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Abstract

U.S. EPA conducted a national statistical survey of fish tissue contamination at 540 river sites 

(representing 82 954 river km) in 2008–2009, and analyzed samples for 50 persistent organic 

pollutants (POPs), including 21 PCB congeners, 8 PBDE congeners, and 21 organochlorine 

pesticides. The survey results were used to provide national estimates of contamination for these 

POPs. PCBs were the most abundant, being measured in 93.5% of samples. Summed 

concentrations of the 21 PCB congeners had a national weighted mean of 32.7 μg/kg and a 

maximum concentration of 857 μg/kg, and exceeded the human health cancer screening value of 

12 μg/kg in 48% of the national sampled population of river km, and in 70% of the urban sampled 

population. PBDEs (92.0%), chlordane (88.5%) and DDT (98.7%) were also detected frequently, 

although at lower concentrations. Results were examined by subpopulations of rivers, including 

urban or nonurban and three defined ecoregions. PCBs, PBDEs, and DDT occur at significantly 

higher concentrations in fish from urban rivers versus nonurban; however, the distribution varied 

more among the ecoregions. Wildlife screening values previously published for bird and 

mammalian species were converted from whole fish to fillet screening values, and used to estimate 

risk for wildlife through fish consumption.
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Introduction

Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and many 

organochlorine pesticides, such as dichlorodiphenyltrichloroethane (DDT), dieldrin, and 

chlordane, are well-known persistent organic pollutants (POPs) that have been shown to be 

ubiquitous in the environment.(1, 2) PCBs were widely used in industry and manufacturing 

as dielectric and coolant fluids, but because of their environmental toxicity and persistence, 

were banned for use by the U.S. Congress in 1979.(3) PBDEs share a similar chemical 

structure to PCBs. They are used as flame retardants in numerous consumer products, such 

as building materials, electronics, furniture, and textiles.(2) The production of octaBDE and 

pentaBDE commercial mixtures in the United States ended in 2004, leaving decaBDE as the 

only congener still in production in the U.S., which is also scheduled to be phased out of 

use.(4) DDT is one of the most recognizable POPs. After concerns were raised that its 

widespread agricultural use as a pesticide was having serious impacts on the health of the 

environment,(5) it was banned for use in the United States in 1972.(6)Chlordane and dieldrin 

were used as pesticides mainly to control termites and other insects in agricultural areas, and 

both substances having been banned for all agricultural uses in the U.S. by the U.S. EPA 

since the late 1980s. After its agricultural use was ended, chlordane could continue to be 

used to control termites around foundations.

The list of possible health effects in humans and wildlife from exposure to these POPs is 

extensive, and includes cancer, reduced reproduction rates, changes in immune and 

endocrine end points, and developmental neurotoxic effects.(2, 3, 7–13) Effects for some 

POPs, such as PCBs, can also be transgenerational, as the compounds have been found to 

cross over into the placenta and result in poor attention and behavioral problems in exposed 

infants and children.(14, 15) Most POPs are lipophilic, and have been measured in human 

serum, blood, breast milk, and other human tissue,(16–21) and in the tissue of a variety of 

wildlife.(22–29) Not only do they accumulate in tissues, but also they tend to biomagnify in 

the food chain,(30) and a link between dietary consumption of fish and marine mammals 

and human blood or serum levels has been observed for several POPs.(31, 32) DDT is still 

detected in food supplies, and food-borne DDT, especially from seafood, remains a 

significant source of human exposure.(20, 33) Although most of these POPs have been 

banned for use in the U.S. for decades, their persistence and toxicity still make it important 

to study their potential for exposure today.
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This work presents the results of the 2008–2009 National Rivers and Streams Assessment 

(NRSA) fish tissue indicator, where 50 POPs (Table 1) were measured in 540 composite fish 

fillet samples collected across the conterminous states (Figure 1). The NRSA is one of 

several U.S. EPA national probabilistic surveys designed to evaluate the overall condition 

and health of the nation’s waters, and a wide variety of indicators are evaluated. NRSA 

study results for pharmaceuticals measured in urban surface water, and fish tissue 

contaminant results for both mercury and perfluorinated compounds have been reported 

previously.(34–36) Mercury was detected in every one of the 540 samples included in this 

study, and fillet tissue concentrations in an estimated 25% of the sampled population 

exceeded the U.S. EPA 300 μg/kg fish-tissue based water quality criteria for mercury.(34) 

The probabilistic design for this survey provides national estimates of the distribution of 

these 50 POPs in fifth order and greater U.S. rivers for the assessment of human health 

impacts of fish consumption. A series of cancer(37) and noncancer(37, 38) human health 

screening values (SVs) were applied to the fillet tissue results. They provide estimates of the 

percentage of all U.S. river km represented in this study (i.e., the sampled population of 

rivers) that would be expected to contain POPs that exceed these SVs. Fish fillet tissue 

contaminant concentrations were also compared to wildlife screening values that were 

converted from whole fish values to fillet screening values in order to estimate exposure 

risks to mammals and birds. Geographical distributions of these contaminants were 

compared, first between urban and nonurban river segments, and then among three 

aggregated National Aquatic Resource Assessment ecoregions: Eastern Highlands (EHIGH), 

Plains and Lowlands (PLNLOW), and the West and Mountains (WMTS) (Figure 1).

