the 

educated.

We next evaluate whether rural and urban destinations in Kenya are disproportionately 

affected by climate-induced migration. Table 3 presents the results from the country-specific 

multinomial logistic regression. The results for Kenya suggest that urban areas will likely 

experience higher in-migration rates during droughts, although we cannot reject that the 

effects on rural and urban moves are the same (p = 0.48).

5.3 Mechanisms

In the previous sections we evaluated the impacts of climate anomalies on mobility by 

country (Section 5.1). We then determined the extent these patterns varied across 

demographic groups and by destination choice (Section 5.2). In this section, we investigate 

whether climate effects on labor supply and demand potentially contribute to the observed 

climate-migration relationships. Specifically, we use a multinomial logistic model to test 

whether temperature and precipitation anomalies affect unemployment and inactivity (where 

employment is the reference category). We focus on the non-migrant sample to simplify the 

interpretation. The objective is to observe whether the direction of the relationships between 

migration and climate versus employment and climate are similar.

There are at least three mechanisms that might underlie the observed effects of climate on 

migration and employment. First, if unemployment (or inactivity) and migration 

concomitantly rise with adverse climates (in these contexts, hot and dry), one possible 

interpretation of the estimated relationships is that the lack of local job opportunities may 

push workers to move (Mueller et al., 2020b). Second, if unemployment (or inactivity) and 

migration both decline with adverse climates, then this could possibly be explained by an 

increase in local demand for labor due to the elevation of on-farm risk (Rutenberg and 

Diamond, 1993). Household labor supply may adjust to minimize the damages from an 

increase in pests or the requirements to preserve crops (Jagnani et al., 2020).

The third scenario is one in which migration and unemployment/inactivity are both inversely 

related to adverse climates. Such relationships would be indicative of migration responding 

to pull factors at the destination, which could occur through several channels. First, when 

negative climate shocks delay production or cause deleterious effects on agricultural yields 

(Schlenker and Lobell, 2010), the demand for paid labor to perform intensive tasks in the 

production cycle, such as seeding, weeding, and harvesting, declines (Dimova et al., 2015). 

Second, there are often strong upstream-downstream linkages in developing countries 

(Haggblade, Hazell, and Reardon, 2010; Diao, Magalhaes, and Silver, 2019), which renders 

fixed effects included in the original model. We focus on the z statistic on the coefficients of the variables that interact climate and the 
stratifying variable to determine whether the migration responses vary by demographic group.
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wage employment in other sectors vulnerable to climate change. As food retail and trade 

dominate the non-agricultural sector in many African countries, a lack of supply in the main 

inputs of these activities compromises job creation and sectoral viability. Third, if farmers 

have less disposable income during a climate shock due to yield losses, the demand for non-

essential goods and services is likely to diminish. This exacerbates the demand for non-

agricultural labor. The above cases specify the consequences of adverse shocks on 

employment migration. Similarly, we might expect that local employment in the agricultural 

and non-agricultural sectors might increase when climate is favorable, reducing the need for 

households to diversify income through engaging in employment migration.

To understand which mechanism dominates per country, we first turn to the findings in 

Kenya. In Section 5.1, we identified that precipitation anomalies decrease the likelihood of 

migration. In Table 4, climate anomalies produce negative effects on inactivity and positive 

effects on unemployment. Although the effects on inactivity and unemployment are not 

individually significant (Table 4), the Chi-squared test in the inactivity equation suggests 

that the effects of climate anomalies are jointly significant (p-value=0.09) and, in particular, 

that the precipitation parameter significantly differs from that estimated in the 

unemployment equation (p-value=0.08). The combined effects of precipitation anomalies on 

migration and inactivity support a narrative, where migration may be deterred by the 

increased local demand for workers. In the event of excessive rainfall, workers who are 

typically inactive may serve to supplant other households members while they are tasked 

with mitigating production risk (Beegle, Dehejia, and Gatti, 2006). For more moderate 

rainfall events, the local demand for workers may increase to assist with harvesting crops.

