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Abstract

Protein localization is paramount to protein function, and the intracellular movement of proteins 

underlies the regulation of numerous cellular processes. Given advances in spatial proteomics, the 

investigation of protein localization at a global scale has become attainable. Also becoming 

apparent is the need for dedicated analytical frameworks that allow the discovery of global 

intracellular protein movement events. Here, we describe TRANSPIRE, a computational pipeline 

that facilitates TRanslocation ANalysis of SPatIal pRotEomics data sets. TRANSPIRE leverages 

synthetic translocation profiles generated from organelle marker proteins to train a probabilistic 

Gaussian process classifier that predicts changes in protein distribution. This output is then 

integrated with information regarding co-translocating proteins and complexes and enriched gene 

ontology associations to discern the putative regulation and function of movement. We validate 

TRANSPIRE performance for predicting nuclear-cytoplasmic shuttling events. Analyzing an 

existing data set of nuclear and cytoplasmic proteomes during Kaposi Sarcoma-associated 

herpesvirus (KSHV)-induced cellular mRNA decay, we confirm that TRANSPIRE readily 

discerns expected translocations of RNA binding proteins. We next investigate protein 

translocations during infection with human cytomegalovirus (HCMV), a β-herpesvirus known to 

induce global organelle remodeling. We find that HCMV infection induces broad changes in 

protein localization, with over 800 proteins predicted to translocate during virus replication. 

Evident are protein movements related to HCMV modulation of host defense, metabolism, cellular 

trafficking, and Wnt signaling. For example, the low-density lipoprotein receptor (LDLR) 

translocates to the lysosome early in infection in conjunction with its degradation, which we 

validate by targeted mass spectrometry. Using microscopy, we also validate the translocation of the 

multifunctional kinase DAPK3, a movement that may contribute to HCMV activation of Wnt 

signaling.
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INTRODUCTION

The movement of proteins between organelles lies at the core of essential cellular processes, 

such as gene expression,1,2 immune signaling,3,4 and apoptosis.5,6 As obligate intracellular 

parasites, viruses must co-opt these pathways, and consequently, viral infections induce 

diverse changes in protein localizations that are essential to all phases of the viral lifecycle; 

from entry, replication, and assembly to egress.7 Of these protein movements, nucleo-

cytoplasmic shuttling events are perhaps the most well-characterized and are critical for the 

ability of viruses to evade immune surveillance8 and to regulate gene expression.9,10 

However, it is evident that infection-induced translocations extend to a number of organelles. 

For example, despite their diverse lifecycles and structures, numerous viruses target the 

mitochondrial antiviral signaling protein (MAVS) via translocation of viral proteins to the 

mitochondria to inhibit antiviral signaling and apoptosis.11,12 For human cytomegalovirus 

(HCMV) and Influenza A this is accomplished via viral protein translocations from the ER 

and cytoplasm, respectively.13,14 Other proteins frequently observed to undergo virus-

induced movements include cell surface-localized immune signaling factors (such as 

HCMV-targeting of MICA8) or cellular transcription factors.4,15 However, despite individual 

studies that have elucidated subsets of protein movements during viral infections, our 

knowledge of the global regulation and functions of protein movements, and their interplay 

with one another, remains limited.

Fractionation-based spatial proteomics (reviewed in refs 16–18), which combines organelle 

density fractionation with multiplexed, high-throughput quantitative mass spectrometry19 

(MS) and machine learning (ML), has provided the means to investigate protein localization 

on a proteome-wide scale.20–27 Given the computational complexity of the data analysis 

process, the continued advancement of quantitative MS and computational and 

bioinformatics pipelines28,29 has been a critical component of spatial proteomics (reviewed 

in refs 19 and 30–32). Similarly, the array of ML classifiers for predicting protein 

localization have been substantial contributors to the growth of this field of research. Among 
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these approaches are support vector machines (SVMs),26,33 neural networks,34,35 K nearest 

neighbors,36 random forests,37 naïve Bayes,38 partial least-squares discriminate analysis,39 

Bayesian mixture models,40 and others (reviewed in16)—each of which require relatively 

extensive computational implementation. As such, the development of platforms such as 

Perseus41 and pRoloc42 have helped to provide frameworks for implementation of these 

classifiers, making this complex data analysis procedure accessible to a broader audience.

