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Yan-Mei Chen1,†, Yuanting Zheng1,†, Ying Yu1,†, Yunzhi Wang1,†, Qingxia Huang1,†, Feng Qian1,†,

Lei Sun1,†, Zhi-Gang Song1, Ziyin Chen1, Jinwen Feng1, Yanpeng An1, Jingcheng Yang1, Zhenqiang Su1,

Shanyue Sun1, Fahui Dai1, Qinsheng Chen1, Qinwei Lu1, Pengcheng Li1, Yun Ling1, Zhong Yang1,

Huiru Tang1, Leming Shi1, Li Jin1, Edward C Holmes2, Chen Ding1,*, Tong-Yu Zhu1,** &

Yong-Zhen Zhang1,***

Abstract

COVID-19 is characterized by dysregulated immune responses,
metabolic dysfunction and adverse effects on the function of
multiple organs. To understand host responses to COVID-19
pathophysiology, we combined transcriptomics, proteomics,
and metabolomics to identify molecular markers in peripheral
blood and plasma samples of 66 COVID-19-infected patients
experiencing a range of disease severities and 17 healthy
controls. A large number of expressed genes, proteins, metabo-
lites, and extracellular RNAs (exRNAs) exhibit strong associa-
tions with various clinical parameters. Multiple sets of tissue-
specific proteins and exRNAs varied significantly in both mild
and severe patients suggesting a potential impact on tissue
function. Chronic activation of neutrophils, IFN-I signaling, and
a high level of inflammatory cytokines were observed in
patients with severe disease progression. In contrast, COVID-
19-infected patients experiencing milder disease symptoms
showed robust T-cell responses. Finally, we identified genes,
proteins, and exRNAs as potential biomarkers that might assist
in predicting the prognosis of SARS-CoV-2 infection. These data
refine our understanding of the pathophysiology and clinical
progress of COVID-19.
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Introduction

Coronaviruses (family Coronaviridae) are a diverse group of positive-

sense single-stranded RNA viruses with enveloped virions (Masters &

Perlman, 2013; Cui et al, 2019). Coronaviruses are well known due to

the emergence of Severe Acute Respiratory Syndrome (SARS) in

2002–2003 and Middle East Respiratory Syndrome (MERS) in 2012,

both of which caused thousands of cases in multiple countries (Ksi-

azek et al, 2003; Bermingham et al, 2012; Cui et al, 2019). Coron-

aviruses naturally infect a broad range of vertebrate hosts including

mammals and birds (Cui et al, 2019). As coronavirus primarily target

epithelial cells, they are generally associated with gastrointestinal and

respiratory infections (Masters & Perlman, 2013; Cui et al, 2019). In

addition, they cause hepatic and neurological diseases of varying

severity (Masters & Perlman, 2013).

The world is currently experiencing a disease pandemic (COVID-

19) caused by a newly identified coronavirus called SARS-CoV-2

(Wu et al, 2020a). At the time of writing, there have been more than

~25 million cases of SARS-CoV-2 and ~830,000 deaths globally

(WHO, 2020). The disease leads to both mild and severe respiratory

manifestations, with the latter prominent in the elderly and those

with underlying medical conditions such as cardiovascular and

chronic respiratory disease, diabetes, and cancer (Guan et al, 2020).

In addition to respiratory syndrome, mild gastrointestinal and/or

cardiovascular symptoms and neurological manifestations have

been documented in hospitalized COVID-19-infected patients (Gupta

et al, 2020; Mao et al, 2020). These data point to the complexity of

COVID-19 pathogenesis, especially in patients experiencing severe

disease.

SARS-CoV-2 is able to use angiotensin-converting enzyme 2

(ACE 2) as a receptor for cell entry (Hoffmann et al, 2020; Zheng

et al, 2020a; Zhou et al, 2020b). Aside from lungs, ACE2 is
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expressed in other organs including heart, liver, kidney, pancreas,

and small intestines (Li et al, 2020; Liu et al, 2020; Zou et al, 2020;

Chen et al, 2020a). More recently, ACE2 expression has also been

found in Leydig cells in the testes (Li et al, 2020; Wang & Xu, 2020)

and neurological tissue (Baig et al, 2020; Bullen et al, 2020; Xu &

Lazartigues, 2020). As such, it is possible that these organs might

also be infected by SARS-CoV-2, and recent autopsy studies have

also revealed multi-organ damage including heart, liver, intestine,

pancreas, brain, kidney, and spleen in fatal COVID-19-infected

patients (Lax et al, 2020; Menter et al, 2020; Varga et al, 2020;

Wichmann et al, 2020; Wang et al, 2020c). The host immune

response to SARS-CoV-2 may also impact pathogenicity, resulting in

severe tissue damage and, occasionally, death (Tay et al, 2020).

Indeed, several studies have reported lymphopenia, exhausted

lymphocytes, and cytokine storms in COVID-19-infected patients,

especially those with severe symptoms (Blanco-Melo et al, 2020;

Cao, 2020; Chua et al, 2020; Liao et al, 2020). Numerous clinical

studies have also observed the elevation of lactate dehydrogenase

(LDH), IL-6, troponin I, inflammatory markers, and D-dimer in

COVID-19-infected patients (Zhou et al, 2020a; Wang et al, 2020b).

However, despite the enormous burden of morbidity and mortality

due to COVID-19, we know little about its pathophysiology, even

though this establishes the basis for successful clinical practice,

vaccine development, and drug discovery.

Using a multi-omics approach employing cutting-edge transcrip-

tomic, proteomic, and metabolomic technologies, we identified

significant molecular alterations in patients with COVID-19

compared with uninfected controls in this study. Our results refine

the molecular view of COVID-19 pathophysiology associated with

disease progression and clinical outcome.

Results

Patient cohort and clinical characteristics

We studied 66 clinically diagnosed and laboratory confirmed

COVID-19-infected patients hospitalized at the Shanghai Public

Health Clinical Center, Shanghai, China, between January 31 and

April 7, 2020 (Fig 1A, Datasets EV1 and EV2). At the time of writ-

ing, 55 (49 mild and 6 severe) of the 66 patients have recovered and

been discharged following treatment, while five patients (1 mild and

4 severe) remain in the hospital and are receiving ongoing treat-

ment. Unfortunately, six patients (all severe) died.

Molecular variation associated with COVID-19 pathophysiology

Serial blood and throat swab samples were collected from all

patients, as well as from 17 healthy volunteers. To determine

whether COVID-19 pathophysiology was associated with particular

molecular changes, a total of 23,373 expressed genes, 9,439

proteins, 327 metabolites, and 769 exRNAs were examined using a

multi-omics approach combining transcriptomics, proteomics, and

metabolomics (Fig 1B). Compared with healthy controls, mild and

severe patients had significantly different expression patterns

(higher or lower) in 6.79 and 26.0% of expressed genes, 52.1 and

51.7% of proteins, 7.34 and 15.6% of metabolites, and 39.9 and

20.5% of exRNAs, respectively (Fig 1C, Datasets EV3–EV6).

Significant differences in the principal component 1 (PC1), PC2,

and/or PC3 between healthy controls, mild, and severe COVID-19-

infected patients were observed in multi-omics data (Figs 2A and

EV1), suggesting that the molecular changes identified are likely to

reflect the severity of COVID-19-infected patients.

Remarkably, there were significant correlations between multi-

omics data and classical blood and biochemical parameters

(Fig 2B). This was best reflected in the proteomic analysis (Fig 3)

where there was a significant downregulation in the tricarboxylic

acid cycle (TCA) and glycolytic pathways in both mild and severe

patients compared with healthy controls (Figs 3A and EV2A).