We last consider the migration-climate and employment-climate relationships in Zambia. As 

in the other contexts, climate anomalies tend to reduce both inactivity and unemployment 

(Table 4). All climate anomaly parameters are statistically significant at the 10 percent 

critical level, save the precipitation anomaly parameter in the unemployment regression. 

However, the migration-climate and employment-climate relationships are inversely related, 

and thus the mechanism underlying observed migration patterns varies from that observed in 

Kenya. Because inactivity declines and migration rises with increases in precipitation, the 

associated increases in migration may correspond with pull factors at the destination. Given 

that the precipitation anomalies are on average slightly positive over the periods in which we 

have data (Table A.1), our results may be sensitive to the temporal coverage of our study. For 

example, nominal increases in precipitation are often favorable for agricultural markets and 

those that rely on raw commodities as inputs, hence, likely promoting the creation of jobs 

across sectors.

The above relationships are used to provide additional evidence of how labor market 

conditions may be responsible for differences in the migration-climate relationships across 

countries. However, these descriptions are clearly not definitive. The climate effects among 

the non-migrant sample may be implicitly capturing the consequences of climate-induced 

migration in addition to effects on the local economy, particularly in areas where the degree 

of spatial correlation between origins and destinations is high. Without accounting for labor 

market conditions in both origins and destinations, we are unable to decipher whether a lack 

of employment opportunities at the origin may push migrants to leave, whether an increased 
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demand for workers encourages migrants to stay, or alternatively, whether the paucity of 

work at destinations reduces aspirations to move. Disentangling the relative merits of these 

underlying channels is an area worthy of exploration in future research.

6 Discussion

Our analysis demonstrates that temperature had limited migration effects in the broader 

population in the three African countries under investigation. The one exception we found 

was in Botswana, where a 1 SD increase in temperature resulted in a 19 percent decrease in 

migration. The temperature effects appear more pronounced among individuals lacking a 

primary education. We were unable to detect a mechanism underlying these observed 

relationships, due to inconsistencies with the reference period for employment on the 

censuses collected each year. In addition to the cyclical effects of employment on migration, 

migration decisions are likely driven by other decisions affected by risk, such as shifts in 

choices regarding schooling or marriage or in exchange labor contracts between households 

(Rutenberg and Diamond, 1993; Campbell, 2010). How these adaptation strategies affect the 

well-being of those family members left behind and those choosing to migrate for the 

various reasons in result of climate variability remains poorly understood.

Our ability to understand how temperature influences this region of the world is greatly 

limited by the restricted temporal and spatial scope of the available census data. For many of 

the countries in Africa, we only have one or two years of observational data. This can 

preclude identification of country-specific temperature effects versus effects quantified by 

pooling countries over a tropical region (Thiede, Gray, and Mueller, 2016; Mueller et al., 

2020b).

Despite these data limitations, we are able to systematically detect the effects of 

precipitation on migration in all 3 countries. However, the direction of the relationships 

varies by country. Precipitation anomalies decrease mobility in Botswana and Kenya, while 

they increase mobility in Zambia. Relating climate anomalies to employment reveals two 

possible mechanisms for the estimated patterns of migration. In Kenya, precipitation 

anomalies reduce inactivity and unemployment, consistent with a mostly agrarian population 

that depends on rainfed agriculture. The local pull factors that arise from atypical 

precipitation conditions could possibly explain declines in migration. In Zambia, the 

relationships between migration and precipitation and employment and precipitation are 

inversely related. Thus, declines in inactivity and unemployment (though imprecisely 

estimated) coincide with increased migration to suggest that the climate-induced migration 

may be driven by new job opportunities at the destination. These results are consistent with 

previous studies which have also documented climate-induced population trapping in 

Zambia (Nawrotzki and DeWaard, 2018; Mueller et al., 2020a).

