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Abstract

Rationale: Host inflammatory responses have been strongly
associated with adverse outcomes in critically ill patients, but the
biologic underpinnings of such heterogeneous responses have
not been defined.

Objectives:We examined whether respiratory tract microbiome
profiles are associated with host inflammation and clinical outcomes
of acute respiratory failure.

Methods:We collected oral swabs, endotracheal aspirates
(ETAs), and plasma samples from mechanically ventilated
patients. We performed 16S ribosomal RNA gene sequencing to
characterize upper and lower respiratory tract microbiota and
classified patients into host-response subphenotypes on the
basis of clinical variables and plasma biomarkers of innate
immunity and inflammation. We derived diversity metrics and
composition clusters with Dirichlet multinomial models and
examined our data for associations with subphenotypes and
clinical outcomes.

Measurements and Main Results: Oral and ETA microbial
communities from 301 mechanically ventilated subjects had
substantial heterogeneity in a and b diversity. Dirichlet multinomial
models revealed a cluster with low a diversity and enrichment
for pathogens (e.g., high Staphylococcus or Pseudomonadaceae
relative abundance) in 35% of ETA samples, associated with a
hyperinflammatorysubphenotype,worse30-daysurvival, and longer time
to liberation frommechanical ventilation (adjusted P,0.05), compared
withpatientswithhighera diversity and relative abundance of typical oral
microbiota. Patients with evidence of dysbiosis (low a diversity and low
relative abundance of “protective” oral-origin commensal bacteria) in
both oral and ETA samples (17%, combined dysbiosis) had significantly
worse 30-day survival and longer time to liberation frommechanical
ventilation than patients without dysbiosis (55%; adjusted P,0.05).

Conclusions: Respiratory tract dysbiosis may represent an
important, modifiable contributor to patient-level heterogeneity in
systemic inflammatory responses and clinical outcomes.
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The biologic heterogeneity of sepsis and
acute respiratory distress syndrome (ARDS)
has impaired our ability to discover broadly
efficacious therapies (1, 2). To better
understand such biologic heterogeneity,

recent research with unsupervised
classification methods has revealed distinct
patient subgroups (subphenotypes),
defined primarily by differential innate
immune host responses (hyper- vs.
hypoinflammatory), in patients both
with and at risk for ARDS (3–6). Patients
with the hyperinflammatory phenotype
have been reproducibly found to have
higher rates of organ dysfunction,
worse patient-centered outcomes, and
differential treatment responses (3–6).
However, the biologic underpinnings
of these differential host responses
remain unknown.

The respiratory microbiome is
emerging as an important contributor
to host immune function and patient
outcomes, in both acute and chronic
lung diseases (7, 8). In health, the
respiratory microbiome comprises a low
biomass and highly diverse community
of oral-origin bacteria, which have
been reproducibly profiled by culture-
independent sequencing studies (9, 10).
The anatomic and pathophysiologic
changes of the respiratory tract in the
context of disease alter the ecologic
conditions for the resident microbiota,
with measurable changes in bacterial
load, diversity, and composition (7).
In acute respiratory failure, orotracheal
intubation exposes the lower respiratory
tract to increased movement of bacteria
from the oropharyngeal space (owing
to sedation, cough suppression, and
constant opening of the glottis from
the endotracheal tube, among other
factors), whereas the nutrient-rich edema
fluid flooding the injured alveolar
compartment creates an environment
conducive to microbial proliferation
(11, 12). We thus hypothesized that
perturbation of the lung microbiome
of patients with acute respiratory failure
(dysbiosis) is associated with systemic
inflammatory responses and adverse
clinical outcomes.

Given that the available evidence
characterizing respiratory microbiota
in mechanically ventilated patients
is limited to small-scale studies (13–20),
we sought to characterize the upper
and lower respiratory tract microbiome
in a larger cohort of critically ill
mechanically ventilated patients and
examine its relationship with host-
response and patient-centered
outcomes.

Methods

For details, see the METHODS in the online
supplement.

Clinical Cohort and Sample Collection
From March 2015 to December 2018, we
prospectively enrolled a convenience sample
of consecutive adult patients with acute
respiratory failure, who were intubated and
mechanically ventilated in the medical or
cardiac ICU at the University of Pittsburgh
Medical Center. Exclusion criteria included
the inability to obtain informed consent, the
presence of tracheostomy, or mechanical
ventilation for more than 72 hours before
enrollment. The study was approved by the
University of Pittsburgh Institutional
Review Board (protocol PRO10110387),
and written informed consent was provided
by all participants or their surrogates.

Upon enrollment, we collected
noninvasive biospecimens for study of
the upper and lower respiratory tract
microbiota, with a posterior oropharyngeal
swab (oral) and an endotracheal aspirate
(ETA) collection, respectively (16). We also
collected simultaneous blood samples for
centrifugation, separation of plasma, and
quantification of the host inflammatory
response.

Laboratory Analyses
We extracted bacterial DNA directly from
oral swabs and ETAs and amplified the V4
hypervariable region of the bacterial 16S
ribosomal RNA (rRNA) gene for sequencing
on the Illumina MiSeq platform (16).
Simultaneously, we performed quantitative
PCR (qPCR) of the V3–V4 region to obtain
number of 16S rRNA gene copies per
sample (surrogate for bacterial load) (21).
For plasma biomarkers, we constructed a
custom Luminex multianalyte panel
(R&D Systems) targeting prognostic
biomarkers for classification into hyper-
versus hypoinflammatory subphenotypes
(RAGE [receptor of advanced glycation end
products], soluble TNFR1 [tumor necrosis
factor receptor 1], IL-10, fractalkine, and
angiopoietin-2), as previously described (6).