However, the hypoxia-inducible factors (HIF-1) signaling pathways

and well-known host defense pathways (e.g., T-cell receptor signal-

ing pathway, ISG15 antiviral signaling pathway) were elevated in

these patients (Figs 3A and EV2A). Additionally, we applied

weighted gene co-expression network analysis (WGCNA) to sepa-

rate the proteomic profiles into 33 co-expression modules (ME0-

ME32) (Fig 3B). Among these, six modules showed significant

correlation with clinical parameters (Fig 3B). Module 1, comprising

12 proteins, was strongly associated with activated partial thrombo-

plastin time (APTT), with their downregulated expression likely

indicating higher APTT values (Fig 3C). In contrast, levels of plasma

IL-6 and IL-10 in patients were positively correlated with the expres-

sion of proteins in Module 15 (Fig 3D). Notably, correlations

between the proteins in these modules were also identified, suggest-

ing that proteins may interact in defining clinical outcome

(Fig EV2B and C). In addition to proteins, lipoprotein variation was

also significantly correlated with immune changes including IgG,

monocytes, and procalcitonin (Fig 2B). Combined, these data

suggest the association between specific molecular variations and

the pathophysiological changes in COVID-19-infected patients.

Tissue damage caused by SARS-CoV-2

Recent data suggests that SARS-CoV-2 infection is associated with

multi-tissue injury and organ damage (Gupta et al, 2020; Zheng

et al, 2020a; Wu et al, 2020b). Compared with healthy controls,

alteration of tissue-enhanced proteins (see Methods) was observed

in COVID-19-infected patients, suggesting that COVID-19 has a

potential impact on multiple organs including the lung, liver, brain,

testis, and intestine (Figs 4A and 5C). Notably, the majority of

tissue-enhanced proteins related to fundamental functions of the

tissue in question (identified by GO analysis) were significantly

downregulated in COVID-19-infected patients (Fig 4B). As expected,

lung-enhanced proteins varied significantly in the plasma of both

mild and severe patients. The activation of the HIF-1 signaling path-

way and reactive oxygen species metabolic processes was seen in

all patients (Fig 4D). Liver- and brain-enhanced proteins also varied

significantly, followed by those from the testis, intestine, and other

organs (Fig 4A). Meanwhile, we have also observed a significant

decline of brain-enhanced proteins regulating neurotransmitter

synthesis (GLS, OGDH, DLD, etc.), neurotransmitter transport

(GLUL, GLUD2, GLUD1), and the numbers of neurotransmitter

receptors (HTRA3, GRIK3, and GRIA3), as well as a significant

decrease in proteins including ENO1, MBP, and NEFM (Fig 4C and

F). Liver-enhanced proteins, that regulate the transportation of

sterol and cholesterol, were downregulated, while those involved in

acute inflammatory response were elevated in both mild and severe
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Figure 1. Study design and patient cohort.

A Schematic summary of the study design and patient cohort. Both blood and throat swabs were collected in different timepoint (1 to 5). Not all samples were
analyzed in all omics approach due to different requirements of sample quality and amounts for different approach. The sample numbers for each omics data set
were shown, and specific sampling time for each sample in each data set was listed in Dataset EV1.

B The number of expressed genes and detected proteins, metabolites, exRNAs, and clinical parameters in high-quality patient samples.
C Summary of differentially expressed genes, proteins, metabolites, and exRNAs between uninfected controls and COVID-19-infected patients (mild and severe) in the

multi-omics data. Y-axis showed the proportion of upregulated/downregulated genes, proteins, metabolites, and exRNAs in those that were detected in total.
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patients (Fig 4E). Testis-enhanced proteins involved in the cell cycle

and cell proliferation were upregulated in all male patients, although

proteins (e.g. YBX2) associated with reproduction were significantly

downregulated. Heart-specific proteins related to cardiac muscle

contraction and oxidative reduction were reduced in COVID-19-

infected patients (Fig 5C).

We also looked at the relative proportion of different cell popula-

tions and the expression of tissue injury-related exRNAs. We identi-

fied 16 cell types based on proteomes whose abundance changed

significantly following virus infection (Fig 5A and B). For example,

the set of proteins expressed by alveolar type 1/2 epithelial cells

(AT1 and AT2) were significantly downregulated in all patients

(Fig 5B). In addition, the majority of tissue injury-related exRNAs

across all tissues showed differential expression, including lung (55

in 92 pre-identified, P < 0.0001), kidney (14 in 22, P < 0.0001), liver

(17 in 22, P < 0.0001), brain (8 in 16, P = 0.0016), and heart (5 in 6,

P < 0.0001) (Fig EV3C). Finally, variation in some tissue-enhanced

proteins and tissue injury-related exRNAs was also associated with

COVID-19 severity. For example, brain-enhanced proteins enriched

in tubulin accumulation were upregulated in mild disease patients.

However, proteins significantly upregulated in severe patients were

enriched in liver steatosis AOP and in multi-drug resistance factors

(Fig EV3A and B). A large proportion of tissue injury-related exRNAs

were expressed differently in mild and severe patients in most

tissues analyzed (30/92 in lung, 10/22 in kidney, 8/22 in liver, and

3/6 in heart), except brain (1/16) (Fig EV3C). Together, these data

suggest that COVID-19 potentially impacts multiple organs.

Immunopathological changes in COVID-19-infected patients

Immune responses can cause severe damage to the cells or tissues

that defend hosts against viral infection (Newton et al, 2016; Baseler

et al, 2017; Cicchese et al, 2018; Chua et al, 2020; Gupta et al, 2020;

Tay et al, 2020). Analysis of whole blood transcriptomic data

revealed that gene sets, including an antiviral IFN signature (M75

module), were enriched at the first sampling timepoint (Fig 6A,

Dataset EV7). Notably, IFN signaling was continuously activated in

severe patients during the entire period of hospitalization (Fig 6A),

while negative regulators of innate immune signaling (e.g. TRIM59,

USP21, and NLRC3) were downregulated (Fig EV4A). Additionally,

clinical data showed significant increases of IL-6, IL-8, and IL-10

levels in severe patients compared with mild patients (Figs 2F and

EV4B). Combined, these data suggest that the continuous activation

of IFN-I signaling and a high level of inflammatory cytokines likely

impact COVID-19 immunopathology.

Higher neutrophil counts were observed clinically in severe

patients but not in mild patients during hospitalization (Fig EV4C).

Examination of the neutrophil transcriptomic signatures revealed

that excessive neutrophil activation was associated with severe

rather than mild disease, consistent with results of recently

published studies (Chua et al, 2020; Zhang et al, 2020). These mark-

ers involved those utilized in neutrophil chemotaxis, activation, and

migration (Fig EV4D). Notably, genes encoding molecules associ-

ated with neutrophil extracellular traps (NETs) were significantly

upregulated in severe disease patients (Fig 6B). As excess NETs

formation can lead to tissue damage (Kruger et al, 2015), our data

imply that the excessive activation of neutrophils may contribute to

COVID-19 pathogenesis.

As in the case of influenza viruses that can be cleared by strong

T-cell responses (van de Sandt et al, 2014; Wang et al, 2015), SARS-

CoV-2 immunity in mild patients was characterized by a robust T-cell

response, reflected in T-cell signaling activation (M7.3 module, M35.1

module) and T-cell differentiation (M19 module) on admission,

followed by subsequent rapid reduction (Fig 6A). However, a negative

T-cell signaling was continuously observed in severe patients along

time. In agreement with transcriptomic data, clinical data showed that

severe patients lost ~59.1% of their total T-cell population (CD3,

severe versus mild: 383.38 versus 937.24 cells per ml), 62.3% of their

CD4 T cells (208.63 versus 554.08 cells per ml), and 52.8% of their

CD8 T cells (162.81 versus 344.96 cells per ml). Importantly, the CD4

T cells in the severe-survivor groups maintained certain level of T-cell

activation, while those in the severe-fatality group did not (Fig EV4E).

Additionally, T cells in the survivors were primed by dendritic cells

and expressed high levels of IFNG and GZMB (Fig 6C) as other studies

reported (Braun et al, 2020; Sekine et al, 2020). T-cell dysfunction was

observed in the severe group, which could in part be due to an inhibi-

tory status based on the expression levels of multiple exhaustion mark-

ers (Fig EV4F). Strikingly, the severe disease group had a greater

abundance of ARG1 (Fig EV4G). Finally, the mild group had higher

TCR diversity than the severe group (Fig EV4H). In sum, our data

suggest that the T-cell response is indispensable to successful host

defense against SARS-CoV-2.