Materials and Methods

2.1 NRSA Design and Site Selection

The NRSA included 1924 sites within the conterminous United States that were sampled for 

a range of indicators.(39) Fish samples were analyzed from 540 sites on rivers fifth order 

and greater to determine concentrations of chemicals in fish, including pesticides, PCBs, 

PBDEs, selenium, and mercury. The 50 POPs listed in Table 1 include 21 out of a possible 

209 PCB congeners, 8 PBDE congeners, and 21 organochlorine pesticides and metabolites. 

The number of congeners of PCBs and PBDEs was limited to allow for the simultaneous 

analysis of multiple classes of 50 POPs with a single analysis, and the specific congeners 

were chosen as they have been reported in previous U.S. EPA studies.(22) The mercury 

findings and fish tissue sample collection design were described previously.(34) Fish tissue 

samples were collected at sites that had a permanent fish population. Rivers were designated 

as fifth order or greater based on Strahler stream order.(40) The sampling framework was 

derived from the National Hydrography Data set (NHD) and included Strahler stream order 

attributes.(41) The fish sampling sites were classified as two subpopulations: urban and 

nonurban river segments. NHD-Plus and the U.S. Census Bureau national urban boundary 

GIS coverage layers were used to identify urban sampling areas, which were defined as 

densely settled census block groups with a minimum population density of 50 000 people. 

Sampling sites were selected using a probability-based approach,(42, 43)generally applying 

the spatial methodology used for lakes in U.S. EPA’s National Lake Fish Tissue Study(44) 

to major U.S. rivers. Fish samples were collected from 164 randomly selected urban river 
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sites and 378 nonurban river sites. This included sampling locations in 46 states with the 

following distribution of river sites: fifth order, 154 sites; sixth order, 161 sites; seventh 

order, 99 sites; and eighth order and above, 126 sites.

2.2 Sample Collection

One composite sample of a single fish species was collected from each site (Figure 1). A 

routine composite sample consisted of five fish, but composites containing fewer or greater 

than five fish were accepted in an effort to retain a sample from each target river segment 

(51.3% and 1.1% of the composites, respectively). Species were selected to be ubiquitous, 

abundant, and easily identified. Individual specimens of the species were selected to be 

adults of similar size (the length of the smallest individual in a composite could not be less 

than 75% of the total length of the largest individual) and sufficiently large to provide 

adequate tissue.(45) A total of 15 species were identified in a targeted list, including 

members of the sunfish (with largemouth and smallmouth bass preferred), trout/salmon, 

pike, temperate bass, perch, and catfish families. Field teams used active methods, primarily 

electrofishing, to collect fish samples from each site during the May through September field 

sampling period in 2008 and 2009. Whole fish were shipped on dry ice to the designated 

sample preparation laboratory for storage until subsequent fillet tissue sample preparation 

and analysis. Other aspects of fish collection and handling methods are further described 

elsewhere.(45)

2.3 Sample Preparation and Analysis

Fish were filleted in the laboratory. Scales were removed, then lateral muscle fillets from 

both sides of each fish were prepared with skin on and the belly flap (ventral muscle and 

skin) attached. Fillets from individual specimens that comprised the sample were 

homogenized together, regardless of the proportional weight of individual fish. Composites 

were homogenized using a tissue grinder and an 8 g aliquot of homogenate was used for 

analysis. Wet tissue samples were extracted using pressurized fluid extraction (PFE), 

followed by sample cleanup with gel permeation chromatography (GPC) and alumina, and 

clean extracts were analyzed by gas chromatography with electron capture detection (GC-

ECD). GC-ECD was chosen as the analysis method since the ECD detection method was 

found to be more sensitive for the target analytes than some mass spectrometry methods, and 

provided a very cost-effective analysis for the range of compounds in this study. Full details 

of the extraction and GC-ECD analysis methods are included in Supporting Information (SI) 

Document 1. Briefly, 8.0 g of tissue were added to 20 g of anhydrous sodium sulfate and 

allowed to dry for 1 h. Samples were spiked with a surrogate standard solution and 

transferred to 33 mL PFE cells fitted with a cellulose filter, and remaining cell volume was 

filled with drying material. PFE cells were extracted with methylene chloride (50%) and 

hexane (50%) at 100 °C and 1000 psi for three 7 min cycles. Extracts were collected into a 

60 mL glass vial, and the volume was reduced to approximately 3 mL using a stream of 

nitrogen in a 50 °C water bath. Concentrated sample extracts were dried using a 1-in. 

diameter glass chromatography column packed with 20 g of sodium sulfate and glass wool, 

and rinsed three times with hexane. Further sample extract cleanup was performed using 

GPC with a Waters HPLC, followed by solid-phase extraction using columns packed with 

deactivated alumina-N. Final sample extracts were adjusted to a volume of 1 mL after the 
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addition of 25 μL of an internal standard solution consisting of pentachloronitrobenzene, 

PCB 96, and PCB 166. These extracts were analyzed using Agilent 6890 gas 

chromatographs equipped with pressure-pulsed splitless injection, narrow-bore columns and 

micro ECD detectors. Since ECD detection is not as selective as some mass spectrometry 

methods available, two separate GC-ECD analyses were performed on instruments equipped 

with different GC columns, first a primary analysis (Agilent HP-5 capillary column: 30 m 

length, 0.25 mm diameter and 0.25 μm film thickness), followed by a confirmatory analysis 

(J&W DB - XLB column, 30 m length, 0.25 mm diameter and 0.25 μm film thickness), with 

the two different oven programs for both methods being described in SI Document 1. 