Although designed primarily with the goal of assigning proteins to different subcellular 

compartments, spatial proteomics and its associated tools can also help to predict 

translocation events when a protein is assigned to different organelles in different conditions 

(e.g., uninfected vs infected cells). Several studies have taken this concept a step further, 

developing and implementing a translocation scoring system based on the magnitude and 

reproducibility of changes in protein spatial profiles between states.25,43 One of the main 

challenges for the field, however, is predicting the localizations of proteins that reside in 

multiple compartments,40 and this is estimated to apply to ∼60% of the proteome.16 In the 

case of protein movement, multiple localization becomes an even more prominent issue 

given that alterations to protein distribution often occur in a continuous rather than binary 

manner. These concepts are frequently central to viral infection, where relatively small viral 

genomes have evolved to produce multifunctional proteins that can be dynamically 

distributed throughout the cell.

To address the need to broadly understand protein movement during viral infections, here we 

describe TRANSPIRE, a computational pipeline for TRanslocation ANalysis of SPatIal 

pRotEomics data. TRANSPIRE provides probabilistic translocation predictions from spatial 

proteomics data sets and is applicable to diverse biological studies. This pipeline is based on 

the prediction that by simultaneously analyzing the spatial profiles of a given protein 

between different states, rather than its static distribution in either state, information about 

protein movement can be extracted in a manner that is relatively agnostic to whether the 

protein resides in multiple compartments. In addition to existing translocation scoring 

methods, TRANSPIRE considers that changes in protein localization may not, necessarily, 

lead to drastic changes in spatial profiles. For example, even near complete translocation of a 

protein between organelles with similar spatial profiles (e.g., ER and Golgi) will not exhibit 

a high magnitude of change in absolute terms. TRANSPIRE, instead, leverages a machine 

learning classifier to learn how protein translocations are manifested—even if the difference 

in their profiles may be subtle.

As a proof of concept, we first applied TRANSPIRE to study nuclear-cytoplasmic protein 

shuttling. We used a data set that investigated cellular mRNA decay-driven shuttling events 

that were accelerated by a viral endonuclease encoded by Kaposi Sarcoma-associated 

herpesvirus (KSHV). Our pipeline readily recapitulated the results reported in the original 

study, capturing broad shuttling of RNA binding proteins. We next applied TRANSPIRE to 

reveal protein movements during the progression of HCMV infection, a nuclear-replicating 

β-herpesvirus. Among human pathogens, HCMV induces some of the most prominent 

remodeling of cellular organelles,34,44 and this is accompanied by numerousestablished 

protein translocations.34,45–47 We show that our pipeline does not only predict expected (i.e., 

already reported) protein movements and their temporality during HCMV infection but also 
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uncovers previously unknown translocating proteins. Additionally, the ability of this pipeline 

to also highlight co-translocating proteins and complexes further aids in understanding the 

possible function and regulation of these movements. Overall, TRANSPIRE detects global 

shifts in protein distributions during infection that appear to underlie processes that are 

critical for HCMV replication. Among these, we discover and further validate by confocal 

microscopy the translocation of the death-associated protein kinase 3 (DAPK3) from the 

plasma membrane to the cytoplasm and the nucleus. Considering the functional associations 

of DAPK3, we propose a role for this kinase in regulating Wnt signaling during infection.

MATERIALS AND METHODS

Cell Culture and Virus Infection.

MRC5 human fibroblasts (ATCC CCL-171) were cultured in complete growth medium 

(DMEM supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin 

antibiotics) at 37 °C and 5% CO2. The cells were used for the experiments within a 

maximum of 10 passages. Viral stocks of HCMV strain AD169 were produced from 

bacterial artificial chromosomes in MRC5 cells, as in Yu et al.48 Virus stocks were stored at 

−80 °C for no longer than 6 months. Infections for quantitative mass spectrometry and 

immunofluorescence microscopy experiments were performed at a multiplicity of infection 

(MOI) of 3.

Sample preparation for MS analysis.

Following collection, cell pellets were washed twice in PBS, pelleted by centrifugation, and 

stored at −80 °C until ready for analysis. Pellets were lysed in lysis buffer (5% SDS, 50 mM 

TrisHCl, 0.1 M NaCl, 0.5 mM EDTA, pH8.0) then reduced and alkylated at 70 °C for 20 

min using 25 mM TCEP (Thermo Fisher no. 77720) and 50 mM 2-chloroacetamide (MP 

Biomedicals no ICN15495580). Following reduction and alkylation, proteins were extracted 

by methanol–chloroform precipitation49 and resuspended in 25 mM HEPES buffer (pH 8.2). 

Proteins were digested for 16 h at 37 °C using a 1:50 ratio of trypsin to protein (w/w) and 

then adjusted to 1% trifluoroacetic acid (TFA). Following desalting using the StageTip 

method50 with C18 material (3 M no. 2215), peptides were washed with 0.5% FA, eluted 

with 70% acetonitrile (ACN) and 0.5% formic acid (FA), dried via SpeedVac 

(ThermoFisher), and resuspended in 1% FA and 1% ACN.