Finally, we investigated the immune signatures associated with

poor COVID-19 prognosis. Notably, KEGG functional analysis

revealed that gene sets of the “IL-17 signaling pathway” were

significantly enriched in the severe-fatal group. Further analysis of

the signature components revealed that p38 MAPK activation was

dominant in fatal cases, while higher levels of IL13 and IFNG

were present in survivors (Fig 6D). These gene signatures might

contribute to greater neutrophil influx (CXCL2 and CXCL6) and

inflammation (S100A8), and could be detrimental in the severe

disease group (Fig 6E).

Comprehensive changes in lipoprotein metabolism in COVID-19-
infected patients

To reveal metabolic changes in COVID-19-infected patients, we

quantified 348 metabolite parameters in small metabolites,

◀ Figure 2. Molecular characteristics of COVID-19-infected patients.

A Scores of principal components 1 (PC1) of each sample from the transcriptome (control, n = 14; mild, n = 179; severe, n = 37), proteome (control, n = 12; mild,
n = 80; severe, n = 57), metabolome (control, n = 12; mild, n = 42; severe, n = 20), and exRNA-seq (control, n = 14; mild, n = 179; severe, n = 37) principal
component analyses. Differences between groups were estimated using Kruskal–Wallis test. The horizontal box lines in the boxplots represent the first quartile, the
median, and the third quartile. Whiskers denote the range of points within the first quartile � 1.5 × the interquartile range and the third quartile + 1.5 × the
interquartile range.

B Circos plots showing the significant correlations between clinical parameters and the multi-omics data.
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lipoprotein subclasses, and their compositional components. The

PCA scores plot revealed an obvious metabolomic trajectory from

mild to severe COVID-19, and gradually away from healthy controls

(Fig 7A). Such group-clustering patterns were independently con-

firmed by PCA scores plots from all NMR-detectable metabolite

signals, all MS-detectable signals for lipids, and hydrophilic mole-

cules in plasma samples (Figs EV5A–D). Our data therefore indicate

that a concentration of changes in plasma metabolites is associated

with COVID-19 severity.

Further statistical analyses highlighted the major changes in

the levels of lipoprotein subclasses and their compositional

components including LDL1 (L1TG), LDL4, VLDL5, HDL1, and

HDL4 (Figs 7C and EV5E). Compared with healthy controls, the

level of triglycerides (TG) in LDL1 and free cholesterol (FC) in all

VLDL5 lipids were significantly elevated in both mild and severe

patients, while there were significant decreases in LDL4 and

LDL5, cholesterol in LDL, cholesterol esters in VLDL5, Apo-A2 in

both HDL and nascent HDL, FC in HDL1 together with total

cholesterol and phospholipids (PL). Interestingly, HDL4 and its

components had significant lower levels in severe patients.

Compared with mild patients, L1TG and PL in HDL1 were

increased in severe patients, while cholesterol in HDL1, HDL2,

HDL4, and its components decreased (Fig EV5F). Fortunately,

most of these lipoproteins recovered following patients discharge

(Figs 7Band C, and EV5D).

The levels of some key proteins involved in lipoprotein metabo-

lism, including the soluble low-density lipoprotein receptor

(sLDLR), lecithin-cholesterol acyltransferase (LCAT), and the

cholesteryl ester transfer protein (CETP), were significantly reduced

in mild and severe COVID-19-infected patients than those in healthy

controls (Fig 7D and E). Additionally, enzymes such as ACO2, IDH,

OGDH, DLD, SDH, and MDH in the TCA cycle were lower in

COVID-19-infected patients compared with healthy controls, while

the enzymes central to fatty acid synthesis (Acetyl coenzyme A

carboxylase [ACAC] and Fatty acid synthetase [FASN]) were

elevated. Finally, significant concurrent elevations in plasma lactate

and LDH were observable in patients compared with healthy

controls (Figs 7E and EV5G and H). In sum, these data reveal the

dysregulation in lipoprotein metabolism, glycolysis, and TCA cycle

during SARS-CoV-2 infection.

Viral load is associated with disease prognosis of severe COVID-
19-infected patients

The severity and clinical outcome of COVID-19 were also associated

with viral load. Overall, SARS-CoV-2 RNA loads on admission were

significantly higher in the throat swabs of the five fatal cases

compared with those who survived (mean, 1.26 × 105 versus

3.98 × 103 copies/ml, respectively; P = 0.04) (Fig 8A and Dataset

EV8). Although viral load declined during the period of hospitaliza-

tion in both survival and fatal cases, it remained elevated in fatal

cases compared with survivors.

Estimation of the correlation coefficient between viral load and

protein expression revealed that proteins participating in antiviral

processes, including the TCR and BCR signaling pathway, were

positively associated with viral load changes in severe survivors.

Additionally, proteins participating in viral life cycle processes,

including viral messenger RNA synthesis and innate immune

responses, were only positively associated with viral load changes

in the severe-fatal group (Fig 8E). Notably, proteins (e.g., FASN,

ACSS2, CPT1A, HADHB) involved in pathways including mito-

chondrial function, lipid metabolic process, steroid hormone

process, and TCA cycle were continuously upregulated in the

severe-survivor compared with the severe-fatal group (Fig 8B and

C). However, this upregulation was only observed during the early

stage following admission in the severe-fatal group. Surprisingly,

proteins related to viral life cycle, viral RNA synthesis, and oxida-

tive stress (e.g., EIF, EIFB, RPL19, SLCA24) were downregulated

in the several-survivor cases following admission, but maintained

high levels in the severe-fatal patients (Fig 8B and D). Hence,

SARS-CoV-2 may exploit host resources over the duration of its

infection.

Biomarkers predictive of clinical outcomes of
COVID-19-infected patients

As many molecules associated with COVID-19 pathophysiology

were identified, we investigated whether particular molecular

changes could be used as biomarkers to predict clinical outcomes.

Using an unsupervised PCA, the exRNA, mRNA, proteomics and the

corresponding clinical covariate data sets across all timepoints, or a

◀ Figure 3. Protein variation associated with COVID-19 pathophysiology.

A Different expression of proteins in samples collected at the first timepoint. The heatmap (left panel) indicated expression patterns of proteins overrepresented (fold
change > 2) in healthy control (1,656 proteins), mild (1,547 proteins), and severe (2,362 proteins) patient groups. The top categories enriched for clusters are shown.
Values for each protein in each sample (columns) are color-coded based on expression levels: low (blue) and high (red) z-scored FOT. The line plots (middle panel)
indicated selected gene sets with up-up (upregulation in both mild and severe patients compared with healthy controls) or up-down or down-down regulation trend
during disease progression. The bar plot (right panel) indicated Gene Ontology annotations with up-up or up-down or down-downregulation trend during disease
progression (Fisher’s exact test, P < 0.05).

B The Weighted Gene Co-Expression Network Analysis (WGCNA) of 31 COVID-19 samples shows modules that are highly correlated with clinical features (left heatmap).
Among the 33 modules (ME0-ME32), six of them showed significant correlation with clinical parameters (asterisk in the heatmap). Gene Ontology (GO) enrichment
analysis were performed on these six modules, and the enriched pathways were presented on the right panel (Fisher’s exact test, P < 0.05).

C Boxplots showing differences of the APTT time (left) and ME1-enriched protein expressions (right) between mild (n = 13) and severe (n = 18) COVID-19-infected
patients. Differences between groups were estimated using Mann–Whitney–Wilcoxon test. *P < 0.05, **P < 0.01, ***P < 0.001. The horizontal box lines in the
boxplots represent the first quartile, the median, and the third quartile. Whiskers denote the range of points within the first quartile � 1.5 × the interquartile range
and the third quartile + 1.5 × the interquartile range.

D Boxplots showing differences of IL-6 level, IL-10 level (left), and ME15-enriched protein expressions (right) between mild (n = 13) and severe (n = 18) COVID-19-
infected patients. Differences between groups were estimated using Mann–Whitney–Wilcoxon test. *P < 0.05, **P < 0.01, ***P < 0.001. The horizontal box lines in
the boxplots represent the first quartile, the median, and the third quartile. Whiskers denote the range of points within the first quartile � 1.5 × the interquartile
range and the third quartile + 1.5 × the interquartile range.
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subset from the first timepoint, clustered into three clinical pheno-

types: (i) samples from healthy controls; (ii) samples from COVID-

19-infected patients with a good prognosis; and (iii) samples from

COVID-19-infected patients with a poor prognosis (Methods;

Fig 9A). Given this, prognostic classification models were

constructed. Predictive models based on all four types of data
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Figure 4. Variation of tissue-enhanced proteins in COVID-19-infected patients.