Concentrations of detected analytes were calculated for both the primary and confirmatory 

analyses. Reported concentrations are a result of the average of the primary and 

confirmatory analyses, unless the relative percent difference (RPD) in concentrations 

between the two columns was greater than 30%, in which case, the lesser concentration was 

reported. If an analyte was not detected in both analyses, it was reported as not-detected.

The method detection limit (MDL, Table 1), which is defined as the minimum concentration 

of an analyte that can be identified and detected with 99% confidence that the analyte 

concentration is greater than zero, was determined for each analyte using the procedure 

described at 40 CFR Part 136 Appendix B.(46) The quantitation limit (QL) was defined as 3 

times the MDL, and both the MDL and QL were calculated on the primary and confirmatory 

columns, and were updated on a yearly basis. Concentrations were reported to the MDL that 

applied at the time of analysis, however, any concentrations greater than the MDL but less 

than the QL were flagged as estimated. The maximum MDL and QL observed during the 

course of the study for each analyte is listed in Table 1. Four quality control samples were 

analyzed with each extraction batch, including a laboratory reagent blank (LRB), a 

laboratory fortified blank (LFB), and two laboratory fortified matrix (LFM) samples. The 

LRB and LFB were prepared from sodium sulfate, and the LFB and LFM were spiked with 

a mixture of the target analytes to yield a final GC extract concentration of 15 ng/mL. 

Percent recovery for each analyte was calculated in the LFB and LFM samples. Acceptable 

target recoveries for all analytes ranged from 70% to 130% for LFB, and from 50% to 150% 

with a 30% RPD for the duplicate LFM samples. Any analytes or samples which did not 

meet the predetermined quality criteria of the LFB and LFM samples were reanalyzed, or 

reported as estimated. Samples were also re-extracted and analyzed if an analyte was present 

in the LRB above the QL and the analyte was present in the sample above the QL but less 

than 10 times the detected blank concentration. Standard reference material (SRM) 1947, 

purchased from National Institute of Standard and Technology (NIST), was used as a 

certified second source standard to monitor extraction efficiency and instrument 

quantitation, and was extracted and analyzed with each extraction batch. All data reported in 

this study were reviewed and validated against the project requirements by a third party not 

involved in the data generation. Only valid results were used in the statistical analyses. 

Measured concentrations and qualifiers for each of the 50 contaminants analyzed in the 540 

fillet samples are included as (SI Table S1–S3).
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2.4 Data Analysis

National and Subpopulation Estimates—The NRSA survey design and results 

provide national and regional estimates of fish tissue contaminant concentrations, and as a 

result, reported results are expressed as population estimates, and not site or sample 

summary data. The population estimates are based on weighted analytical results from 

sampling sites. The weights are based on the survey design and are the inverse of the 

probability of selecting a sampling site. The probability of selecting a site depends on the 

stratification and unequal probability of selection associated with the site. The weights are 

the total river length represented by the sample site. Percentiles and mean population 

estimates of fish tissue analyte concentrations were calculated from the weighted data, using 

routines developed by the U.S. EPA in the statistical calculation package spsurvey R(47) for 

the R statistical computing environment.(48) In addition to the urban and nonurban 

subgroups, statistical parameters were generated for three aggregated ecoregions (EHIGH, 

PLNLOW, and WMTS) used in U.S. EPA National Aquatic Resource Surveys.(49) A 

standard normal Z-test was used to investigate fish tissue analyte concentration differences 

between the urban and nonurban subgroups, and between ecoregions:

z = meanA − meanB
stderrA2 + stderrB2

where meanA is the weighted mean estimate, stderrA is the standard error estimate for 

meanA for subgroup A, and similarly for subgroup B. Compounds were evaluated by 

summed groups, including summed PCB and PBDE congeners, total DDT (the five DDT 

compounds and degradates listed in Table 1), and total chlordane (cis- and trans-chlordane, 

cis- and trans-nonachlor, and oxychlordane). Prior to summing data into groups, any 

detections below the MDLs were considered nondetects and the results were treated as zeros 

during the statistical analysis.

Human Health Risk Estimate—The two categories of human health risk that are 

reflected in selected SVs are cancer and noncancer (Table 2). The survey design provides 

national estimates of river kilometers that are expected to contain fish with fillet 

concentrations that would exceed those screening value thresholds. A cancer SV(37) is 

based on a level of excess cancer risk from exposure to a carcinogenic substance ranging 

from 10–4 to 10–6. The noncancer SVs are based on a reference dose (RfD) for a toxicant, 

which is the level of exposure over a lifetime at which no observable adverse effects will 

occur. Cancer SVs are generally lower than noncancer SVs (Table 2), but the ratio can vary. 