These findings add to a small but growing body of literature which has compared climate-

migration processes across countries and found them to vary considerably (Thiede, Gray, 

and Mueller, 2016; Gray and Wise, 2016; Nawrotzki, Schlak, and Kugler , 2016; Nawrotzki 

and Bakhtsiyarava, 2017). For example, Thiede, Gray, and Mueller (2016) found climatic 

effects on migration to vary widely in direction and magnitude across South American 
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countries, and Gray and Wise (2016) made similar conclusions about five countries in 

Africa. This heterogeneity is not consistent with monolithic narratives of displacement under 

adverse climate conditions (Gemenne, 2011), but is consistent with a large literature 

documenting the contextually-specific nature of human-environment relationships (Cooper 

et al, 2019; Randell and Gray, 2019). Future studies should take advantage of the increasing 

availability of comparable, cross-country data on migration, health and employment to 

further probe this heterogeneity and uncover what dimensions of the regional and national 

context are most influential in moderating these processes.

Finally, our study also has implications for the claim that climate change is driving rapid 

urbanization in Africa (Poelhekke, 2011; Henderson, Storeygard, and Deichmann, 2017). In 

our study, precipitation shortfalls are associated with increased internal migration in Kenya 

and Botswana, including specifically to urban areas in Kenya, but less migration in Zambia. 

Additionally, temperature acts only to decrease migration in Botswana and does not 

influence migration elsewhere. This mixed evidence is consistent with the existing mixed 

evidence on climate and urbanization in Africa (Barrios, Bertinelli, and Strobl, 2006; 

Marchiori, Maystadt, and Schumacher, 2012; Cattaneo and Peri, 2016; Henderson, 

Storeygard, and Deichmann, 2017). Given this mixed evidence, claims that climate change is 

driving urbanization in Africa should be avoided, as they do not have a strong evidentiary 

base.
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Appendix for “Climate-Induced Migration and Unemployment in Middle-

Income Africa”

Table A.1:

Description of the Analytical Dataset

Botswana Kenya Zambia

Total Sample 600,289 6,323,580 3,105,551

Has age 600,289 6,323,580 3,105,551

Age 18-49 258,626 2,525,639 1,197,275

Has sex and no coding error (zero) for marital status or education 254,665 2,525,639 1,197,275

Know migration status 249,024 2,512,790 1,194,429

Reports being employed, inactive, or unemployed 216,708 2,508,282 1,194,429

Final sample 216,708 2,508,282 1,194,429
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Table A.2:

Summary Statistics on Individual Characteristics and Outcomes

Botswana Kenya Zambia

Age: 15-19 0.10 0.11 0.12

Age: 20-24 0.22 0.24 0.24

Age: 25-29 0.20 0.20 0.20

Age: 30-34 0.16 0.15 0.16

Age: 35-39 0.13 0.12 0.12

Age: 40-44 0.10 0.09 0.09

Age: 45-49 0.08 0.08 0.07

Male 0.47 0.48 0.48

Never married 0.55 0.33 0.29

Married 0.42 0.63 0.63

Separated/divorced 0.01 0.03 0.06

Widowed 0.01 0.02 0.03

Less than primary ed. completed 0.23 0.31 0.37

Primary ed. completed 0.53 0.46 0.46

Secondary ed. completed 0.18 0.22 0.15

University completed 0.06 0.01 0.01

Migrant 0.14 0.05 0.06

Employed 0.55 0.76 0.54

Inactive 0.31 0.17 0.40

Unemployed 0.14 0.07 0.05

Temp. level 21.41 21.13 22.28

Temp. anomaly −0.32 0.57 0.36

Prec. level 42.14 83.26 84.85

Prec. anomaly 0.99 −0.07 0.44

1-year lagged temp. level 21.49 20.94 21.95

1-year lagged temp. anomaly −0.15 0.11 −0.39

1-year lagged prec. level 39.86 90.28 81.48

1-year lagged prec. anomaly 0.71 0.34 0.17

No. of cold months in prior 24 months 6.26 15.10 10.18

No. of hot months in prior 24 months 9.23 2.03 10.98

No. of wet months in prior 24 months 4.24 5.31 6.87

No. of dry months in prior 24 months 1.30 3.28 2.03

N 216,708 2,508,282 1,194,429

Notes: Sampling weights used. Ed.=education; No.=number. Indicators for unknown marital status and education are 
omitted for brevity.