A Rose plots indicating the number of all detected and differently expressed tissues-enhanced proteins in mild (left) and severe patients (right) compared with healthy
controls. Tissues labeled in orange represented tissues with the largest proportions (100% of all detected tissue-enhanced proteins) of altered tissues-enhanced proteins.

B Heatmap indicating expression patterns of proteins related to organ function among control, mild, and severe patient groups. Values for each protein in three groups
(rows) are color-coded based on expression levels: low (green) and high (red) z-scored FOT.

C Systematic summary of brain-enhanced expressed proteins and signaling cascades significantly altered in COVID-19-infected patients (neurotransmitters transport,
synthesis). Values for each protein at all analyzed samples (columns) are color-coded based on the expression levels: low (green) and high (red) z-scored FOT.

D Network summarizing lung-enhanced expressed proteins and signaling cascades significantly altered in COVID-19-infected patients (HIF-1a signaling pathway).
E Network summarizing liver-enhanced expressed proteins and signaling cascades significantly altered in COVID-19-infected patients (Lipid metabolism).
F Boxplots indicating the expression level of known brain dysfunctional biomarkers in control (n = 12), mild (n = 13), and severe (n = 18) patients. Differences between

groups were estimated using Kruskal–Wallis test. The horizontal box lines in the boxplots represent the first quartile, the median, and the third quartile. Whiskers
denote the range of points within the first quartile � 1.5 × the interquartile range and the third quartile + 1.5 × the interquartile range.
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worked well, especially those utilizing the clinical covariates and

the proteomic data (Fig EV6), suggesting that all four types of data

collected at admission contain key prognostic information.

In addition, we identified robust predictive models and prognos-

tic biomarkers from each of the four types of data using a previously

described approach (Shi et al, 2010) (Fig 9B and C). One or two
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features (expressed genes, proteins, exRNAs, and biochemical

parameters) in each data set were able to clearly separate patients

into two groups characterized by different prognoses (Fig 9D–I).

Poor prognosis was associated with increased levels of D-dimer

(P = 0.004) and fibrinogen degradation products (FDP; P = 0.02),

and with a decrease in F13A1 expression (P < 0.002; Fig 9H and

I), suggesting that blood clotting status may be one of the key

factors to monitor in COVID-19 progression. For the mRNA-based

model, poor prognosis was associated with lower levels of CD3E

and higher levels of OLAH, and hence highly concordant with

immune responses in COVID-19-infected patients (Fig 9E). Addi-

tionally, exRNA-based predictors included members of the let-7

family (Fig 9D and E). Finally, the protein-based models high-

lighted features enriched in extracellular exosomes, lipoprotein

metabolic processes, innate immune responses, and blood coagula-

tion (Fig 9G and H).

Discussion

The COVID-19 pandemic has had a profound impact on a global

scale (WHO, 2020). Despite the enormous burden or morbidity and

mortality due to COVID-19, we know little about its pathophysiol-

ogy, even though this establishes the basis for successful clinical

practice, vaccine development, and drug discovery. Current clinical

practice may be unable to provide a precision supportive therapy

when a novel disease like COVID-19 emerges, in part explaining the

high case fatality rates often observed at the beginning of outbreaks

(Alonso et al, 2019). We used a multi-omics approach to identify

numerous expressed genes, proteins, metabolites, and exRNAs from

COVID-19-infected patients with a range of disease severities and

that were significantly correlated with key clinical features as well

as to classic blood and biochemical parameters (Fig 2). These data

therefore provide a comprehensive molecular view of the patho-

physiology of COVID-19. Finally, based on our multi-omics data

(Appendix Fig S1), mild and severe COVID-19 cases may need dif-

ferent therapeutic strategies.

COVID-19 severity and clinical outcome were significantly associ-

ated with multi-organ damage. Due to the widespread presence of

ACE2 in humans (preprint: Chai et al, 2020; preprint: Chen et al,

2020c; Hamming et al, 2004; preprint: Fan et al, 2020; Zou et al,

2020), SARS-CoV-2 is able to infect many organs (Puelles et al, 2020;

Tay et al, 2020; Wadman et al, 2020). In addition to pneumonia (Wu

et al, 2020a; Zhou et al, 2020b), several clinical studies have reported

mild gastrointestinal, cardiovascular symptoms, and neurological

manifestations in hospitalized COVID-19-infected patients (Baig, 2020;

Chen et al, 2020b; Guan et al, 2020; Mao et al, 2020; Xu et al, 2020).

Histopathologic investigation and autopsies have also documented

damage in other organs in addition to the lung (Barton et al, 2020;

Fox et al, 2020; Lax et al, 2020; Menter et al, 2020; Su et al, 2020;

Wadman et al, 2020; Wang et al, 2020d). The molecular data

generated here not only supported the occurrence of damage in

multiple organs including the lung, liver, heart, intestine, and

pancreas in COVID-19-infected patients as reported previously (Cai

et al, 2020; Varga et al, 2020; Zheng et al, 2020b; Wang et al,

2020c), but also highlighted the impact of SARS-CoV-2 infection on

less studied organs such as the brain and testis (Puelles et al,

2020; Yang et al, 2020). In the case of brain and testis, a key issue

is how SARS-CoV-2 is able to cross the blood–brain or the blood–

testis barriers? One possibility might be that heparin was prescribed

for coaggregation problems commonly observed in some COVID-19,

even though it increases permeability (Gautam et al, 2001; Oschatz

et al, 2011; Lin et al, 2020). It was also recently reported that

SARS-CoV-2 could enter the nervous system via trespassing the

neuromucosal interface in the olfactory mucosa by exploiting the

close vicinity of olfactory mucosal and nervous tissue (preprint:

Meinhardt et al, 2020). More importantly, the alteration (upregu-

lated or downregulated) of tissue-enhanced proteins and tissue

damage-related exRNAs are significantly correlated with clinical

severity and outcome.

SARS-CoV-2 infection results in acute lung injury (ALI) in

patients, with ground-glass opacity in most computed tomography

(CT) reports from our facility and in other hospitals (Zhu et al,

2020; Chen et al, 2020b; Zhou et al, 2020b). Autopsy disclosed

histologic changes in lungs included edema, fibrinous/proteina-

ceous exudates, hyperplastic pneumocytes, patchy inflammation,

multinucleated giant cells, and diffuse alveolar damage (Barton

et al, 2020; Tian et al, 2020). The data generated here revealed that

the number of AT1 and AT2 cells reduced significantly in severe

patients, suggesting destruction of the alveolar epithelium (Fig 5A),

which in turn will lead to the accumulation alveolar fluid and hence

cause hypoxia (Vad�asz & Sznajder, 2017). In addition, we noted that

HIF1a signaling was modified which may further worsen ALI (Dada

et al, 2003). Thus, our molecular data suggest that removal of

excess alveolar fluid and the restoration of alveolar structure will be

of major clinical importance.

Our data also identified immune pathophysiology a factor that

greatly impacted COVID-19 clinical outcome. The innate immune

response against viruses begins immediately after a host acquires a

viral infection, whereas there is a delay before the onset of adaptive

immunity (Murphy & Weaver, 2016). Unlike SARS-CoV and influ-

enza virus, SARS-CoV-2 may be present in patients for longer time

periods, especially those with severe syndrome (Du et al, 2020;

Wang et al, 2020a). Several studies have reported that severe

◀ Figure 5. Patterns of tissue damage associated with COVID-19.

A Bar plots showing the X-Cell scores of specific cell types across control, mild, and severe COVID-19-infected patients.
B Boxplot showing the selected cell type specific proteins among control (n = 12), mild (n = 13), and severe (n = 18) COVID-19-infected patients. Differences between

groups were estimated using Kruskal–Wallis test. The horizontal box lines in the boxplots represent the first quartile, the median, and the third quartile. Whiskers
denote the range of points within the first quartile � 1.5 × the interquartile range and the third quartile + 1.5 × the interquartile range.