For this assessment, a cancer SV reflecting 10–5 cancer risk has been applied to allow 

comparison of all the frequently detected compounds across regions, and to be comparable 

to previous U.S. EPA assessments.(22, 26) A noncancer SV was also applied to provide 

context for the concentrations reported here in terms of thresholds widely used in fish 

consumption advisories.(37) For the PBDEs, no cancer SV was applied, since the PBDE 

congeners represented in this study have not been classified as carcinogenic.(4) Limited 

RfDs are available for PBDE congeners, however, the California EPA has published fish 

tissue advisory levels based on noncancer risk.(38)
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Wildlife Risk Estimate—The fish tissue study conducted under the 2008–2009 NRSA 

was designed to assess human health impacts from fish consumption, which is why fillets 

were targeted for analysis. To estimate the possible risk to wildlife that may be consuming 

fish collected in this survey, wildlife values (WVs) for mink, kingfisher, and larger birds (if 

available) that represent thresholds for toxic effects (such as reproductive or development 

success, organismal viability or growth, effect on population dynamics) were used.(50, 51) 

However, these previously reported WVs represent whole-fish tissue concentrations, so a 

conversion factor had to be applied to convert whole-fish tissue WVs to fillet WVs. For total 

PCBs, a conversion factor was averaged from across three references;(28, 52, 53) one 

conversion factor was used for DDT and chlordane;(52) and another was identified for 

PBDEs.(51) All of these conversion factors are listed in Table 2, along with the resulting 

fillet WVs. Dieldrin WVs were not converted from whole body to fillets, since it has been 

reported that dieldrin was present in roughly the same average concentrations in game-fish 

fillets as in whole-body bottom-feeders. No other publications were found that provided 

information comparing whole fish dieldrin to fillet concentrations from the same fish 

species.(54) Since a conversion factor for the wildlife values from fillets to whole fish had to 

be applied, limited inferences can be made for the wildlife results. However, because 

different species can display very different sensitivities to the same chemicals, the results of 

the wildlife risk estimate do provide valuable insight into the relative risks of exposure for 

human, mammalian, and avian species across the different contaminant groups.

Chemical Co-Occurrence—Co-occurrence of the four main chemical groupings was 

examined using a previously described procedure,(55) Samples that exceeded the weighted 

median concentrations for any of the four major contaminant groups (PCBs, PBDEs, total 

chlordane, and total DDT) were identified. Samples that exceeded the respective median 

concentrations were then compared to calculate the percentage of the samples with 

concentrations above the median of any one compound group that occurred: (1) singly; (2) 

with a second contaminant group also above its median; (3) as a combination of any three 

contaminant groups; or 4) with all four compound groups occurring together above their 

median concentrations.

3.0 Results and Discussion

PCBs in Fish Tissue

PCBs were detected in 93.5% of the fish fillet samples, which results in 48% (40 030 river 

km (±2432 km)) of the national sampled population of rivers having fillet tissue 

concentrations that exceed the cancer SV of 12 μg/kg, as shown in Table 3. By comparison, 

nearly 70% of the sampled population of urban rivers had fillet tissue concentrations that 

exceeded the PCB cancer SV. The maximum summed PCB concentration measured in urban 

river samples was 857 μg/kg. Among the three ecoregions, PCB detections dominated in the 

EHIGH, where the mean summed PCB concentration was 47.1 μg/kg. In this ecoregion, 

fillet tissue concentrations exceeded the PCB cancer SV of 12 μg/kg in 54.3% of the 

sampled population of EHIGH rivers. The mean summed PCB concentrations in fillet 

samples from the PLNLOW and WMTS were 30.7 μg/kg and 11.9 μg/kg, respectively. The 

PCB SV exceedances were lower in these two ecoregions. In the PLNLOW, 50.8% of the 
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sampled population of PLNLOW rivers had fillet concentrations that exceeded the 12 μg/kg 

SV. By contrast, 23.6% of the WMTS sampled population of rivers exceeded the cancer SV.

The national, ecoregion, urban river, and nonurban river population percentile estimates for 

the summed PCB concentrations are shown in Figure 2. The national estimate of the median 

summed PCB concentration is 11.3 μg/kg, which is almost the same as the cancer SV of 12 

μg/kg. All of the 75th percentile estimates of fillet concentrations lie between the cancer SV 

(12 μg/kg, which corresponds to the WMTS estimate) and noncancer SV (47 μg/kg, which 

corresponds to the urban river estimate). All of the 90th percentile estimates exceed 47 μg/kg 

except the estimate for the WMTS ecoregion. For the wildlife estimates, fish tissue 

concentrations in 9.3% of the national sampled population exceed the fillet WV for mink, 

whereas fish tissue concentrations in only 1.3% of the sampled population exceeded the 

kingfisher fillet WV. Human SVs for both cancer and noncancer are lower than both PCB 

WV values, and therefore, in general, the human health SVs are protective of wildlife risks 

as well.