Clinical Classifications
A consensus committee reviewed clinical
and radiographic data and performed
retrospective classifications of the etiology
and severity of acute respiratory failure
without knowledge of microbiome

At a Glance Commentary

Scientific Knowledge on the
Subject: Subphenotypes of host
inflammatory responses are strongly
predictive of mortality in patients with
acute respiratory failure, but their
biologic underpinnings are not defined.
Recent research has implicated the
lung microbiome as a predictor of
outcomes in critically ill patients,
yet it remains unknown whether
lung microbiota account for
hyperinflammatory responses and
related adverse outcomes.

What This Study Adds to the Field:
In a cohort of 301 mechanically
ventilated patients with acute
respiratory failure, 16S rRNA gene
sequencing in upper and lower
respiratory tract specimens revealed
heterogenous bacterial communities in
terms of diversity and composition.
Unsupervised clustering showed that a
third of lower respiratory tract
communities had low a diversity
and enrichment for pathogens
(e.g., Staphylococcus or
Pseudomonadaceae), whereas the
remainder of communities had an
abundance of typical oral microbiota.
Membership in the pathogen-enriched
cluster was independently associated
with the adverse hyperinflammatory
subphenotype, worse survival, and
longer time to liberation from
mechanical ventilation. We also
demonstrate the importance of upper
respiratory tract communities, given
that patients with dysbiosis (low a
diversity and low abundance of
“protective” oral bacteria) in both
upper and lower respiratory tract
communities had significantly worse
outcomes. Our study highlights the
respiratory tract microbiome as an
important, modifiable contributor to
patient-level heterogeneity in systemic
inflammatory responses and to the
evolution of critical illness.
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sequencing or biomarker data. We
retrospectively classified subjects as having
ARDS per established criteria (22), being at
risk for ARDS because of the presence of
direct (pneumonia or aspiration) or
indirect (e.g., extrapulmonary sepsis or
acute pancreatitis) lung-injury risk factors
(23) although lacking ARDS diagnostic
criteria, having acute respiratory failure
without risk factors for ARDS, or having
acute-on-chronic respiratory failure. We
recorded clinical microbiologic results of
respiratory specimens obtained within 48
hours of research-sample acquisition
and considered them as positive when
pathogenic bacterial species were isolated
by the clinical laboratory (semiquantitative
reports). We recorded whether patients had
received antibiotics in the 30 days before
ICU admission and then modeled the
systemic antibiotic exposure in the ICU
(before microbiome sampling) with a
published antibiotic-exposure score that
took into account dosing duration,
timing of administration, and specific

antibiotic type (see Table E1 in the online
supplement) (24). We followed patients
prospectively for cumulative mortality
and ventilator-free days (VFDs) at 30 days,
as well as for time to liberation from
mechanical ventilation and survival up
to 30 days from intubation.

Data Processing and Statistical
Analyses
From derived 16S sequences, we applied a
custom pipeline for Operational Taxonomic
Units classification (see online supplement)
and performed analyses at the genus level
(16, 25). We calculated descriptive statistics
of baseline characteristics and performed
nonparametric comparisons using R
software (version 3.5.1; R Foundation for
Statistical Computing). Biomarker values
were log transformed. With logistic
regression models combining biomarker
(TNFR1, RAGE, fractalkine, IL-10, and
angiopoietin-2) and clinical variables,
patients were assigned to hyper- versus
hypoinflammatory subphenotypes (6).

Ecologic analyses of a diversity (Shannon
index) and b diversity (Manhattan
distances with permutational ANOVA
[Permanova] at 1,000 permutations) were
conducted using the R vegan package and
visualized with principal-coordinates-
analysis plots. To contextualize upper and
lower respiratory microbial profiles from
ICU patients against expected ecologic
metrics of the corresponding microbiome
in health, we used 16S sequencing data
from a previous study that had analyzed
oral washes and BAL and induced sputum
specimens from healthy volunteers (26). To
agnostically examine our samples for
distinct clusters of microbial composition
(“metacommunities”), we applied
unsupervised Dirichlet multinomial models
(DMMs) with Laplace approximations to
define the optimal number of clusters in
our data set (27).

Associations of Microbial Profiles
with Outcomes
We pursued complementary unsupervised
and supervised analyses for examining
associations between upper and lower
respiratory tract microbial profiles and
outcomes. In our main unsupervised
approach, we examined associations
between DMM clusters and outcomes
(host-response subphenotypes, 30-day
survival, and time to liberation from
mechanical ventilation) in regression
and Cox proportional hazard models, as
appropriate (see online supplement).
To delineate contributions of specific
genera driving the associations observed at
the DMM-cluster level, we performed
relative-abundance transformations with
the additive log ratio for the top 10 genera
in each DMM cluster and examined our
data for associations with outcomes, which
were adjusted for covariates and multiple
testing. In our supervised approach, we
examined our data for differences in a and
b diversity, bacterial load, and the relative
abundance of individual genera for clinical
outcome stratifications (i.e., survivors
vs. nonsurvivors and VFD tertiles). In a
final integrative analysis, we developed
a simple index of dysbiosis on the basis
of convergent predictive features identified
in both unsupervised and supervised
approaches, specifically a-diversity and
relative-abundance combinations for
individual genera. Finally, with multivariate
adjusted models, we examined associations
of clinical outcomes with the dysbiosis

Table 1. Baseline Characteristics of Enrolled Patients

Variable All (n= 301)

Age, median (IQR), yr 59.0 (46.6–67.1)
Males, n (%) 156 (51.8)
BMI, median (IQR), kg/m2 29.8 (25.5–36.6)
Diabetes, n (%) 110 (36.5)
COPD, n (%) 76 (25.2)
Immunosuppression, n (%) 68 (22.6)
ARDS, n (%) 72 (23.9)
Pneumonia, n (%) 120 (39.9)
Extrapulmonary sepsis, n (%) 55 (18.3)
Aspiration, n (%) 53 (17.6)
LIPS score, median (IQR) 5.5 (4.0–7.0)
SOFA score, median (IQR)* 6.0 (4.0–9.0)
PaO2