Mueller et al. Page 14

Glob Environ Change. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Table A.3:

Correlation Matrix of Climate Anomalies

Temp. t, Prec. 
t

Temp. t, 
Temp. t-1

Temp. t, Prec. 
t-1

Prec. t, Temp. 
t-1

Prec. t, Prec. 
t-1

Temp. t-1, 
Prec. t-1

Botswana −0.03 0.31 0.15 0.35 0.49 −0.21

Kenya −0.68 0.09 −0.35 −0.55 0.51 −0.09

Zambia 0.05 0.77 0.48 0.50 −0.30 0.08

Notes: t=survey year; t-1=one-year lag. Unit of analysis is district-year.

Table A.4:

Logistic Regressions of Migration (1-Year Lagged Climate Levels)

Botswana Kenya Zambia

Age: 20-24 1.001 (0.045) 1.319 (0.050)** 1.164 (0.059)**

Age: 25-29 0.791 (0.049)** 1.080 (0.045)+ 1.137 (0.069)*

Age: 30-34 0.641 (0.036)** 0.829 (0.029)** 0.984 (0.057)

Age: 35-39 0.541 (0.032)** 0.695 (0.030)** 0.892 (0.043)*

Age: 40-44 0.479 (0.037)** 0.598 (0.031)** 0.828 (0.040)**

Age: 45-49 0.430 (0.027)** 0.522 (0.030)** 0.793 (0.029)**

Male 1.124 (0.036)** 1.117 (0.027)** 1.038 (0.023)+

Never married 1.067 (0.040)+ 1.214 (0.062)** 1.109 (0.068)+

At least primary ed. completed 1.684 (0.186)** 1.876 (0.117)** 1.037 (0.199)

1-year lagged temp. level 0.606 (0.181)+ 0.862 (0.229) 1.624 (1.063)

1-year lagged prec. level 0.989 (0.006)+ 0.996 (0.002)* 1.017 (0.008)*

N 216,708 2,508,282 1,194,429

P-value, Chi-sq. test: Temp.,Prec.=0 0.153 0.044 0.124

Notes: Odds ratios reported. Sampling weights used. Origin-clustered standard errors in parentheses.
+

p<0.1
*
p<0.05;

**
p<0.01.

District and year fixed effects included, as well as indicators for missing education and marital status. Chi-sq.=Chi-squared.

Table A.5:

Logistic Regressions of Migration (Add 1-Year Lagged Climate Anomalies Squared)

Botswana Kenya Zambia

Age: 20-24 1.002 (0.046) 1.319 (0.050)** 1.166 (0.058)**

Age: 25-29 0.791 (0.049)** 1.080 (0.045)+ 1.139 (0.068)*

Age: 30-34 0.640 (0.036)** 0.829 (0.029)** 0.985 (0.057)

Age: 35-39 0.541 (0.032)** 0.695 (0.030)** 0.891 (0.043)*

Age: 40-44 0.479 (0.037)** 0.598 (0.031)** 0.827 (0.040)**

Age: 45-49 0.430 (0.027)** 0.522 (0.030)** 0.793 (0.029)**

Male 1.125 (0.036)** 1.117 (0.027)** 1.040 (0.023)+

Never married 1.067 (0.040)+ 1.214 (0.061)** 1.109 (0.068)+
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Botswana Kenya Zambia

At least primary ed. completed 1.686 (0.185)** 1.878 (0.117)** 1.036 (0.198)

1-year lagged temp. anomaly 0.878 (0.113) 0.856 (0.149) 1.830 (0.521)*

1-year lagged temp. anomaly squared 1.035 (0.065) 1.525 (0.471) 0.800 (0.100)+

1-year lagged prec. anomaly 0.841 (0.082)+ 0.861 (0.090) 1.237 (0.133)*

1-year lagged prec. anomaly squared 1.023 (0.037) 1.026 (0.093) 1.107 (0.050)*

N 216,708 2,508,282 1,194,429

P-value, Chi-sq. test: All climate vars.=0 0.170 0.172 0.003

Notes: Odds ratios reported. Sampling weights used. Origin-clustered standard errors in parentheses.
+

p<0.1
*
p<0.05;

**
p<0.01.

District and year fixed effects included, as well as indicators for missing education and marital status. Chi-sq.=Chi-squared.