The relative abundance of the 21 PCB congeners found in fish fillet tissue from nonurban vs 

urban rivers is shown in SI Figure S-1. All mean PCB congener concentrations are higher in 

samples from urban rivers than from nonurban rivers, but the magnitude of the difference 

varies. Congeners 138 and 153 are the most abundant PCBs in both nonurban and urban 

river fish fillets, which has also been the case in other environmental samples.(16) The 

coplanar PCBs 77, 126, and 169 (indicated by the arrows in SI Figure S-1) are present only 

at low concentrations in fillet tissue from both subpopulations. In this study, 21 PCB 

congeners were quantified out of the full suite of 209 PCB congeners. Since there is 

additional PCB mass in the samples that was not measured for this study, the summed 21 

PCB congeners underestimate the total mass present in the samples. Although this study 

underestimates the total PCB mass, the congeners analyzed include 10 of the 11 congeners 

with the highest frequency of environmental occurrence, as well as three dioxin-like 

congeners.56) Therefore, the results of this study are still applicable to the human health and 

wildlife exposure analysis.

PBDEs in Fish Tissue

Similar to PCBs, the eight congeners of PBDEs are commonly detected in fish tissue 

samples. All of the results presented in Table 3 and SI Figure S-2 indicate higher 

concentrations in urban river samples than in samples from nonurban rivers. In contrast, 

PBDE results among the three ecoregions show (Table 3) no clear distinctions. SI Figure S-3 

shows the relative abundance of individual PBDE congeners in fillet tissue samples from 

nonurban and urban rivers. PBDE concentrations in fish from U.S. rivers are dominated by 

BDE 47, followed by BDEs 100 and 99. Only 0.3% of the national sampled population had 

fillet concentrations that exceeded the 210 μg/kg human health SV for PBDEs (Table 3). The 

higher noncancer SV for PBDEs relative to PCBs and DDT is a reflection of their lower 

relative toxicity, but again, limited RfD values are available for PBDEs. The lower toxicity 

and shorter half-life of PBDEs(57) compared to PCBs(58) could be contributing factors to 

the lower percentage of the national sampled population having fillet tissue concentrations 

that exceed the SV for PBDEs. In contrast to PCBs, the applied PBDE WVs are lower than 
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the human health SVs. Summed PBDE results for the wildlife risk estimation showed that 

fish tissue concentrations in 33.4% of the national sampled population exceed the converted 

fillet WV for kestrels, and for mink, fish tissue concentrations in 14.5% of the national 

sampled population exceeded the WV (Table 3).

OCPs in Fish Tissue

Lower concentrations were observed for the organochlorine pesticides (OCPs) chlordane 

and total DDT relative to the summed PCBs. Even 28 years after U.S. EPA withdrew 

approval for its use for underground termite control around the foundations of homes,(59) 

chlordane was detected in 88.5% of all fish tissue samples and 93.9% of the urban river 

samples (Table 3). Concentrations exceeded the cancer-based human health SV of 67 μg/kg 

(44) in fish fillet samples from less than 1% of the sampled population of rivers. When WVs 

were applied for chlordane, fish tissue concentrations in 36.9% of the national sampled 

population exceeded the kingfisher fillet WV and fish tissue concentrations in 0% of the 

national sampled population exceeded the mink fillet WV (Table 3).

Although banned in 1972 (for most uses) in the U.S.,(6) DDT and its metabolites (total 

DDT) were detected in 100% of the fish samples in this study (Table 3). Concentrations of 

total DDT were found to be elevated in a few samples. However, the mean concentration 

(13.8 μg/kg) is well below the human health cancer-based SV of 69 ug/kg for total DDT, and 

both the percentage of samples and the river length they represent are low (1947 km, ±511 

km, Table 3). Only the 95th percentile estimates for total DDT concentrations from urban 

rivers exceed the cancer-based SV (SI Figure S-4). Additionally, the tissue concentrations 

for 4,4′-DDT (mean 0.75, median 0.18, maximum 36.3 μg/kg) are much lower than total 

DDT, which indicates that new sources of DDT are unlikely. The main contributor to total 

DDT was 4,4′-DDE (mean 10.7, median 4.7 μg/kg). Fish tissue concentrations in 31.5% of 

the national sampled population exceeded the WV for total DDT for kingfishers, and fish 

tissue concentrations in less than 1% of the national sampled population exceeded the WV 

for mink. Like chlordane, the converted total DDT WV for Kingfishers was lower than that 

of minks and the human health cancer SVs listed in Table 3, indicating that these 

organochlorine pesticides may pose more of a risk for avian species.

Analytical results for dieldrin also showed widespread occurrence with a 71% frequency of 

detection, and dieldrin has a relatively lower cancer SV (1.5 μg/kg). Dieldrin concentrations 

in fillet samples exceeded this SV in 31.2% of the sampled population of rivers, including 

41.2% of urban rivers and 40.4% of PLNLOW rivers (Table 3). Other OCPs detected in this 

study included aldrin, alpha-BHC, endrin, lindane, endrin ketone, heptachlor epoxide, 

hexachlorobenzene, and mirex. These other OCPs had detection frequencies of less than 

50%, and none of the fillet concentrations exceeded human health SVs for these compounds.