/FIO2
ratio, median (IQR), mm Hg 168.0 (117.0–205.0)

WBC, median (IQR), 3109 cells/L 12.2 (8.9–17.0)
Plateau pressure, median (IQR), cm H2O 20.0 (16.0–25.2)
Positive respiratory cultures†, n (%) 73 (24.3)
Antibiotics before ICU admission, n (%) 97 (32.4)
Antibiotics during ICU admission before sampling, n (%) 254 (84.4)
Systemic steroids, n (%) 110 (38.3)
Hyperinflammatory subphenotype, n (%) 69 (22.9)

Definition of abbreviations: ARDS=acute respiratory distress syndrome; BMI =body mass index;
COPD=chronic obstructive pulmonary disease; IQR= interquartile range; LIPS= lung-injury
prediction score; SOFA=Sequential Organ Failure Assessment; WBC=white blood cell count.
Data are presented as the median (with IQR) for continuous variables and as n (%) for categorical
variables.
*The SOFA score calculation does not include the neurologic component of the SOFA score because
all patients were intubated and receiving sedative medications, impairing our ability to perform
assessment of the Glasgow coma scale in a consistent and reproducible fashion.
†Respiratory specimen cultures were defined as positive when pathogenic bacterial species were
isolated by the clinical laboratory (semiquantitative reports). The denominator includes patients for
whom respiratory specimen cultures were reported as negative (no growth or only normal respiratory
flora detected, n=152) as well as those for whom no cultures were obtained (n=76).
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index in upper, lower, and combined
upper–lower respiratory communities.

Results

Cohort Description
Three hundred one mechanically ventilated
patients (median age, 59 yr; 52% men)
contributed a total of 518 airway samples
(262 oral swabs and 256 ETA samples) for
analysis. Of the 301 subjects, ARDS was
diagnosed in 24%, 84% were receiving
systemic antibiotics at the time of sampling
in the ICU, and 23% were classified into a
hyperinflammatory subphenotype of host
responses associated with worse outcomes
(Table 1) (6). Comparison samples
including 23 oral washes, 19 induced
sputum samples, and 23 BAL samples from
healthy volunteers and a total of 216
procedural control samples were used in
our experimental pipelines.

Upper and Lower Respiratory Tract
Communities Exhibit Substantial
Heterogeneity
Clinical samples from ICU patients had a
much higher number of 16S reads than
procedural control samples (P, 0.001)
(Figure E1). Microbial profiles from both
oral swabs and ETAs exhibited substantial
heterogeneity. The a diversity ranged from
a Shannon index of zero (in collapsed,
effectively monobacterial communities)
to the range of the normal microbiome.
By b-diversity comparisons, individual
samples were distributed over wide spaces
of principal-coordinates-analysis plots,
indicating wide variation in microbial
composition (Figures 1A and 1B and
2A and 2B for ETA samples and oral
swabs, respectively). Compared with
corresponding upper and lower respiratory
tract samples from healthy volunteers,
samples from critically ill subjects had
significantly lower a-diversity (P, 0.001;
Figure E2A) and b-diversity differences
(P, 0.001; Figure E2B). In terms of
bacterial load quantified by qPCR, oral
swabs contained 16S rRNA gene copies at a
median level that was 20-fold higher than
that of the ETA samples (Figure E3), as
expected for the higher bacterial biomass
of the oropharyngeal microbiome. The
ETA-sample bacterial load ranged from being
effectively undetectable in a few samples to
comprising a high biomass in the range of
oral-swab communities. Thus, ecologic

analyses revealed a pattern of respiratory
communities that are widely variable among
critically ill patients and significantly
different from those of healthy individuals.

Respiratory Communities Comprise
Distinct Compositional Clusters
With demonstration of heterogeneous
upper and lower respiratory communities
in terms of bacterial load and a and b
diversity, we sought to identify potential
sources of microbial profile heterogeneity.
First, we found no significant impact by
time of sample acquisition (during our 72-h
sampling period from intubation) on
microbial profiles (Figure E4). Next, we
derived unsupervised clusters of
communities with the DMM approach.
Laplace approximation of model fitting
showed that three clusters offered the
best fit in ETAs and that two clusters
offered the best fit in oral swabs (Figure
E5). In both sample types, we identified
a distinct cluster (cluster 2) with lower
a diversity (P, 0.001) and significantly
different taxonomic composition
(Permanova P, 0.001 for b-diversity
differences) compared with the rest
of cohort (Figures 1A and 1B and 2A
and 2B). By summarizing the relative
abundance for the top 10 genera across
all samples, cluster 2 demonstrated a
high abundance of typical respiratory
pathogenic genera in ETAs (Staphylococcus,
Stenotrophomonas, Enterobacteriaceae, and
Pseudomonadaceae; Figure 1C) and oral
swabs (Staphylococcus; Figure 2C). Clusters
1 and 3 in ETAs and cluster 1 in oral swabs
had a high abundance of typical members
of the respiratory microbiome (i.e., oral-
origin bacteria, such as Streptococcus,
Prevotella, and Veillonella). No significant
differences in bacterial load by qPCR were
observed in ETA clusters, whereas in oral
swabs, cluster 2 had a lower bacterial load
than cluster 1 (P, 0.001).

By baseline clinical characteristics,
patients in ETA cluster 2 had a higher
prevalence of chronic obstructive
pulmonary disease (COPD), more often
received a diagnosis of ARDS and
extrapulmonary sepsis, had a higher
incidence of positive respiratory cultures,
and were more likely to have received
systemic antibiotics before ICU admission
(P, 0.05; Tables 2 and E3). For oral-swab
clusters, patients in cluster 2 were older,
had a higher prevalence of COPD and
history of immunosuppression, and were

also more likely to have received antibiotics
before ICU admission (P, 0.05; Table E2).