Table A.6:

Logistic Regressions of Migration (Contemporaneous Climate Anomalies)

Botswana Kenya Zambia

Age: 20-24 1.002 (0.045) 1.319 (0.050)** 1.163 (0.059)**

Age: 25-29 0.791 (0.049)** 1.080 (0.045)+ 1.134 (0.071)*

Age: 30-34 0.641 (0.036)** 0.830 (0.029)** 0.982 (0.058)

Age: 35-39 0.541 (0.032)** 0.696 (0.030)** 0.890 (0.045)*

Age: 40-44 0.479 (0.037)** 0.599 (0.031)** 0.826 (0.041)**

Age: 45-49 0.430 (0.027)** 0.522 (0.030)** 0.790 (0.030)**

Male 1.124 (0.036)** 1.117 (0.027)** 1.040 (0.024)+

Never married 1.068 (0.040)+ 1.214 (0.061)** 1.109 (0.069)+

At least primary ed. completed 1.680 (0.185)** 1.875 (0.117)** 1.036 (0.199)

Temp. anomaly 0.936 (0.095) 0.878 (0.069)+ 0.587 (0.292)

Prec. anomaly 0.951 (0.049) 1.010 (0.058) 0.902 (0.084)

N 216,708 2,508,282 1,194,429

P-value, Chi-sq. test: Temp., Prec.=0 0.623 0.155 0.048

Notes: Odds ratios reported. Sampling weights used. Origin-clustered standard errors in parentheses.
+

p<0.1
*
p<0.05;

**
p<0.01.

District and year fixed effects included, as well as indicators for missing education and marital status. Chi-sq.=Chi-squared.

Table A.7:

Logistic Regressions of Migration (No. of Cold, Hot, Wet, and Dry Months in Prior 24 

Months)

Botswana Kenya Zambia

Age: 20-24 1.003 (0.046) 1.319 (0.050)** 1.164 (0.059)**

Age: 25-29 0.792 (0.050)** 1.080 (0.045)+ 1.136 (0.070)*
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Botswana Kenya Zambia

Age: 30-34 0.641 (0.036)** 0.829 (0.029)** 0.983 (0.058)

Age: 35-39 0.542 (0.033)** 0.695 (0.030)** 0.891 (0.044)*

Age: 40-44 0.480 (0.037)** 0.599 (0.031)** 0.827 (0.041)**

Age: 45-49 0.430 (0.027)** 0.522 (0.030)** 0.792 (0.030)**

Male 1.125 (0.036)** 1.116 (0.027)** 1.039 (0.023)+

Never married 1.066 (0.040)+ 1.214 (0.061)** 1.109 (0.069)+

At least primary ed. completed 1.687 (0.186)** 1.875 (0.117)** 1.037 (0.200)

No. of cold months in prior 24 months 0.838 (0.081)+ 1.188 (0.301) 0.556 (0.164)*

No. of hot months in prior 24 months 0.991 (0.027) 1.099 (0.039)** 1.221 (0.150)

No. of wet months in prior 24 months 1.008 (0.010) 0.996 (0.010) 0.976 (0.024)

No. of dry months in prior 24 months 1.110 (0.039)** 0.996 (0.015) 1.019 (0.110)

N 216,708 2,508,282 1,194,429

P-value, Chi-sq. test: Temp., Prec.=0 0.000 0.011 0.340

Notes: Odds ratios reported. Sampling weights used. Origin-clustered standard errors in parentheses.
+

p<0.1
*
p<0.05;

**
p<0.01.

District and year fixed effects included, as well as indicators for missing education and marital status. No.=Number; Chi-
sq.=Chi-squared.

Table A.8:

Logistic Regressions of Migration, Botswana

Pooled Women Men Youth Non-youth No 
primary 

ed.