Parallel Reaction Monitoring (PRM) Analysis and Quantification.

Samples prepared for PRM analysis were analyzed via LC–MS/MS using a Dionex Ultimate 

3000 nanoRSLC coupled to a Q Exactive HF mass spectrometer (Thermo Fisher Scientific), 

as in ref 51. Peptides were separated by reversed-phase chromatography on a C18 column 

using a linear gradient (0–35% B) over 60 min. Targeted MS2 scans were performed with 

the following parameters: resolution of 120000, AGC target of 5 × 105, maximum inject 

time of 100 ms, isolation window of 0.8, and retention time windows of 5 min. Design and 

quantification of PRM assays were performed using the Skyline software52 and peptide 

abundances were calculated using the summed area under the curve for three transition ions 

per peptide.
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Data Processing for TRANSPIRE Analysis.

To demonstrate the utility of TRANSPIRE and simultaneously investigate protein movement 

during viral infection, we leveraged two data sets—one reported in Gilbertson et al.53 

(deposited in ProteomeXchange, PXD009487) and one previously generated in our lab and 

reported in Jean Beltran et al.34 (PXD003925). To account for changes in protein signal that 

may occur solely due to changes in protein abundance, protein profiles were normalized 

such that the sum of values across organelle fractions was equal to 1. In each case, a set of 

cell-type specific organelle marker proteins were curated from existing literature (i.e., 

previously reported markers for HEK293T54 and primary human fibroblast cells;34 see 

Tables S1 and S2). In the case of Gilbertson et al., markers for an array of subcellular 

components were assigned either a nuclear or cytoplasmic label in accordance with the 

fractionation scheme of the data set.

To produce synthetic translocation profiles for classifier training, all possible pairwise 

combinations of organelle marker proteins were generated for combinations of different 

experimental conditions. For each resulting combination, the spatial profiles for marker 

proteins of “organelle X” were concatenated with markers for “organelle Y” and the 

resulting profile was labeled as an “X to Y” translocation. For example, a lysosome to 

plasma membrane translocation would consist of spatial profiles for a lysosome marker in 

the uninfected state and a plasma membrane marker in the infected state. Note that this 

procedure also produces synthetic profiles for combinations of markers for the same 

organelle, thus allowing TRANSPIRE to distinguish translocating from nontranslocating 

proteins.

Model Selection and Cross-Validation.

Given the extensive number of samples that the above procedure generates, we required a 

scalable classification algorithm. We therefore implemented a stochastic variational 

Gaussian process (SVGP) classifier using the GPFlow package55,56 (which is built upon the 

TensorFlow ML platform57 in Python). In brief, this model consists of user-defined 

components that include training data, a kernel function, a likelihood function, n latent 

variables (traditionally, this number is set equal to the total number of classes), and a subset 

of the training data to be used as inducing points. Considering the multiclass nature of this 

classification problem, our choice of likelihood function was limited to two options (robust-

max or soft-max).55,58,59 We chose to employ the soft-max likelihood function, as the 

robust-max can tend to lead to poor confidence calibration.60 We do note that the GPFlow 

implementation of the soft-max likelihood function can only provide a stochastic estimate of 

the variational expectations. Consequently, there is some variance in model predictions; 

however, overall, we found this variance to be quite small (i.e., generally less than 5–10%; 

see Figure S2A,B).

To address hyperparameter choices regarding kernel type and the number of inducing points, 

models were built and trained using combinations of five different stationary kernels 

(squared exponential, rational quadratic, exponential, Matern32, and Matern52) 

implemented by the GPFlow architecture and an array of numbers of inducing points 

ranging from 1 to 500 depending on the data set. To evaluate these possible model 
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architectures, the synthetic translocation training data was split into training (50%), 

validation (25%), and testing (25%) partitions. Throughout the model selection process 

training data was further stratified into five balanced folds. Each class label was permitted to 

have at-most three times more samples than the smallest class to help prevent prediction bias 

due to class imbalance. For each combination of kernel and number of inducing points (n), 

an SVGP model was built using the training data, the given kernel and likelihood functions, 

and a set of n inducing points that were determined by KMeans clustering analysis (using 

Scikit-learn61) of the training data (i.e., n clusters with n cluster centroids leveraged as 

inducing points). Each kernel was additionally supplemented with a white noise kernel to 

help prevent overfitting. Internally, the model variational parameters and kernel 

hyperparameters (i.e., length-scale and variance) were optimized via maximization of the 

evidence lower bound (ELBO) using the Adam optimizer62 implemented in GPFlow. 