Therefore, DMMs uncovered
compositionally and structurally distinct
clusters of respiratory tract communities,
which were significantly associated with key
baseline clinical characteristics of critically
ill patients. We then examined whether
the three unsupervised DMM microbial
community clusters were associated with
clinical outcomes after adjustment for
clinical-variable differences between clusters.

Unsupervised DMM Clusters Are
Associated with Outcomes
Stratification of ETA microbiome profiles
by DMM clusters revealed that patients
belonging to cluster 2 (i.e., the pathogen-
enriched cluster with low a diversity) had
worse 30-day survival as well as longer time
to liberation from mechanical ventilation
than the other two clusters (Figures 3A and
3B and Table E4), effects that remained
significant after adjustment for age,
COPD, ARDS, extrapulmonary sepsis,
antibiotics before ICU admission, and
ICU antibiotic-exposure score. Similarly,
oral-community cluster 2 membership
was associated with worse 30-day survival
and liberation outcomes, adjusted for
age, COPD, immunosuppression, and
antibiotic exposures (Figures 3C and 3D).
Furthermore, patients belonging to cluster
2 in both the ETA and oral communities
had worse outcomes than all other patient
groups combined (Figures 3E and 3F).
Inclusion of bacterial load by qPCR as a
variable in these time-to-event models did
not impact the observed effect sizes or
statistical significance of DMM clusters.

We then examined our data for
associations between the unsupervised
DMM clusters with the host-response
subphenotypes defined by plasma
biomarker levels and clinical variables.
Cluster 2 membership in ETA samples
was significantly associated with
classification in the prognostically adverse
hyperinflammatory subphenotype (odds
ratio, 1.2 [95% confidence interval, 1.1–1.9];
P= 0.03, adjusted for age, COPD, and
antibiotic exposures) (Table E5), but no
significant association of cluster 2
membership was found for oral swabs only
or in combined ETA and oral-swab
analysis.

Overall, DMM clustering revealed
significant associations with important
patient-centered outcomes and host-
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response subphenotypes. We subsequently
sought to identify the specific genera
accounting for the observed associations.

Relative Abundance of Specific
Genera Is Associated with Outcome
Despite the within-cluster structural and
compositional similarity in terms of a and
b diversity (Figures 1 and 2), each cluster
included samples with important
taxonomic dissimilarities. For example,
cluster 2 included samples that were

dominated by Staphylococcus genera but
also included samples dominated by
Pseudomonadaceae genera (Figures E6 and
E7). We focused on the top 10 genera in
each cluster for ETA samples or oral swabs
and examined whether relative abundances
(additive log ratio–transformed) of these
common genera were associated with
host-response subphenotypes or clinical
outcomes.

In ETA samples, we examined a
total of 18 unique genera and detected

a dichotomous pattern of associations.
A high relative abundance of typical
pathogenic bacteria (i.e., Staphylococcus,
Pseudomonadaceae, and Enterobacteriaceae)
was associated with higher odds of
classification into the hyperinflammatory
subphenotype and fewer VFDs in
the case of Staphylococcus relative
abundance (adjusted P, 0.05; Figure 4A).
Conversely, high relative abundance of
typical members of the healthy lung
microbiome (Prevotella_7, Streptococcus, or
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Figure 1. Dirichlet-multinomial-model clustering of endotracheal aspirate communities reveals a distinct cluster marked by pathogen abundance and low
a diversity. (A) The a-diversity comparisons between clusters showed that cluster 2 had the lowest Shannon index, followed by cluster 1. (B) Principal
coordinates analyses for b-diversity comparisons (Manhattan distances) with Permanova for all samples included and stratified by clusters. (C) Summary
of the relative abundance for the top 10 genera in each cluster, visualized as bubble plots. The diameter of each circle corresponds to the mean relative
abundance of each genus across all samples in the cluster. Streptococcus was the most abundant genus in cluster 1, and cluster 2 had high abundance
for typical respiratory pathogens (shown in variations of red), such as Staphylococcus, Pseudomonadaceae, and Stenotrophomonas, whereas cluster 3
had high abundance of Prevotella_7, Veillonella, and Streptococcus genera. Genera beyond the top 10 genera demonstrated in these bubble plots were
summarized to their overall relative abundance as a single bubble in gray and annotated as “Others.” Permanova=permutational ANOVA.
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Haemophilus genera) had protective
associations with lower mortality risk or
more VFDs. In oral swabs, among 14
unique genera, we detected primarily
protective associations of typical oral-origin
bacteria (e.g., Prevotella_7, Streptococcus,
Veillonella, Rothia, Granulicatella, and
others), which were robust to multiple
testing adjustments (Figure 4B). A similar
pattern of results was seen for analyses
restricted to samples without positive
respiratory cultures (Figure E8). These
genus-level analyses revealed that the
significant associations of DMM cluster
2 with adverse clinical outcomes was
accounted for by high relative abundance of
specific pathogenic genera or, conversely,

by low relative abundance of protective
oral-origin bacteria.

Supervised Analyses Reveal a
Diversity and Relative Abundance of
Specific Genera as Predictors of
Outcome
Independent of the unsupervised DMM
clustering approach, we sought to identify
predictive features of the microbial profiles
with supervised stratifications of observed
clinical outcomes. We stratified our patient
cohort on the basis of our two primary
outcomes (30-d mortality [survivors vs.
nonsurvivors] and VFD tertiles) and
examined our data for microbial community
differences in terms of a diversity, bacterial

load, b diversity, and the relative
abundance of individual genera.
Nonsurvivors exhibited lower a diversity
(P, 0.05) and significant differences in b
diversity (Permanova P, 0.001) in ETA
samples, with enrichment for pathogenic
genera in nonsurvivors and for Prevotella_7
in survivors (Figure E9). Similarly, higher
relative abundance of Streptococcus was
associated with more VFDs (Figure E10).
Oral-swab analyses revealed an association
between enrichment with protective genera
and favorable outcomes (Figures E11 and
E12). Thus, supervised analyses by observed
clinical outcomes uncovered two main
predictive features of the respiratory tract
microbiome: a diversity and relative
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Figure 2. Dirichlet-multinomial-model clustering of oral-swab communities reveals a distinct cluster marked by pathogen abundance and low a diversity.
(A) The a-diversity comparisons between clusters showed that cluster 2 had a significantly lower Shannon index. (B) Principal coordinates analyses for
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abundance of pathogenic versus oral-origin
bacteria.