Primary 
ed.

Age: 20-24 1.002 
(0.045)

0.930 
(0.045)

1.095 
(0.058)+

1.009 
(0.047)

1.181 
(0.116)+

0.992 
(0.052)

Age: 25-29 0.791 
(0.049)**

0.698 
(0.043)**

0.919 
(0.066)

0.803 
(0.051)**

1.040 
(0.108)

0.774 
(0.055)**

Age: 30-34 0.641 
(0.036)**

0.550 
(0.032)**

0.763 
(0.054)**

0.653 
(0.038)**

0.933 
(0.122)

0.611 
(0.037)**

Age: 35-39 0.541 
(0.032)**

0.422 
(0.028)**

0.703 
(0.049)**

0.714 
(0.085)**

0.528 
(0.035)**

Age: 40-44 0.479 
(0.037)**

0.369 
(0.028)**

0.625 
(0.060)**

0.882 
(0.024)**

0.614 
(0.078)**

0.472 
(0.037)**

Age: 45-49 0.430 
(0.027)**

0.316 
(0.021)**

0.583 
(0.046)**

0.795 
(0.040)**

0.592 
(0.071)**

0.412 
(0.033)**

Male 1.125 
(0.036)**

1.036 
(0.033)

1.478 
(0.068)**

1.366 
(0.090)**

1.086 
(0.029)**

Never 
married

1.067 
(0.040)+

1.114 
(0.037)**

1.041 
(0.055)

1.096 
(0.050)*

1.040 
(0.038)

1.101 
(0.061)+

1.050 
(0.042)

At least 
primary ed. 
completed

1.686 
(0.185)**

1.765 
(0.219)**

1.609 
(0.161)**

1.698 
(0.176)**

1.600 
(0.202)**

1-year 
lagged temp. 
anomaly

0.812 
(0.081)*

0.877 
(0.091)

0.744 
(0.079)**

0.787 
(0.077)*

0.900 
(0.115)

0.568 
(0.119)**

0.825 
(0.082)+
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Pooled Women Men Youth Non-youth No 
primary 

ed.

Primary 
ed.

1-year 
lagged prec. 
anomaly

0.888 
(0.037)**

0.924 
(0.045)

0.851 
(0.038)**

0.890 
(0.039)**

0.884 
(0.051)*

0.722 
(0.060)**

0.896 
(0.039)*

N 216,708 113,895 102,813 148,080 68,628 50,619 166,089

Notes: Odds ratios reported. Sampling weights used. Origin-clustered standard errors in parentheses.
+

p<0.1
*
p<0.05;

**
p<0.01.

District and year fixed effects included, as well as indicators for missing education and marital status.

Table A.9:

Logistic Regressions of Migration, Kenya

Pooled Women Men Youth Non-youth No 
primary 

ed.

Primary 
ed.

Age: 20-24 1.319 
(0.050)**

1.106 
(0.043)**

1.649 
(0.060)**

1.326 
(0.047)**

1.081 
(0.040)*

1.373 
(0.054)**

Age: 25-29 1.080 
(0.045)+

0.822 
(0.031)**

1.511 
(0.064)**

1.093 
(0.042)*

0.933 
(0.053)

1.115 
(0.045)**

Age: 30-34 0.829 
(0.029)**

0.580 
(0.018)**

1.237 
(0.049)**

0.841 
(0.028)**

0.758 
(0.034)**

0.841 
(0.031)**

Age: 35-39 0.695 
(0.030)**

0.467 
(0.021)**

1.062 
(0.048)

0.632 
(0.037)**

0.700 
(0.031)**

Age: 40-44 0.599 
(0.031)**

0.373 
(0.024)**

0.944 
(0.045)

0.858 
(0.016)**

0.514 
(0.038)**

0.612 
(0.031)**

Age: 45-49 0.522 
(0.030)**

0.346 
(0.021)**

0.792 
(0.046)**

0.752 
(0.026)**

0.452 
(0.030)**

0.523 
(0.031)**

Male 1.117 
(0.027)**

1.047 
(0.027)+

1.513 
(0.052)**

1.252 
(0.049)**

1.094 
(0.025)**

Never 
married

1.214 
(0.062)**

1.267 
(0.093)**

1.244 
(0.043)**

1.228 
(0.064)**

1.366 
(0.072)**

1.085 
(0.067)