C Systematic summary of the GO pathways enriched by tissue-enhanced proteins that exhibited altered expression among control, mild, and severe patient groups. The
heatmap of each panel indicates expression patterns of tissues-enhanced proteins among control, mild, and severe patient groups. The top panel on the heatmap
indicated the age and gender information of patients. The fold changes of tissue-enhanced proteins between mild/severe patient samples and control samples are
shown on the right panel of heatmap.
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COVID-19-infected patients experience lymphopenia, impaired adap-

tive immunity, uncontrolled inflammatory innate responses, and

cytokine storms (Guan et al, 2020; Huang et al, 2020; Qin et al,

2020; Tan et al, 2020; Wang et al, 2020b). While it is believed that T

cells play an important role in fighting the infection in the case of

Ebola virus, influenza virus, SARS-CoV (Zhao et al, 2010; Sridhar

et al, 2013; Channappanavar et al, 2014; van de Sandt et al, 2014;

Ruibal et al, 2016), and also in SARS-CoV-2 (Braun et al, 2020;
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Figure 6. Differences in immune responses among COVID-19-infected patients.

A Transcriptional profiles reflect the dynamic immune response in COVID-19. GSEA (FDR < 0.25; 1,000 permutations) was used to identify positive (red), negative (blue),
or no (white) enrichment of BTMs (gene sets). The graph shows the normalized enrichment score (NES) of each selected BTM in the different timepoints (T1, T2, and
T3) for patients with mild or severe COVID-19 illness, in comparison with healthy controls. The timepoints 1, 2, 4 or 1, 3, 5 were used as T1, T2, and T3 for patients
with four or five sampling timepoints, respectively.

B Expression levels of NETs’ markers for individual transcripts in severe (n = 37) versus mild (n = 179) comparisons. Data were represented as means � SEM, and
differences between groups were estimated using Student’s t-test. *P < 0.05; **P < 0.01; ***P < 0.001.

C Heatmap of IFNG, GZMB, and PRF1 gene expression in COVID-19-infected patients. Average expression values were centered and scaled. Red indicates a higher
expression, and blue indicates a lower expression.

D Heatmap of the expression of genes enriched in IL-17 signaling pathway between healthy control and COVID-19-infected patients. Average expression values were
centered and scaled. Red indicates a higher expression and blue indicates a lower expression.

E T-cell and innate immune response elucidate immunopathology of COVID-19.

ª 2020 The Authors The EMBO Journal 39: e105896 | 2020 11 of 23

Yan-Mei Chen et al The EMBO Journal



Sekine et al, 2020; Zhou et al, 2020c; Wang et al, 2020e), more data

are needed to confirmed the function of T-cell response in SARS-

CoV-2-infected individuals.

Our longitudinal analyses provided evidence that patients with

mild or severe symptoms who succeeded in T-cell mobilization

promptly controlled SARS-CoV-2 infection and symptoms (Figs 2C

and 6A and C). In contrast, those (especially severe-fatal) patients

that failed to mount a sound T-cell response maintained a continu-

ous pro-inflammatory response and suffered from cytokine storms

as well as excess NETs (Figs 6A and B), both of which are known to

cause systematic tissue damages (Akiyama et al, 2019; Bohmwald

et al, 2019). In sum, our data indicate that T cells play a key role in

controlling SARS-CoV-2 infection.

It is believed that p38 signaling, collagenase (MMP9), neutrophil

chemo-attractants (CXCL2 and CXCL6) and S100A8 are autoin-

flammation-like signatures (Mattos et al, 2002; Halayko & Ghavami,

2009; Chung, 2011; Cheng et al, 2019). Remarkably, these molecules

were significantly upregulated in severe-fatal in comparison with

mild and severe-survival patients (Fig 6D), the former of which also

exhibited a persistent elevation of type I interferon responses
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(Fig 6A). Together, the data generated here indicate that autoin-

flammation may amplify disease in very severe cases of COVID-19.

While a lack of controls from other respiratory pathogens might be

a limitation of this study to determine whether these findings are

unique to COVID-19, it has been reported recently that SARS-CoV-2

infection has differences of tropism, replication, and innate immune

response with other respiratory pathogens. SARS-CoV-2 was found

to replicate better than SARS-CoV, but not as well as the 2009

pandemic influenza H1N1 virus in bronchial epithelium (Hui et al,

2020). In addition, SARS-CoV-2 has a less potent induced effect on

pro-inflammatory cytokines compared with H5N1, H1N1, and

MERS-CoV (Hui et al, 2020). Examination of lungs from patients

who died from COVID-19 and H1N1 infection found that vascular

angiogenesis was able to distinguish the pulmonary pathobiology of

these two infections. Moreover, significant differences of CD4 T cell,

CD8 T cell, and neutrophil counts, as well as the expression of

inflammation-related genes, were observed between patients with

COVID-19 and those with influenza (Ackermann et al, 2020). Based

on these findings, we suggest that at least some of the changes we

observed between mild and severe COVID-19-infected patients are

likely to be specific to COVID-19. Clearly, the pathology and patho-

physiology of SARS-CoV-2 and its differences to other respiratory

pathogens merits additional study.

Patients will receive better and more precise therapy if we are

able to identify molecular biomarkers associated with prognosis at

the beginning of disease presentation. For example, a 21-gene

expression assay, which can predict clinical outcome, is used in the

case of breast cancer (Sparano et al, 2018). To date, however,

almost no biomarkers have been used to accurately predict progno-

sis in the case of emerging infectious diseases (Wynants et al,

2020). In this study, some of molecules identified at the beginning

phase of COVID-19 were significantly correlated to both classical

blood and biochemical parameters, and more importantly to disease

severity. Based on our previous work (Shi et al, 2010; Su et al,

2014a; Zhang et al, 2015), we established classification models

based on each of four data types: exRNAs, mRNA, proteins, and

biochemical parameters. Notably, COVID-19 clinical outcomes could

be accurately predicted using just one or two biomarkers in each

data type. In addition, these biomarkers may have biological func-

tions directly relevant to COVID-19 pathophysiology. For example,

biomarkers let-7 family from exRNAs, OLAH, and CD3E from

mRNAs, and C4A and C4B from proteomes concordantly revealed

the importance of T-cell activation and the suppression inflamma-

tory responses. However, because of the relatively small patient

sample size utilized here, it is clear that more work is needed to

confirm the reliability and practicality these biomarkers, and

◀ Figure 7. COVID-19-associated metabolomic changes in blood plasma.

A Plasma metabolomic changes revealed a trajectory in COVID-19 severity, from healthy control (n = 12), mild (n = 29), to severe (n = 17).
B Changes in the concentration of plasma metabolites are associated with COVID-19 severity. The discharge group consist of all patients (mild and severe) that were

recovered and discharged. L1, low-density lipoprotein subclass-1 (LDL1); VL, very low- density lipoprotein (VLDL); L5, LDL5; L6, LDL6; H2: high-density lipoprotein
subclass-2 (HDL2); H3: HDL3; H4: HDL4.

C COVID-19 severity is associated with significant changes in lipoprotein subclasses including high-density lipoprotein subclass-1 (HDL1), HDL4, low-density lipoprotein
subclasses (LDL1, LDL4, LDL5), very low-density lipoprotein subclass-5 (VLDL5), and their compositional components (ApoA1, triglycerides, cholesterol). TG: triglycerides;
FC: free cholesterol; CE: cholesteryl esters; CH: total cholesterol (i.e., FC + CE); PL: total phospholipids; A1: ApoA1; A2: ApoA2; L1TG: TG in LDL1; L1TG%: percentages of
L1TG in total lipids of LDL1; L1%: percentage of LDL1 in all LDL; L-TG%: percentages of L-TG(TG in LDL) in total lipids of LDL; V5FC%, V5CE%: percentages of V5FC(FC in
VLDL5) and V5CE(CE in VLDL5) in total lipids of VLDL5; L5CE%, L5CH%: percentages of L5CE(CE in LDL5) and L5CH(CH in LDL5) in total lipids of LDL5; H1FC%:
percentages of H1FC (FC in HDL1) in total lipids of HDL1; H-A2: ApoA2 in both HDL and nascent HDL; H4A1, H4A2, H4CE, H4CH, H4FC, H4PL: ApoA1, ApoA2, CE, CH,
FC, and PL in HDL4.