A Simple Dysbiosis Index in Upper
and Lower Respiratory Communities
Is Predictive of Outcome
With supervised and unsupervised methods
converging on the same two predictive
features (a diversity and relative abundance
of specific bacteria), we sought to develop
a simple predictive index from these
features. We aimed to define “normal” or
“nondysbiotic” communities as those with
high a diversity and relative abundance of
protective oral-origin bacteria. With
receiver operating characteristic curves for
the mortality outcome (Figure E13), we
derived optimal thresholds of protective-
bacteria relative abundance (>30% for
ETAs and >70% for oral swabs). From the
a-diversity distribution in DMM clusters
(Figures 1A and 2A), we identified that a
Shannon threshold of >1.98 distinguished
the prognostically favorable clusters 3 (in
ETAs) and 1 (in oral swabs) from the rest
of the cohort. We then broadly defined
communities with dysbiosis as those not
meeting the “protective” Shannon index
and relative-abundance thresholds. The so-
called dysbiosis index in ETA samples was

significantly associated with the
hyperinflammatory subphenotype
(adjusted odds ratio, 1.2 [1.1–1.3];
P= 0.008) as well as with worse survival and
ventilation-liberation outcomes (Figure 5).

Discussion

In a large cohort of mechanically ventilated
patients with acute respiratory failure, we
demonstrate that respiratory tract dysbiosis
is associated with systemic inflammatory
responses and adverse clinical outcomes.
Using culture-independent 16S rRNA gene
sequencing in noninvasive samples from
critically ill patients, we identified
heterogeneous upper and lower respiratory
tract communities in terms of bacterial load,
a diversity, and composition. Respiratory
community profiles from ICU patients not
only systematically deviated from the
representative communities of the healthy
respiratory microbiome, but they also
varied substantially among ICU patients.
With an agnostic classification approach,
we first identified clusters of respiratory
communities that captured diversity and
compositional differences and then
discovered significant associations between

cluster membership and outcomes.
Importantly, DMMs revealed a cluster in
lower respiratory tract communities with
low a diversity and enrichment for
pathogenic bacteria, which was then
independently associated with a
hyperinflammatory subphenotype of host
responses and worse clinical outcomes.
Microbe–outcome associations were
apparent at the individual-genus level of
relative abundance, with opposing effects
between typical respiratory pathogens and
oral-origin bacteria. Supervised analyses
based on observed outcomes corroborated
the predictive features of the unsupervised
cluster analyses.

Our findings highlight the respiratory
microbiome as a previously understudied
but potentially important contributor to
patient-level heterogeneity in critical illness.
Subphenotyping efforts for ARDS and sepsis
by modeling clinical variables and blood
biomarkers have identified subsets
of patients with differential treatment
responses and outcomes (6, 28, 29). Such
associations have stimulated efforts to
determine the biologic determinants of
accentuated host inflammation (30). Our
unsupervised clustering approach focused
on the microbiome, by modeling the

Table 2. Baseline Characteristics by Dirichlet-Multinomial-Model Clusters for Endotracheal Aspirates

Variable Cluster 1 (n= 90) Cluster 2 (n= 78) Cluster 3 (n= 62) P Value

Age, median (IQR), yr 59.1 (49.8–67.7) 60.4 (47.6–68.4) 56.5 (42.3–65.4) 0.3
Males, n (%) 44 (48.9) 43 (55.1) 36 (58.1) 0.5
BMI, median (IQR), kg/m2 29.7 (25.2–36.2) 27.8 (24.5–34.5) 30.9 (26.3–36.6) 0.2
Diabetes, n (%) 35 (38.9) 29 (37.2) 17 (27.4) 0.31
COPD, n (%) 25 (27.8) 27 (34.6) 7 (11.3) 0.01
Immunosuppression, n (%) 25 (27.8) 17 (21.8) 9 (14.5) 0.15
ARDS, n (%) 12 (13.3) 24 (30.8) 11 (17.7) 0.02
Pneumonia, n (%) 30 (33.3) 34 (43.6) 22 (35.5) 0.37
Sepsis, n (%) 10 (11.1) 22 (28.2) 12 (19.4) 0.02
Aspiration, n (%) 16 (17.8) 10 (12.8) 15 (24.2) 0.22
LIPS score, median (IQR) 5.0 (3.5–6.5) 5.5 (4.0–7.0) 5.5 (4.0–6.5) 0.22
SOFA score, median (IQR)* 6.0 (4.0–8.0) 6.0 (5.0–9.0) 6.0 (4.0–8.0) 0.24
PaO2

/FIO2
ratio, median (IQR), mm Hg 176.5 (137.0–207.2) 158.0 (112.2–225.0) 165.0 (118.5–205.0) 0.44