1.227 
(0.063)**

At least 
primary ed. 
completed

1.877 
(0.117)**

1.723 
(0.104)**

1.889 
(0.125)**

1.921 
(0.121)**

1.667 
(0.123)**

1-year 
lagged temp. 
anomaly

0.989 
(0.080)

0.982 
(0.086)

0.994 
(0.081)

0.991 
(0.082)

0.980 
(0.087)

0.922 
(0.134)

1.001 
(0.069)

1-year 
lagged prec. 
anomaly

0.897 
(0.040)*

0.909 
(0.050)+

0.889 
(0.036)**

0.888 
(0.042)*

0.934 
(0.044)

0.881 
(0.061)+

0.906 
(0.037)*

N 2,508,282 1,293,391 1,214,891 1,766,563 741,719 739,934 1,768,348

Notes: Odds ratios reported. Sampling weights used. Origin-clustered standard errors in parentheses.
+

p<0.1
*
p<0.05;

**
p<0.01.

District and year fixed effects included, as well as indicators for missing education and marital status.
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Table A.10:

Logistic Regressions of Migration, Zambia

Pooled Women Men Youth Non-youth No 
primary 

ed.

Primary 
ed.

Age: 20-24 1.164 
(0.059)**

1.076 
(0.050)

1.273 
(0.073)**

1.162 
(0.059)**

1.109 
(0.048)*

1.198 
(0.066)**

Age: 25-29 1.137 
(0.070)*

1.005 
(0.042)

1.323 
(0.120)**

1.128 
(0.069)+

1.063 
(0.051)

1.196 
(0.083)**

Age: 30-34 0.985 
(0.057)

0.873 
(0.035)**

1.150 
(0.105)

0.974 
(0.057)

0.931 
(0.043)

1.025 
(0.073)

Age: 35-39 0.892 
(0.043)*

0.787 
(0.028)**

1.053 
(0.088)

0.874 
(0.046)*

0.907 
(0.056)

Age: 40-44 0.828 
(0.040)**

0.768 
(0.029)**

0.938 
(0.073)

0.921 
(0.015)**

0.784 
(0.040)**

0.827 
(0.057)**

Age: 45-49 0.794 
(0.029)**

0.776 
(0.029)**

0.854 
(0.054)*

0.882 
(0.022)**

0.779 
(0.047)**

0.744 
(0.042)**

Male 1.038 
(0.023)+

1.040 
(0.026)

1.050 
(0.020)*

1.165 
(0.029)**

0.993 
(0.027)

Never 
married

1.110 
(0.068)+

1.066 
(0.047)

1.175 
(0.103)+

1.086 
(0.069)

1.388 
(0.093)**

0.958 
(0.061)

1.166 
(0.076)*

At least 
primary ed. 
completed

1.038 
(0.198)

1.061 
(0.211)

1.011 
(0.184)

1.092 
(0.200)

0.915 
(0.189)

1-year 
lagged temp. 
anomaly

1.397 
(0.481)

1.452 
(0.493)

1.336 
(0.467)

1.334 
(0.427)

1.627 
(0.693)

1.913 
(0.805)

1.154 
(0.318)

1-year 
lagged prec. 
anomaly

1.239 
(0.122)*

1.269 
(0.129)*

1.207 
(0.115)*

1.215 
(0.115)*

1.331 
(0.148)*

1.283 
(0.152)*

1.176 
(0.087)*

N 1,194,429 621,540 572,889 857,225 337,204 445,228 749,201

Notes: Odds ratios reported. Sampling weights used. Origin-clustered standard errors in parentheses.
+

p<0.1
*
p<0.05;

**
p<0.01.

District and year fixed effects included, as well as indicators for missing education and marital status.