Subpopulation Differences

Concentrations of mercury in fish tissue from these same samples were previously compared 

across the three ecoregions and between nonurban and urban sites.(34) Those results 

revealed no significant differences across the subpopulations of rivers, however, different 

results were observed for the organo-halogen compounds. Figure 3 compares the weighted 
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mean concentrations of the organo-halogens in fish from urban versus nonurban 

subpopulations and from ecoregions, and the significance of any differences as determined 

using the Z test are listed in SI Table S4. The means for all chemical groups were higher for 

samples from urban rivers than those from nonurban rivers. The means for summed PCBs, 

summed PBDEs, and total DDT were significantly higher for urban river samples, which 

reflects the greater extent of chemical use and release of a variety of contaminants into rivers 

in populated areas where they can bioaccumulate in fish. Higher organochlorine 

concentrations in aquatic environments in urban areas have been documented previously in 

urban bed sediments.(60) Not only could urban sources from chemical manufacturing, 

industrial use of chemicals, and domestic application of pesticides contribute to enhanced 

concentrations in fish tissue from urban waters, but proximity to wastewater treatment plant 

(WWTP) discharges could also be a factor, since WWTPs have been demonstrated to be an 

important point source of PCB and PBDE contamination.(61)

Among the ecoregions, summed PCB concentrations in river fish samples from the EHIGH 

were significantly higher than in samples from both the PLNLOW and WMTS (Figure 3, SI 

Table S4). Summed PCB concentrations in fish from the PLNLOW were also significantly 

higher than those from the WMTS. Although summed PBDE concentrations were 

significantly higher in samples from urban rivers relative to nonurban rivers, there was no 

significant difference in summed PBDE concentrations among ecoregions. Total chlordane 

concentrations were found to be significantly higher in fillet tissue samples from rivers in 

both EHIGH and PLNLOW ecoregions relative to the WMTS ecoregion, but the difference 

in EHIGH and PLNLOW total chlordane concentrations was not significant ((Figure 3, SI 

Table S4). Total DDT concentrations in samples from waters in the PLNLOW were 

significantly higher relative to those from the EHIGH, but unlike total chlordane, the 

difference in total DDT concentrations among the EHIGH, PLNLOW, and WMTS 

ecoregions was not significant.

Differences observed in the chemical concentrations relate to various factors, including their 

historical use and the geographic distribution of these chemical contaminants. Summed PCB 

concentrations are significantly higher in the EHIGH region relative to both other 

ecoregions, which reflects the industrial and urban history of this region where PCBs were 

most predominately used and released into the environment.(60) The ubiquity of PBDEs is 

consistent with its discharge pathway from dust in homes, through wastewater treatment 

systems,(21) and then to rivers. Similarly, the predominance of DDT in fish tissue from the 

PLNLOW ecoregion is consistent with the agricultural character of the middle of the 

country. The lack of a significant difference between the PLNLOW and WMTS total DDT 

results is also consistent with the high agricultural use of some states in the WMTS 

ecoregion. Chlordane, last labeled for use for underground application against termites,(59) 

persists in the EHIGH and PLNLOW regions but not in the WMTS.

Co-Occurring Contaminants

Co-occurrence of these four chemical groups was examined with the procedure outlined by 

Thompson and Boekelheide,(55) in which fish tissue concentrations that exceeded their 

respective median values are used to determine co-occurrence at elevated concentrations. 
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This analysis (Figure 4) revealed that the most common mode of co-occurrence (fish from 

32% of river sites with concentrations above the median for any compound) was for all four 

compound groups to co-occur at concentrations above their respective weighted medians. 

The next highest category of co-occurrence (16%) was for any three compound groups to 

co-occur above their median concentrations. PCBs co-occurred with PBDEs in 11% of 

sampled populations; chlordane with total DDT and PCBs with total DDT each co-occurred 

in 10% of the sampled population above the medians for these compound groups. The rarity 

was for these contaminants to occur singly above the median concentrations as was the case 

for PCBs in 4%, PBDEs and chlordane each in 5%, and total DDT in 7% of samples from 

the sampled population of rivers.

The extent of co-occurrence of these compounds at relatively elevated concentrations 

underscores the exposure risk that is posed by their presence in fish tissue. The U.S. EPA has 

provided approaches to quantify the toxicity of combinations of contaminants based on 

whether the contaminants are known to have similar or dissimilar modes of toxicity.(62) For 

compounds with similar modes of toxicity, the doses are considered additive. For dissimilar 

responses, the risks are considered separately and then combined. Additive risk, however, 

has been poorly defined and infrequently studied, especially for legacy contaminants, such 

as PCBs and OCPs no longer in use, that are perceived to be a diminishing threat. 

Accordingly, the background environmental chemical load and the potential for such 

additive effects should be taken into consideration when new chemicals, including organo-

halogen compounds such as brominated flame retardants or chlorinated antimicrobials, are 

discharged to surface waters.

Nationally representative data on the occurrence of organic contaminants in fillet tissue of 

fish from U.S. rivers indicate that PCBs, PBDEs, chlordane, and DDT are still pervasive. 