WBC, median (IQR), 3109/L 11.3 (7.7–15.8) 11.8 (8.7–17.4) 12.8 (9.2–17.7) 0.26
Plateau pressure, median (IQR), cm H2O 19.0 (15.0–24.0) 20.0 (17.0–27.0) 20.0 (16.0–27.0) 0.28
Positive respiratory cultures, n (%) 20 (22.2) 28 (35.9) 10 (16.1) 0.02
Bacteremia, n (%) 7 (8.0) 13 (17.0) 5 (8.0) 0.12
Systemic antibiotics before ICU admission, n (%) 21 (23.3) 42 (53.8) 18 (29.0) <0.01
Antibiotics during ICU admission before sampling, n (%) 73 (81.1) 72 (90.0) 54 (85.7) 0.26
Systemic steroids, n (%) 41 (46.6) 28 (40.6) 13 (21.7) 0.01
Hyperinflammatory subphenotype, n (%) 16 (17.8) 23 (29.5) 13 (21.0) 0.18

For definition of abbreviations, see Table 1.
Data are presented as the median (with IQR) for continuous variables and as n (%) for categorical variables. P values for comparisons between clusters were obtained by
using theWilcoxon test for continuous variables and by using the Fisher’s exact test for categorical variables. Statistically significant P values (P,0.05) are shown in bold.
*The SOFA score calculation does not include the neurologic component of the SOFA score because all patients were intubated and receiving sedative
medications, impairing our ability to perform assessment of the Glasgow coma scale in a consistent and reproducible fashion.
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compositional heterogeneity of respiratory
communities. For lung communities, we
discovered a significant association between
the pathogen-enriched cluster 2 and the
adverse hyperinflammatory subphenotype
(6). No significant association was found
for the corresponding cluster 2 in oral
communities. This site specificity of
detectable host–microbiome associations
suggests that in patients with acute
respiratory failure, the lower respiratory
tract may represent the active site of innate
immune activation and inflammatory
response to microbiota. However, the
small effect size of the observed association
of lung clusters with the
hyperinflammatory subphenotype also
points to multiple other sources of

interindividual variability in inflammatory
responses, unaccounted for by the
study of respiratory bacteria (e.g.,
gut microbiota–host interactions,
immunomodulatory medication effects,
host genetic variation, etc.).

Our cross-sectional study design
did not allow for establishing the
directionality of the effects in the study of
host–microbiome interactions, and it is
possible that an inflammatory milieu
in the alveolar space leads to secondary
proliferation of pathogenic bacteria (12,
31, 32). Nonetheless, a causal role for
respiratory pathogens stimulating host-
response biomarkers (such as plasma
TNFR1) is supported by temporality
and biologic plausibility. With early

(within 72 h of intubation) study of
host–pathogen interactions in a cohort
enriched for patients with direct lung-
injury risk factors (pneumonia or
aspiration), respiratory bacteria likely
represent a proximal and primary insult.
For example, the pathogenic genera
associated with the hyperinflammatory
subphenotype in our cohort (including
Staphylococcus, Pseudomonadaceae, and
Enterobacteriaceae) are known to potently
stimulate Toll-like receptor signaling and
systemic TNF-a levels (33).

Our analysis of patients without known
cultivable pathogens in their respiratory
tracts (i.e., excluding culture-positive
patients) provided important insights.
Routine microbiologic cultures have
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Figure 3. Patients with respiratory tract profiles belonging to the pathogen-enriched cluster 2 have worse 30-day survival and longer time to liberation
from mechanical ventilation. (A and B) Kaplan-Meier curves for 30-day survival and time to liberation stratified by Dirichlet-multinomial-model (DMM)
clusters for endotracheal aspirates (ETAs). P values were derived from the log-rank test, and hazard ratios (HRs) with corresponding 95% confidence
intervals were derived from the Cox proportional hazard model adjusted for age, history of chronic obstructive pulmonary disease (COPD), diagnosis of
acute respiratory distress syndrome, extrapulmonary sepsis, antibiotic administration before ICU admission, and antibiotic-exposure score in the ICU
before sampling. (C and D) Kaplan-Meier curves for 30-day survival stratified by DMM clusters for oral swabs. HRs were adjusted for age, history of COPD,
immunosuppression, antibiotic administration before ICU admission, and antibiotic-exposure score. (E and F) Kaplan-Meier curves for 30-day survival
stratified by DMM clusters for ETA and oral-swab samples stratified in four categories: 1) both ETA and oral samples belonging to cluster 2 (n=50), 2)
cluster 2 in oral samples only (n=34), 3) cluster 2 in ETA samples only (n=13), and 4) neither oral nor ETA samples belonging to cluster 2 (n=100). HRs
were adjusted for age, history of COPD, diagnosis of acute respiratory distress syndrome, extrapulmonary sepsis, antibiotic administration before ICU
admission, and antibiotic-exposure score.
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well-known limitations in detecting
plausible respiratory pathogens in clinical
samples (34), owing to high rates of
antecedent antibiotics before ICU
admission, among other reasons. DNA-
based analyses cannot distinguish between
viable or nonviable bacteria. Regardless of
viability, pathogenic bacteria in the airways
can present a variety of pathogen-
associated molecular patterns in innate
immune cells, such as LPS, flagellin,

peptidoglycans, or nucleic acids, which can
propagate the inflammatory cascade even in
the absence of ongoing microbial
proliferation (35). Although sensing of
microbial viability through prokaryotic
mRNA recognition (vita–pathogen-
associated molecular pattern) is considered
a key regulatory mechanism of innate
immunity (36), the robust genus–outcome
associations we observed even in
subjects without viable respiratory