Table A.11:

Migration Regressions for Botswana with Interaction Variables

(1) (2) (3)

Male 0.862 (0.094)

Youth 2.573 (0.284)**

Primary ed. completed 2.397 (0.403)**

1-year lagged temp. anomaly 0.877 (0.091) 0.900 (0.115) 0.574 (0.118)**

1-year lagged prec. anomaly 0.924 (0.045) 0.884 (0.051)* 0.735 (0.061)**

Male × temp. anomaly 0.849 (0.053)**

Male × prec. anomaly 0.921 (0.034)*

Youth × temp. anomaly 0.874 (0.058)*

Youth × prec. anomaly 1.007 (0.050)
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(1) (2) (3)

Primary ed. × temp. anomaly 1.436 (0.254)*

Primary ed. × prec. anomaly 1.219 (0.086)**

N 216,708 216,708 216,708

Notes: Odds ratios reported. Sampling weights used. Origin-clustered standard errors in parentheses.
+

p<0.1
*
p<0.05;

**
p<0.01.

The models estimated in (1)-(3) includes the covariates, district, and year fixed effects from our preferred model in addition 
to a set of variables that interact them with a stratifying variable (male, youth, and primary education). We present the 
coefficients of interest for the purpose of testing meaningful differences in the migration effects presented in Figure 2 in 
each column of the table.

Table A.12:

Migration Regressions for Zambia with Interaction Variables

(1) (2) (3)

Male 0.705 (0.081)**

Youth 1.060 (0.161)

At least primary ed. completed 0.797 (0.168)

1-year lagged prec. anomaly 1.269 (0.129)* 1.331 (0.148)* 1.283 (0.152)*

Male × prec. anomaly 0.951 (0.016)**

Youth × prec. anomaly 0.913 (0.027)**

Primary ed. × prec. anomaly 0.916 (0.050)

N 1,194,429 1,194,429 1,194,429

Notes: Odds ratios reported. Sampling weights used. Origin-clustered standard errors in parentheses.
+

p<0.1
*
p<0.05;

**
p<0.01.

The models estimated in (1)-(3) includes the covariates, district, and year fixed effects from our preferred model in addition 
to a set of variables that interact them with a stratifying variable (male, youth, and primary education). We present the 
coefficients of interest for the purpose of testing meaningful differences in the migration effects presented in Figure 2 in 
each column of the table.

Table A.13:

Migration Regressions for Kenya with Interaction Variables

(1) (2) (3)

Male 0.617 (0.036)**

Youth 1.639 (0.108)**

At least primary ed. completed 0.709 (0.059)**

1-year lagged prec. anomaly 0.909 (0.050)+ 0.934 (0.044) 0.881 (0.063)+

Male × prec. anomaly 0.978 (0.031)

Youth × prec. anomaly 0.950 (0.035)

Primary ed. × prec. anomaly 1.029 (0.054)

N 2,508,282 2,508,282 2,508,282
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Notes: Odds ratios reported. Sampling weights used. Origin-clustered standard errors in parentheses.
+

p<0.1
*
p<0.05;

**
p<0.01.

The models estimated in (1)-(3) includes the covariates, district, and year fixed effects from our preferred model in addition 
to a set of variables that interact them with a stratifying variable (male, youth, and primary education). We present the 
coefficients of interest for the purpose of testing meaningful differences in the migration effects presented in Figure 2 in 
each column of the table.
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Figure 1: 
Social characteristics and climate exposures across time and space.
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Figure 2: Migration Effects of 1-Year Lagged Climate Anomalies (Odds Ratios, 95% Confidence 
Intervals, Significance)
** p < .01, * p <0.05, + p<0.1
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Table 1:

Census Data and Selected Characteristics of the Study Countries

Country Years Spatial units Migration question Urban/rural? Dominant climate

Botswana 1991, 2001, 2011 21 One-year 1991 Warm semi-arid

Kenya 1989, 1999, 2009 35 One-year 1989, 1999, 2009 Tropical savanna

Zambia 1990, 2000, 2010 55 Previous residence 1990, 2000 Humid subtropical
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