PCBs, PBDEs, and total DDT occur at significantly higher concentrations in fish from urban 

rivers; however, the distribution of chemical groups varies more among the ecoregions. Co-

occurrence in fish tissue at concentrations above the medians is typically observed, most 

frequently (32%) with all four of the chemical classes. This indicates that monitoring of fish 

tissue for assessment, fish consumption advisories, and the protection of aquatic life 

continues to be important for both new and legacy organic compounds. Individual organo-

halogen compounds seldom occur alone in fish tissue. Therefore, these analytical results 

should be viewed in the context of co-occurring compounds and assessments of risk to 

human health and aquatic life that reflect the integrated chemical burden in fish. Any new 

organo-halogen compounds introduced to the environment will likely add to the existing 

overall burden of such compounds in fish tissue, since this work has demonstrated that POPs 

concentrations measured in fish potentially consumed by humans and representative avian 

and mammalian species still exceed human health SVs and WVs in many U.S. waters today.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
National map of NRSA 2008–2009 sampling locations (n = 540) within national aquatic 

resource survey ecoregions.
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Figure 2. 
Estimated population percentile distribution for summed PCBs in fish tissue from U.S. river 

sampling sites, nonurban and urban, and by ecoregion. Confidence intervals for each 

percentile, mean, and median are represented by the horizontal dashed lines.
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Figure 3. 
Comparison of weighted mean contaminant concentrations between subgroups in μg/kg (y 
axis).
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Figure 4. 
Co-occurrence of PCBs, PBDEs, chlordane, and DDT above respective median values in 

fish tissue samples from major U.S. Rivers.
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Table 1.

Target analytes with their respective maximum observed method detection limit (MDL) and quantitation limit 

(QL) (μg/kg wet weight), as described in Method Section 2.3

analyte CAS number max MDL max QL

PCB-8 34883–43–7 0.37 1.99

PCB-18 37680–65–2 0.38 1.23

PCB-28 7012–37–5 0.48 1.53

PCB-44 41464–39–5 1.30 4.13

PCB-52 35693–99–3 0.86 2.73

PCB-66 32598–10–0 1.25 3.97

PCB-77 32598–13–3 0.61 1.93

PCB-101 37680–73–2 0.54 1.72

PCB-105 32598–14–4 0.30 0.95

PCB-118 31508–00–6 0.39 1.24

PCB-126 57465–28–8 0.35 1.11

PCB-128 38380–07–03 0.41 1.30

PCB-138 35065–28–2 2.68 8.52

PCB-153 35065–27–1 0.51 1.63

PCB-169 32774–16–6 0.36 1.14

PCB-170 35065–30–6 0.39 1.24

PCB-180 35065–29–3 0.33 1.05

PCB-187 52663–68–0 0.83 2.62

PCB-195 52663–78–2 0.83 2.63

PCB-206 40186–72–9 0.55 1.74

PCB-209 2051–24–3 0.45 1.43

summed PCBs a sum of the above 21 congeners

PBDE-47 5436–43–1 0.37 1.23

PBDE-66 189084–61–5 0.26 0.86

PBDE-99 60348–60–9 0.31 0.99

PBDE-100 189084–64–8 0.52 1.64

PBDE-138 182677–30–1 0.59 1.97

PBDE-153 68631–49–2 0.58 1.93

PBDE-154 207122–16–5 0.55 1.84

PBDE-183 207122–15–4 0.82 2.74

summed PBDE a sum of the above 8 congeners

2,4′-DDD 53–19–0 0.37 1.18

4,4′-DDD 72–54–8 0.28 0.89

4,4′-DDE 72–55–9 0.28 0.91

2,4′-DDT 789–02–6 0.30 0.95

4,4′-DDT 55–29–3 0.32 1.02
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analyte CAS number max MDL max QL

summed DDT a sum of the above 5 DDT compounds

alpha-chlordane (cis-chlordane) 5103–71–9 0.29 0.92

gamma-chlordane (trans-chlordane) 5103–74–2 0.38 1.22

oxychlordane 27304–13–8 0.37 1.18

summed chlordane a sum of the above 3 chlordane compounds

dieldrin 60–57–1 0.93 2.95

aldrin 309–00–2 0.30 0.97

alpha-BHC 319–84–6 0.31 1.04

gamma-BHC (lLindane) 58–89–9 0.23 0.73

endosulfan II 33213–65–9 0.46 1.53

endrin 72–20–8 0.37 1.18

endrin ketone 53494–70–5 0.34 1.08

heptachlor 76–44–8 0.28 0.89

heptachlor epoxide 1024–57–3 0.30 0.95

hexachlorobenzene 118–74–1 0.30 0.95

mirex 2385–85–5 0.37 1.18

cis-nonachlor 5103–73–1 0.29 0.99

trans-nonachlor 39765–80–5 0.29 0.92
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Table 2.

Summary of the Human Health Screening Values (SVs) and Wildlife Values (WV), with All Values Being 

Presented in μg/kg Wet Weight (ppb); and the Applied Fillet to Whole Fish Conversion Factors
a

compound cancer SV noncancer SV mink WV kingfisher WV fillet to whole fish conversion factor

PCBs 12 47 72 242 1.83

PBDEs N/A 210 21
8.7

b 1.50

DDT 69 120 216 12.0 1.66

chlordane 67 1200 573 3.1 1.44

dieldrin 1.5 120 20 360

A
 HH SVs are based on the upper estimates of consuming one 8 oz meal of fish per week. See Methods Section 2.4 for a description of Cancer and 

Non-Cancer SVs, and WV.