pathogens in clinical biospecimens
warrant further investigation to understand
the mechanisms of host–microbiome
interactions. Beyond mechanistic insights,
identification of respiratory pathogen
abundance by sequencing in culture-
negative cases can offer critical
diagnostic information for antibiotic
decision-making and stewardship
(16, 37, 38), if available within clinically
actionable time frames.
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Figure 4. The relative abundance of individual genera is associated with clinical outcomes and host-response subphenotypes. (A) Endotracheal aspirate
(ETA) genera. We examined data for associations between additive log ratio–transformed relative abundance for the top 10 genera in each cluster (total of
18 unique genera), which are shown on the y-axis with three outcome variables: hyperinflammatory subphenotype, 30-day mortality (logistic regression
models), and ventilator-free days (VFDs; linear regression model). Models were adjusted for age, chronic obstructive pulmonary disease, and antibiotic
exposures. In each column, the direction of the effect size of the coefficient and the statistical significance for each genus–outcome association are visually
represented by color coding (with protective effects shown in blue and adverse effects shown in red) and the size of each circle, respectively. Typical
pathogenic genera in ETA samples (Staphylococcus, Pseudomonadaceae, and Enterobacteriaceae) were associated with higher odds of having the
hyperinflammatory subphenotype classification and fewer VFDs in the case of Staphylococcus genera, whereas typical members of the normal lung
microbiome (e.g., Prevotella_7 and Streptococcus) were associated with improved outcomes. (B) Oral-swab genera. Among the 14 unique genera
examined in oral swabs, a high relative abundance of typical members of the normal lung microbiome (e.g., Prevotella_7, Streptococcus, Veillonella,
Rothia, etc.) was associated with improved outcomes (mainly more VFDs). Associations that remained significant after adjustment for multiple
testing with the Benjamini-Hochberg method are highlighted with asterisks (*adjusted P,0.05). In the case of Pseudomonadaceae_unclassified,
Enterobacteriaceae_unclassified, and Pasterellaceae_unclassified, classification to specific genera within these families was not accomplished, and we
thus used family-level descriptors for these genera.

ORIGINAL ARTICLE

1674 American Journal of Respiratory and Critical Care Medicine Volume 202 Number 12 | December 15 2020



Our unsupervised clustering approach
with DMMs captured important
interindividual variability and revealed
major patterns of metacommunities in the
respiratory tract. Previous studies in ICU
patients have shown associations of
nonspecific, global ecologic metrics
(a diversity or bacterial load) or crude
microbial composition at the phyla level
with clinical variables or outcomes (13–19).
More recently, higher bacterial load as
well as enrichment for gut-associated
bacteria (e.g., Lachnospiraceae and
Enterobacteriaceae taxa) in mini-BAL
samples were associated with fewer VFDs
in a cohort of 91 mechanically ventilated
patients (20). The larger sample size and
the granular clinical data in our cohort
allowed for robust cluster derivation and
replicable associations with outcomes and

host-response subphenotypes. The
discovered lung and oral microbiota
clusters were clinically meaningful and
captured a range of a-diversity and
microbial composition profiles. We
established independent associations with
outcomes for cluster 2 in both oral and
lung communities, characterized by low
a diversity and high relative abundance of
typical pathogenic bacteria. Conversely,
the clusters with high a diversity and
composed of typical oral-origin bacteria
represented symbiotic respiratory
communities (9, 26). In a series of analyses,
we showed that the DMM cluster effects
could be traced to the relative abundance of
individual genera in a dichotomous fashion:
we detected hazardous associations for
pathogenic bacteria and protective
associations for oral-origin bacteria. Thus,

although clustering approaches are not
generalizable and transferrable in other
cohorts, they offered us important insights
into the ecology of respiratory microbiota
in critical illness and key predictive features
of microbial profiles.

On the basis of these predictive features
of a diversity and relative abundance of
specific genera, we developed a simple
taxonomic index for detecting dysbiosis
in respiratory communities. With the
goal of generalizability in other patient
populations, we recognize that dysbiotic
communities can differ substantially from
one another (e.g., because of dominance
from different pathogenic bacteria in each
case), whereas symbiotic communities are
expected to be more similar to one another,
characterized by high a diversity and
typical oral-origin bacterial composition.
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Figure 5. Patients with upper and lower respiratory tract dysbiosis have worse 30-day survival and longer time to liberation from mechanical ventilation.
(A and B) Kaplan-Meier curves for 30-day survival and time to liberation stratified by the dysbiosis index (Shannon index>1.98 and protective-bacteria
relative abundance>30%) for endotracheal aspirates (ETAs). P values were derived from the log-rank test, and hazard ratios (HRs) with corresponding
95% confidence intervals were derived from the Cox proportional hazard model adjusted for age, history of chronic obstructive pulmonary disease
(COPD), diagnosis of acute respiratory distress syndrome, extrapulmonary sepsis, antibiotic administration before ICU admission, and antibiotic-exposure
score in the ICU before sampling. (C and D) Kaplan-Meier curves for 30-day survival stratified by the dysbiosis index (Shannon index>1.98 and
protective-bacteria relative abundance>70%) for oral swabs. HRs were adjusted for age, history of COPD, immunosuppression, antibiotic administration
before ICU admission, and antibiotic-exposure score. (E and F) Kaplan-Meier curves for 30-day survival for ETA and oral-swab samples stratified in four
categories: 1) both ETA and oral samples with dysbiosis (n=34), 2) oral-swab samples with dysbiosis only (n=28), 3) ETA samples with dysbiosis only
(n=28), and 4) neither oral nor ETA samples with dysbiosis (n=110). HRs were adjusted for age, history of COPD, diagnosis of acute respiratory distress
syndrome, extrapulmonary sepsis, antibiotic administration before ICU admission, and antibiotic-exposure score.
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We derived a simple dysbiosis index
(defined as deviation from normal a
diversity or oral-origin bacterial composition)
and demonstrated significant associations
with outcomes independent of clinical
confounders. However, this index has not
been independently validated, and different
a-diversity or relative-abundance thresholds
may offer better discrimination in other
cohorts, experimental platforms, and analytic
pipelines. Consequently, the dysbiosis index
should be considered only as proof of
concept for the ability of microbiome
profiling to offer clinically relevant prediction
and insights into host–microbiota
interactions in critical illness.