D Plasma levels of key enzymes and proteins directly involving lipoprotein metabolism are indicators for COVID-19 severity. Data were represented as means � SD and
differences between groups were estimated using Student’s t-test. *P < 0.05; **P < 0.01; ***P < 0.001. Control, n = 12; mild, n = 29; severe, n = 17; discharge, n = 16;
sLDLR: soluble low-density lipoprotein receptor; LCAT: lecithin-cholesterol acyltransferase; CEPT: cholesteryl-ester transfer protein.

E COVID-19 caused dysregulation in lipoprotein metabolism, glycolysis, and TCA cycle. The three boxes from left to right are control, mild, and severe, in
which gray means normal, blue means decrease, red means increase. CS: Citrate synthase; IDH: Isocitrate dehydrogenase; ACO2: Aconitase; OGDH: a-
ketoglutarate dehydrogenase; DLD: Dihydrolipoyl dehydrogenase; SDH: Succinic dehydrogenase; MDH: Malate dehydrogenase; PDH: Pyruvate dehydrogenase;
PDK: Pyruvate dehydrogenase kinase; ACLY: ATP citrate lyase; ACAC: Acetyl coenzyme A carboxylase; FASN: Fatty acid synthetase; LDH: Lactate
dehydrogenase.

▸Figure 8. Comparative analysis of severe-survival patients and severe-fatal patients.

A Boxplot comparison of viral loads between severe-survival patients (yellow, n = 8) and severe-fatal patients (purple, n = 5). Line graph represents the temporal
changes in viral load in time (days) after hospital admission of the patients. The cluster heatmap represents expression patterns of 1,541 proteins that exhibited
temporal changes across timepoints in severe-survival (left) and severe-fatal (right) patients. The line plots indicate the expression trends of 1,541 selected proteins.
VL, viral loads; FOT, the fraction of total. Differences between groups were estimated using Mann–Whitney–Wilcoxon test. The horizontal box lines in the boxplots
represent the first quartile, the median, and the third quartile. Whiskers denote the range of points within the first quartile � 1.5 × the interquartile range and the
third quartile + 1.5 × the interquartile range.

B Enriched annotations for corresponding clusters showed in Fig 6A (Fisher’s exact test, P < 0.05).
C, D Systematic summary of proteins and signaling cascades significantly altered in severe-survival patients (lipid metabolism; (C)) and severe-fatal (viral life cycle; (D)).

Values for each protein in all samples analyzed (columns) are color-coded based on the expression levels: low (blue) and high (red) z-scored FOT.
E For each of the four panels, the heatmaps on the left indicate the Pearson correlation of proteins with viral load in severe survivors and severe fatalities, the

heatmap on the right indicate the significant pathways enriched by proteins positively or negatively correlated with viral load in severe survivors and severe
fatalities (Fisher’s exact test, P < 0.05).
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particularly to validate the predictive power of these biomarkers in

larger cohorts.

In sum, we have identified a large number of molecules associ-

ated with COVID-19 pathophysiology, some of which may also be

effective predictive biomarkers of clinical outcome at the onset of

disease. Taken together, these data suggest that distinct immune

responses and multi-organ damage have a major impact on COVID-

19 severity and disease prognosis.
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Figure 9.
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Materials and Methods

Study design and patient cohort

According to arrangements made by the Chinese Government, all

adult patients in Shanghai diagnosed with COVID-19 were admit-

ted to the Shanghai Public Health Clinical Center. We enrolled 66

COVID-19-infected patients who were treated at the Shanghai

Public Health Clinical Center between January 31 and April 7,

2020. While these patients consisted of four clinical types accord-

ing to WHO classification, we divided them into two groups

based on clinical signs and the need for oxygen because of the

limited sample size: (i) mild (50/66, 75.8%)—with clinical signs

of pneumonia but without oxygen support, and (ii) severe (16/

66, 24.2%)—with oxygen support using non-invasive ventilation,

tracheal tube, tracheotomy assist ventilation, or extracorporeal

membrane oxygenation (ECMO) (Fig 1A and Dataset EV1). The

mild patient group included both mild and moderate patients

based on WHO classification, while the severe group comprised

severe and critical COVID-19-infected patients. All human samples

included in the present study were obtained after approval of the

research by the Shanghai Public Health Clinical Center Ethics

Committee (YJ-2020-S018-02), together with the written informed

consent from each patient.

Sample collection and processing

A total of 248 blood samples, comprising 1–2 ml each, were

collected from 66 COVID-19-infected patients by professional health-

care workers over a 5-week period, with 65 patients having more

than one sampling timepoints (Dataset EV1). In addition, 17 blood

samples were collected from 17 uninfected volunteers and utilized

as healthy controls. Samples were transported to the research labo-

ratory within 2 h of collection. For RNA extraction, 200 ll of whole

blood was mixed with 1 ml TRIzol reagent (Qiagen), followed by

15-min incubation at room temperature and subsequent freezing at

�80°C before total RNA extraction. The remaining whole blood

samples (800–1,800 ll) were processed immediately to separate

plasma and subsequently stored at �80°C until use.

All clinical data were recorded by the clinicians. SARS-CoV-2

infection was first determined by quantitative real-time RT–PCR

using the Takara One Step PrimeScript RT–PCR kit (Takara

RR064A) as previously described (Wu et al, 2020a). For positive

samples, digital RT–PCR was then used to obtain the absolute viral

loads (copies per ml) following the manufacturer’s instructions

(BioDigital General dPCR kit, Jiangsu Saint Genomics, Cat no. CSJ-

3-0018). Specifically, 15 ll of RNA solution was mixed with 20 ll
reaction buffer. The reaction buffer comprised 7 ll 5 × RT–PCR

buffer, 3 ll Taq polymerase and 10 ll SARS-CoV-2 detection mix

provided in the kit. Subsequently, 30 ll of these dRT–PCR mixture

and 25 ll oil mixture (provided by the kit) was added to the chip,

followed by a amplification program of 37°C, 10 min; 55°C, 10 min;

95°C, 10 min; 45 × (95°C, 20 s; 60°C, 40 s); 25°C, hold. Nuclease-

free water was used as negative control and performed RNA extrac-

tion together with samples. Positive controls were provided by the

kit itself.

RNA and exRNA extraction and library construction

Total RNA from whole blood samples was extracted using the

RNeasy Plus Universal Mini Kit (Qiagen) following the manufac-

turer’s instructions. The quantity and quality of RNA solution were

assessed using a Qubit Flex fluorometer (Invitrogen) and an Agilent

Bioanalyzer (Agilent Technologies) before library construction and

sequencing. RNA library construction was performed as described

using the VAHTS Universal V6 RNA-seq Library Prep Kit for Illu-

mina (Vazyme, China). Ribosomal, globin and RN7S RNAs were

depleted using specially designed probes (Vazyme, China).

Plasma samples were divided into aliquots and used for extracel-

lular RNA (exRNA) extraction and library construction, protein

extraction, and metabolomic analyses. For exRNA library prepara-

tion, total RNA including exRNA was extracted using the miRNeasy

Serum/Plasma Advanced Kit (Qiagen). The exRNA library was

prepared using the NEXTflex Small RNA-seq Kit v3 (PerkinElmer).

RNA quantity and quality were determined as mentioned above.

After final library quantification using a Qubit Flex fluorometer

(Invitrogen) and quality control using the Bioptic Qsep100 to con-

firm the expected size distributions, all libraries (RNA and exRNA)

were pair-end (150-bp reads) sequenced on the Illumina

NovaSeq6000 platform (Illumina).

RNA-seq data analysis

Data processing and filtering criteria
Preliminary processing of raw reads was performed using FASTP

v0.19.6 to remove adapter sequences and obtain trimmed reads

(Chen et al, 2018). The sequence AGATCGGAAGAGCACACGTCT-

GAACTCCAGTCA was used as the R1 adapter sequence while

◀ Figure 9. Biomarkers predictive of clinical outcomes of COVID-19-infected patients.

A Principal component analysis of exRNA, transcriptome, proteome, and clinical covariate data from samples collected at the first timepoint. The first two components
were used to describe the distribution of samples based on expressed genes, proteins, and clinical data, respectively, whereas the first and third components were
used for samples based on the exRNA data.