B
 Kestril WV instead of Kingfisher, taken from Canadian Environmental Protection Act(38)
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Table 3.

Weighted POPs Fish Tissue Concentration Results by Site Type and Ecoregion, And Percent River km 

Exceeding Human Cancer Screening Values (CSV), Noncancer Screening Values, And Wildlife Values (WV)

PCB summed congeners

statistic national nonurban urban

detects 505/540 sites (93.5%) 343/377 sites (91.0%) 162/163 sites (99.4%)

mean 32.7 ug/kg 26.9 ug/kg 54.2 ug/kg

median 11.3 ug/kg 8.6 ug/kg 23.8 ug/kg

max 857 ug/kg 412 ug/kg 8567 ug/kg

%>CSV (12 ug/kg) 48.0% 42.0% 69.8%

%>non-CSV (47 ug/kg) 16.7% 14.6% 25.7%

%>mink WV (72 ug/kg) 9.3% 8.9% 10.9%

%>KF WV(242 ug/kg) 1.4% 0.7% 3.8%

statistic EHIGH PLNLOW WMTS

sites 189 280 71

mean 47.1 ug/kg 30.7 ug/kg 11.9 ug/kg

median 16.7 ug/kg 12.6 ug/kg 3.8 ug/kg

%>CSV (12 ug/kg) 54.3% 50.8% 23.6%

%>non-CSV (47 ug/kg) 20.2% 18.0% 6.1%

%>mink WV (72 ug/kg) 13.2% 8.5% 4.6%

%>KF WV(242 ug/kg) 3.8% 0.5% 0%

PBDE summed congeners

statistic national nonurban urban

detects 497/540 sites (92.0%) 340/377 sites (90.2%) 157/163 sites (96.3%)

mean 11.6 ug/kg 8.6 ug/kg 22.5 ug/kg

median 4.7 ug/kg 3.6 ug/kg 8.0 ug/kg

maximum 311 ug/kg 151 ug/kg 310 ug/kg

%>non-CSV (210 ug/kg) 0.3% 0% 1.2%

%>mink WV(21 ug/kg) 14.6% 10.6% 29.1%

%>kestral WV(8.7 ug/kg) 33.4% 29.5% 47.8%

statistic EHIGH PLNLOW WMTS

sites 189 280 71

mean 13.6 ug/kg 10.2 ug/kg 13.2 ug/kg

median 6.8 ug/kg 3.5 ug/kg 4.8 ug/kg

%>non-CSV (210 ug/kg) 0% 0.5% 0%

%>mink WV(21 ug/kg) 17.5% 13.3% 13.9%

%>kestral WV(8.7 ug/kg) 42.0% 31.5% 23.8%

total DDT

statistic national nonurban urban

detects 533/540 sites (98.7%) 370/377 sites (98.1%) 163/163 sites (100%)
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PCB summed congeners

statistic national nonurban urban

mean 13.8 ug/kg 12.3 ug/kg 19.0 ug/kg

median 6.3 ug/kg 5.7 ug/kg 9.5 ug/kg

maximum 294 ug/kg 170 ug/kg 294 ug/kg

%>CSV (69 ug/kg) 2.3% 1.6% 5.1%

%>mink WV(216 ug/kg) 0.1% 0% 0.3%

%>KF WV(12 ug/kg) 31.6% 28.3% 43.7%

statistic EHIGH PLNLOW WMTS

samples 189 280 71

mean 8.8 ug/kg 16.0 ug/kg 14.6 ug/kg

median 3.6 ug/kg 7.5 ug/kg 4.5 ug/kg

%>CSV (69 ug/kg) 1.0% 2.7% 3.5%

%>mink WV(216 ug/kg) 0.2% 0.03% 0%

%>KF WV(12 ug/kg) 21.0% 36.9% 31.4%

total chlordane

statistic national nonurban urban

detects 478/540 sites (88.5%) 325/377 sites (86.2%) 153/163 sites (93.9%)

mean 6.3 ug/kg 5.1 ug/kg 10.8 ug/kg

median 2.0 ug/kg 1.6 ug/kg 2.7 ug/kg

maximum 311 ug/kg 87.1 ug/kg 311 ug/kg

%>CSV (67 ug/kg) 0.6% 0.3% 1.6%

%>mink WV(573 ug/kg) 0% 0% 0%

%> KF WV(3.1 ug/kg) 36.9% 34.1 0% 47.2%

statistic EHIGH PLNLOW WMTS

samples 189 280 71

mean 5.7 ug/kg 7.6 ug/kg 2.1 ug/kg

median 2.5 ug/kg 2.2 ug/kg 0.8 ug/kg

%>CSV (67 ug/kg) 1.0% 0.5% 0%

%>mink WV(573 ug/kg) 0% 0% 0%

%> KF WV(3.1 ug/kg) 39.9% 40.9% 14.5%

dieldrin

statistic national nonurban urban

%>CSV (1.5 ug/kg) 31.2% 28.5 41.2%

statistic EHIGH PLNLOW WMTS

%>CSV (1.5 ug/kg) 24.1% 40.4% 7.8%
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