Our study has limitations. It is a single-
center study, and the generalizability of our
findings in critically ill populations beyond
our tertiary care ICU requires external
validation. Internal cross-validation testing
of clustering showed robust classifications.
Our study is also limited by the available
sample size. Despite being the largest study
of next-generation sequencing in acute
respiratory failure, results from analyses for
patient subgroups and specific bacteria
require cautious interpretation, as the
effective sample size for such analyses is
small. We were also only able to conduct
cross-sectional analyses and thus cannot

draw inferences about the longitudinal
evolution of microbial communities and
host outcomes, which should be studied in
larger patient cohorts. Our results were also
exclusively based on 16S rRNA gene
sequencing, and, consequently, we could not
reach species-level resolution or analyze
viability and virulence factors. For lung-
microbiota analyses, we only used ETA
(and not BAL) samples, and we thus
could not assess for regional variability of
communities or study host–microbiome
interactions directly in the alveolar space.
We used noninvasive ETA samples for
practical and ethical purposes (minimal risk
exposure to participants), as well as because
of evidence from clinical practice guidelines
(39) and comparative studies (40)
supporting the reliability of noninvasive
samples. In addition, comparisons of
microbial profiles from ICU patients with
those from healthy control subjects should
be considered exploratory, given that
different types of samples were used
for examination of upper and lower
respiratory tract microbiota, which may
provide systematically different profiles.
However, the relevant finding from
these comparisons remains the profound
interpatient heterogeneity in microbial
profiles revealed for critically ill patients.

In summary, our study underlines the
role of respiratory tract dysbiosis in acute
respiratory failure, linking sequencing-
based microbiologic composition clusters
and individual bacterial abundance with
patient-level differences in systemic
inflammation and outcomes. Our
unsupervised clustering approach for
respiratory microbial communities offers a
new framework to model and understand
biologic heterogeneity in critical illness,
beyond isolated approaches on host
responses or limited views of microbiota by
culture-based techniques. Further study of
the respiratory microbiome with culture-
independent approaches will help delineate
host–microbiome interactions in the
intubated respiratory tract and define
new therapeutic approaches for acute
respiratory failure. n
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et al. Rectal swabs from critically ill patients provide discordant
representations of the gut microbiome compared to stool samples.
mSphere 2019;4:e00358-19.

26. Morris A, Beck JM, Schloss PD, Campbell TB, Crothers K, Curtis JL,
et al.; Lung HIV Microbiome Project. Comparison of the respiratory
microbiome in healthy nonsmokers and smokers. Am J Respir Crit
Care Med 2013;187:1067–1075.

27. Holmes I, Harris K, Quince C. Dirichlet multinomial mixtures:
generative models for microbial metagenomics. PLoS One 2012;7:
e30126.

28. Shankar-Hari M, Fan E, Ferguson ND. Acute respiratory distress
syndrome (ARDS) phenotyping. Intensive Care Med 2019;45:
516–519.

29. Seymour CW, Kennedy JN, Wang S, Chang CH, Elliott CF, Xu Z, et al.
Derivation, validation, and potential treatment implications of novel
clinical phenotypes for sepsis. JAMA 2019;321:2003–2017.

30. Bos LDJ, Scicluna BP, Ong DSY, Cremer O, van der Poll T, Schultz MJ.
Understanding heterogeneity in biologic phenotypes of acute
respiratory distress syndrome by leukocyte expression profiles.
Am J Respir Crit Care Med 2019;200:42–50.

31. Poroyko V, Meng F, Meliton A, Afonyushkin T, Ulanov A, Semenyuk E,
et al. Alterations of lung microbiota in a mouse model of LPS-
induced lung injury. Am J Physiol Lung Cell Mol Physiol 2015;309:
L76–L83.

32. Dickson RP, Erb-Downward JR, Prescott HC, Martinez FJ, Curtis JL,
Lama VN, et al. Intraalveolar catecholamines and the human lung
microbiome. Am J Respir Crit Care Med 2015;192:257–259.

33. Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol
2005;17:1–14.

34. Kitsios GD. Translating lung microbiome profiles into the next-
generation diagnostic gold standard for pneumonia: a clinical
investigator’s perspective. mSystems 2018;3:e00153-17.

35. Vance RE, Isberg RR, Portnoy DA. Patterns of pathogenesis:
discrimination of pathogenic and nonpathogenic microbes by the
innate immune system. Cell Host Microbe 2009;6:10–21.

36. Sander LE, Davis MJ, Boekschoten MV, Amsen D, Dascher CC, Ryffel
B, et al. Detection of prokaryotic mRNA signifies microbial viability
and promotes immunity. Nature 2011;474:385–389.

37. Langelier C, Kalantar KL, Moazed F, Wilson MR, Crawford ED, Deiss T,
et al. Integrating host response and unbiased microbe detection for
lower respiratory tract infection diagnosis in critically ill adults. Proc
Natl Acad Sci U S A 2018;115:E12353–E12362.

38. Yang L, Haidar G, Zia H, Nettles R, Qin S, Wang X, et al. Metagenomic
identification of severe pneumonia pathogens in mechanically-
ventilated patients: a feasibility and clinical validity study. Respir Res
2019;20:265.

39. Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer
LB, et al. Management of adults with hospital-acquired and
ventilator-associated pneumonia: 2016 clinical practice guidelines
by the infectious diseases society of America and the American
thoracic society. Clin Infect Dis 2016;63:e61–e111.

40. Kalantar KL, Moazed F, Christenson SC, Wilson J, Deiss T, Belzer A,
et al. Metagenomic comparison of tracheal aspirate and mini-
bronchial alveolar lavage for assessment of respiratory microbiota.
Am J Physiol Lung Cell Mol Physiol 2019;316:L578–L584.

ORIGINAL ARTICLE

Kitsios, Yang, Yang, et al.: Dysbiosis in Mechanically Ventilated Patients 1677


	link2external
	link2external
	link2external