B Performance of prognostic models based on exRNA, transcriptome, proteome, and the corresponding clinical covariate data sets. Model performance of the fivefold
cross-validation was assessed using the Matthews correlation coefficient (MCC), AUC, accuracy, sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV). Data were represented as means � SD.

C The most frequently selected features of exRNA-, transcriptome-, proteome-, and clinical-based models. Features were simultaneously identified from each of the
four data sets and for each of the four machine learning algorithms based on the frequency of variables used by AI models during 50 runs of the fivefold cross-
validation.

D Correlation heatmap among the most frequently selected features (frequency> 0.78) used in the exRNA-based model. Members in the let-7 family selected for the
exRNA-based predictors (hsa-miR-98-5p, hsa-let-7a-5p, hsa-let-7d-5p, hsa-let-7f-5p) were highly correlated with each other.

E–I Biomarkers identified from exRNA (E), transcriptome (F), proteome (H), and clinical data (I)-based models exhibited a clear separation between those patients with
either good or poor prognosis. (G) Functional enrichment of 110 protein features selected from random forest modeling (Fisher’s extract test, P < 0.05).
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AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT was used as the

R2 adapter sequence. HISAT2 v2.1 (Pertea et al, 2016) was used

for read alignment to the human genome, build 38. Samtools

v1.3.1 was used to generate intermediate result files for quality

assessment of the aligned reads by BamQC v2.0.0 (https://github.c

om/s-andrews/BamQC) and insert size distribution analysis. The

assembly of aligned reads and assessment of expression levels

were processed through StringTie v1.3.4. Gene counts were deter-

mined with preDE.py (http://ccb.jhu.edu/software/stringtie/)

based on results derived from Ballgown (https://github.com/

alyssafrazee/ballgown). Ensembl transcript annotation (version:

Homo_sapiens.GRCh38.93.gtf) with 58,395 genes was used.

A QC analysis and library filtering were performed before

downstream biological analysis. Libraries that passed the follow-

ing criteria were retained: (i) more than five million reads; (ii)

more than 90% of reads aligned to the human reference

genome; and (iii) over 10,000 genes were expressed (a gene

with FPKM > 0.5 was identified as an expressed gene). In addi-

tion, to monitor data quality across batches, libraries of some

healthy control samples were constructed and sequenced 2–3

times. The average expression profile of the multiple libraries

from each healthy control sample was calculated for follow-up

analyses.

Immunoassay
Immune repertoires were extracted with MiXCR, a software tool that

extracts T-cell receptor (TCR) and immunoglobulin (IG) repertoires

from RNA-seq data (Bolotin et al, 2015; Bolotin et al, 2017). The

number of clonotypes was then calculated using VDJtools, using the

output from MiXCR (Shugay et al, 2015).

Differentially expressed genes (DEGs)
To identify DEGs, Student’s t-test was applied to the expression

matrix. Genes with P-values < 0.05 as well as a fold change > 2 or

< 1/2 were labeled as upregulated and downregulated genes,

respectively (Su et al, 2014b). This straightforward approach of

combining a fold change cutoff with a non-stringent P-value thresh-

old has been demonstrated to yield reproducible and robust lists of

DEGs for both microarray and RNA-seq-based gene expression anal-

yses (Shi et al, 2006; Su et al, 2014b).

Functional and cell type enrichment analyses
Functional analyses were conducted based on genes differentially

expressed between several subgroups of COVID-19-infected patients

compared with healthy control samples. GSEA (Gene Set Enrich-

ment Analyses) was performed to identify significantly enriched

functional classes of gene sets correlated with blood transcription

modules (BTM) described by Li et al (2014), KEGG pathways, and

Gene Ontology (GO) terms. A default FDR (false discovery rate)

value of q < 0.25 was considered statistically significant. The

Normalized Enrichment Score (NES) of significant immune modules

from BTMs was used to denote enrichment levels.

The fraction of the cell subsets was calculated using the enrich-

ment score-based algorithm X-Cell from the RNA-seq data (Aran

et al, 2017). Briefly, the expression profile (FPKM) of all 230

samples was employed as raw signatures. The R package

immunedeconv was applied to obtain enrichment scores of 35

immune cell types, estimating immune cell fractions including T

cell, monocyte, and neutrophil by summation of the scores in each

sample (Sturm et al, 2019).

exRNA-seq data analysis

Alignment, quantification, and quality control
Libraries were sequenced in two batches, with an average sequenc-

ing depth of 15.7M raw reads per library. All FASTQ files were deliv-

ered to the ExceRpt small RNA sequencing data analysis pipeline

(docker v4.6.3) (Rozowsky et al, 2019). Default parameters were

used with exception of (i) the sequence TGGAATTCTCGGGTGC-

CAAGG was given as the 3’adapter sequence, ignoring the adapter

sequences guessed by the pipeline; (ii) the random barcode length

was set to 4; and (iii) the priority of the reference libraries during

read assignment was set to miRNA > piRNA> tRNA> GENCODE>

circRNA (Godoy et al, 2018). Pre-compiled genome and transcrip-

tome indices of human genome, build 38 were used. The raw read

count matrix was then normalized using count per million (CPM).

A QC analysis was performed prior to biological analysis by

removing (i) libraries with low sequencing depths (< 1M raw

reads); (ii) libraries with mapping ratio lower than 50%, and (iii)

libraries with low transcript-genome ratios. To minimize the impact

of noise due to low expression levels, only 769 miRNAs with at least

1 count per million in no less than 10% of the total number of

samples were included in the final analysis.

Differentially expressed exRNAs
To identify differentially expressed exRNAs, Student’s t-tests were

applied to the normalized expression matrix. exRNAs with P-values

< 0.05, as well as fold change > 2 or < 1/2, were labeled as upregu-

lated and downregulated exRNAs, respectively, in a similar manner

to the RNA-seq data.

Tissue damage-related miRNAs
exRNAs reported to be associated with tissue damage were collected

from publications (Wang et al, 2009; Godwin et al, 2010; Wang

et al, 2010; Zhou et al, 2016; Atif & Hicks, 2019) (Dataset EV9).

Fisher’s exact test was used to determine whether the proportions of

differentially expressed (DE) exRNAs in tissue damage-related

exRNAs were significantly higher than the proportions of DE

exRNAs in the entire data set of 769 miRNAs.

Proteome analysis

Plasma protein extraction and trypsin digestion
Plasma samples used for protein extraction were first removed the

tip 14 highest abundance plasma proteins using an immunodeplet-

ing kit (Thermo Fisher) according to the manufacturer’s instruc-

tions, and then inactivated at 85°C for 10 min. The depleted plasma

was digested by trypsin at an enzyme to protein mass ratio of 1:25

overnight at 37°C, and the peptides were then extracted and dried

(SpeedVac, Eppendorf).

LC-MS/MS acquisition of plasma samples
Samples were measured using LC-MS instrumentation consisting of

an EASY- nLC 1200 ultra-high-pressure system (Thermo Fisher

Scientific) coupled via a nano-electrospray ion source (Thermo

Fisher Scientific) to a Fusion Lumos Orbitrap (Thermo Fisher
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Scientific). The peptides were dissolved with 12 ll loading buffer

(0.1% formic acid in water), and 5 ll was loaded onto a 100 lm
I.D. × 2.5 cm, C18 trap column at a maximum pressure 280 bar with

14 ll solvent A (0.1% formic acid in water). Peptides were sepa-

rated on 150 lm I.D. × 15 cm column (C18, 1.9lm, 120 �A, Dr.

Maisch GmbH) with a linear 15–30% Mobile Phase B (ACN and

0.1% formic acid) at 600 nl/min for 75 min. The MS analysis was

performed in a data-independent manner (DIA). The DIA method

consisted of MS1 scan from 300–1,400 m/z at 60k resolution (AGC

target 4e5 or 50 ms). Then, 30 DIA segments were acquired at 15k

resolution with an AGC target 5e4 or 22 ms for maximal injection

time. The setting “inject ions for all available parallelizable time”

was enabled. HCD fragmentation was set to normalized collision

energy of 30%. The spectra were recorded in profile mode. The

default charge state for the MS2 was set to 3.

Peptide identification and protein quantification
All data were processed using Firmiana (Feng et al, 2017).The

DIA data were search against UniProt human protein database

(updated on 2019.12.17, 20406 entries) using FragPipe (v12.1)

with MSFragger (2.2) (Kong et al, 2017). The mass tolerances

were 20 ppm for precursor and 50 mmu for product ions. Up to

two missed cleavages were allowed. The search engine set

cysteine carbamidomethylation as a fixed modification and N-

acetylation and oxidation of methionine as variable modifications.

Precursor ion score charges were limited to +2, +3, and +4. The

data were also searched against a decoy database so that protein

identifications were accepted at a false discovery rate (FDR) of

1%. The results of DIA data were combined into spectra libraries

using SpectraST software. A total of 327 libraries were used as

reference spectra libraries.

DIA data was analyzed using DIA-NN (v1.7.0) (Demichev

et al, 2020). The default settings were used for DIA-NN (Precur-

sor FDR: 5%, Log lev: 1, Mass accuracy: 20 ppm, MS1 accuracy:

10 ppm, Scan window: 30, Implicit protein group: genes, Quan-

tification strategy: robust LC (high accuracy)). Quantification of

identified peptides was calculated as the average of chromato-

graphic fragment ion peak areas across all reference spectra

libraries. Label-free protein quantifications were calculated using

a label-free, intensity-based absolute quantification (iBAQ)

approach (Zhang et al, 2012). We calculated the peak area values

as parts of corresponding proteins. The fraction of total (FOT)

was used to represent the normalized abundance of a particular

protein across samples. FOT was defined as a protein’s iBAQ

divided by the total iBAQ of all identified proteins within a

sample. The FOT values were multiplied by 105 for the ease of

presentation and missing values were imputed with 10�5.

To better understand the impact of COVID-19 on patients, we

mapped our plasma proteome data with the Human Protein Atlas

(HPA) database and determined different expressions of tissue-

enhanced proteins. Tissue-enhanced protein was defined as

proteins encoded by genes which have an elevated expression (at

least fourfold higher mRNA level) in the specific type of tissue

compared with the average level in all other tissues (Uhl�en et al,

2015). In total, 544 tissue-enhanced proteins were detected, among

which 335 tissue-enhanced proteins were expressed significantly

differently in COVID-19-infected patients’ blood samples compared

with healthy controls.

Metabolome analysis

NMR spectroscopy
The plasma samples used for NMR analysis were first treated with

56°C for 30 min. Our subsequent quantitative measurements of

samples from healthy controls showed that such treatments caused

no differences to the quantification results.

NMR analysis was conducted on a 600 MHz NMR spectrome-

ter (Bruker Biospin) as reported previously (Jimenez et al, 2018)

with some minor modifications. In brief, 320 ll of each plasma

sample was mixed with 320 ll of a phosphate buffer (0.085 M

containing 10% D2O) with composition described previously

(Jiang et al, 2012), and 600 ll mixture was transferred into a

5mm NMR tube for NMR analysis. 152 parameters of the plasma

were then quantified using a server-based software package

(Bruker Biospin), including 112 parameters for lipoproteins (in-

cluding main fractions, subclasses, and compositional components

therein), two acute-phase glycoproteins together with 41 small

metabolites (such as amino acids, ketone bodies, glucose,

carboxylic acids, ethanol). We also quantified six ratio parameters

for saturated, unsaturated, monounsaturated, and polyunsaturated

fatty acids from the diffusion-edited spectra (Xu et al, 2012). We

further calculated 187 more ratio-parameters (such as the choles-

terol-to-triglyceride ratio, percentage of triglycerides, and choles-

terol in total lipids) from the quantitative data for lipoproteins. A

total of 348 quantitative parameters obtained were collectively

employed to define the metabolomic phenotypes of each of the

human plasma samples.

Development of prognostic models

Model development
Four data sets representing the (i) clinical tests, (ii) exRNA-seq,

(iii) mRNA-seq, and (iv) proteomics quantification analysis were

used to develop prognostic models for the prediction of patient

outcomes (i.e. good or poor). Patients with a “good” outcome

included those with mild or severe syndrome but who were

discharged after treatment, while patients with “poor” outcomes

included those who died or remained in ICU for more than

2 months. The numbers of samples used in predictive modeling

were as follows: for the exRNA-seq and the matched clinical test-

ing data sets, a total of 37 patients were used, including 28

patients with good outcomes and 9 patients with poor outcomes.

For the RNA-seq data set, 63 patients were used, including 55

patients with good outcomes and 8 patients with poor outcomes.

For the proteomics data set, 31 patients were used, including 21

patients with good outcomes and 10 patients with poor outcomes.

Samples from the first sampling timepoint from each patient were

used in the analysis.

Prognostic models were developed and validated using a two-

layer validation strategy (Fig EV6A) to prevent information leak-

ing from the training set to the validation set (Shi et al, 2010).

Briefly, patients were first divided into training and validation

sets with equal size based on outcome and admission date. The

training set was then used to select variables and train prognostic

models using multiple machine learning algorithms, including

nearest mean classification (NMC), k-nearest neighbors (KNN),

support vector machine (SVM), and random forest (RF) through
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an internal-layer of 50 runs of fivefold cross-validation process to

resist overfitting. Next, a final model was built using the whole

training set with the best performing machine learning algorithm

as defined above. The final model was further validated using the

validation set as an external-layer evaluation. Model performance

was assessed in terms of the Matthews correlation coefficient

(MCC), AUC, accuracy, sensitivity, specificity, positive predictive

value (PPV), and negative predictive value (NPV).

Prognostic biomarkers were identified based on the

frequency of variables selected by machine learning algorithms.

Because the sample size was relatively small compared with

the large number of variables, it was difficult to identify stable

biomarkers as indicated by the low frequencies of the variables

used in the prognostic models (Shi et al, 2010). (Fig EV6A and

B). To detect more robust prognostic biomarkers, 50 runs of

fivefold cross-validation process were therefore applied to the

whole data set. The variables used by the best performing

machine learning algorithm were identified as prognostic

biomarkers for each data set.

Learning curve model comparison
Learning curve model comparison (LCMC) was performed using

Predictive Modeling Review as available in JMP Genomics 10

(https://www.jmp.com/en_us/software/genomics-data-analysis-sof

tware.html). LCMC reveals the effects of sample size on the accu-

racy and variability of the predictive models using 10 runs of four-

fold cross-validation.

We performed LCMC with prognosis (good or poor) as target

variables, and the clinical variables, exRNA, mRNA, or proteomics

measurements as predictors. Figure EV6C shows each individual

(RMSE) and (AUC) learning curve and the average for each of the

eight partition tree models for clinical endpoints, as well as exRNA

using K-fold cross-validation. The LCMC suggested that with up to

15 samples, eight partition tree models reached AUC as 1 for clinical

variables. However, more than 23 and 30 samples were needed for

one and three models, respectively, to reach AUC of 1 for exRNA-

seq data. The variability of RMSE and AUC for the proteomic and

mRNA-seq data (not shown) were between that observed for clinical

variables and the exRNA data.

Statistical analyses

Univariate statistical analysis was performed using Student’s t-test,

Mann–Whitney U tests or ANOVA tests to compare continuous

variables. Chi-square tests and Fisher’s exact tests were used for

the comparison of categorical variables. P-values were adjusted

using Bonferroni correction or the Benjamini and Hochberg False

Discovery Rate (FDR) in multiple comparisons, with P < 0.05

considered to be statistically significant. Principal components

analysis (PCA) was conducted with univariance scaling, with the

scores plot showing a distribution of metabolomic phenotypes for

healthy participants and patients with moderate or severe COVID-

19 (and upon discharge). Correlations were tested using Pearson

correlation coefficients. Locally Weighted Linear Regression

(Loess) was used for visualizing the time series data. All analyses

were performed using appropriate R packages (version 3.5.1).

Circos plots were generated using the circlize package (Gu et al,

2014).

Data availability

The datasets produced in this study are available in the following

databases:

• RNA-Seq and exRNA-Seq Data: NODE OEP000868 (http://www.b

iosino.org/node/project/detail/OEP000868)

• Raw mass spectrometry data: iProX IPX 0002186001 (https://

www.iprox.org/page/subproject.html?id=IPX0002186001)

Expanded View for this article is available online.
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