Externally, the validation set was then used to determine which kernel type and number of 

inducing points produced the best-performing model. Following determination of kernel 

type and number of inducing points, both the training and validation sets were combined for 

final model fitting, and performance was evaluated on the held-out test partition of the 

synthetic translocation data.

TRANSPIRE Prediction of Protein Translocations.

Following model selection and hyperparameter optimization, the resulting model was used 

to predict translocations from the actual data set. This consequently yields classifier scores 

for each sample that range between 0 and 1 for each class of movements (or lack thereof) 

defined by the synthetic translocation training set. We note that the sum of scores across all 

classes for each sample is equal to 1, and predictions of class assignment for each sample are 

then assigned to whichever class has the highest score. We additionally defined an overall 

translocation score as the summed value of predicted scores for all true translocation classes 

(eq 1). This allows us to account for scenarios where relatively high classifier scores are split 

among several translocation classes. Such is the case when multiple classes of translocations 

have overlapping profiles (e.g., plasma membrane to ER and plasma membrane to Golgi 

translocations)

∑
i = 1

n
xi (1)

where n corresponds to the number of translocation classes and xi corresponds to the given 

classifier score for the ith tranlocation class.

To facilitate comparison of the agreement between TRANSPIRE predictions and 

localization assignments reported in Jean Beltran et al., we mapped the original organelle 

assignment scores (generated by a neural network) to a putative “translocation score” using 

the following criteria: For proteins assigned to different organelles in different conditions, 

their score was defined as in eq 2, while translocation scores for proteins assigned to the 

same compartment in both conditions were defined as in eq 3. In accordance with 

translocation scores generated by TRANSPIRE, this procedure yields scores that are 

mapped between 0 and 1. Like for translocation scores generated by TRANSPIRE, a score 

Kennedy et al. Page 6

J Am Soc Mass Spectrom. Author manuscript; available in PMC 2020 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of 0 therefore represents a prediction of no translocation while 1 represents a translocation 

prediction. Scores closer to 0.5 represent uncertain predictions

xia + xjb
2 (2)

where xia is the score for organelle assignment i at condition a and xjb is the score for 

organelle assignment j at condition b

1 −
xia + xib

2 (3)

where xia and xiy are the scores for organelle assignment i at conditions a and b, respecitvely.

Protein Co-translocation Analysis and Scoring.

The extent of similarity between translocation profiles was determined via computation of 

the Mahalanobis distance metric (eq 4) using the SciPy Python package.63 As this 

calculation requires calculation of the inverse covariance matrix, we leveraged the minimum 

covariance determinant method (described in64 and implemented in Scikit-learn61) to 

determine these values. As a true positive metric, the resulting pairwise distances were 

compared to distances between profiles of proteins of known protein complexes from the 

CORUM database.65 To serve as a true negative metric, we additionally compared against 

distances between marker protein profiles in the synthetic training set for different 

organelles. Using these two populations, we defined a false-positive rate distance cutoff of 

0.05 and proteins with pairwise distances smaller than this cutoff were considered co-

translocating

d p,q = u − v V −1 u − v T 1/2
(4)

defines the distance between proteins p and q with translocation profiles u and v, 

respectively, and V is the covariance matrix associated with u and v.

Database Integration and Gene ontology (GO) Enrichment Analysis.

Confident translocations were automatically searched in STRING66 using a custom Python 

REST API query function (refer to code availability). To be reported in the supporting 

tables, known interactions were required to have a STRING confidence score of at least 0.4. 

GO enrichment analysis was performed using the GOATOOLS python package.67 For 

analysis of the HCMV data set, a custom list of proteins experimentally determined to be 

expressed in fibroblast cells was used as the background gene list (Table S3). For enrichment 

analysis, a false discovery rate (FDR)-based resampling approach was used to determine 

significantly enriched GO terms with an FDR less than 0.05.68

Code Availability and Software Requirements.

The TRANSPIRE Python package can be cloned and/or downloaded directly from GitHub 

(github.com/cristealab/TRANSPIRE_JASMS2020). Package documentation is available 
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online using Read the Docs (https://transpire.readthedocs.io/en/latest). For the purpose of 

practicality, we note that the capacities of a standard workstation computer was sufficient for 

model training and prediction; however, we do caution that model fitting and analysis can be 

a CPU and RAM-intensive task depending on data set size.

Immunostaining and Immunofluorescence Microscopy.

MRC5 human fibroblasts grown on microscopy coverslips were fixed in 4% 

paraformaldehyde at room temperature for 15 min, washed with PBS, and permeabilized in 

0.2% (v/v) tween in PBS (PBST) for 5 min at room temperature. Blocking was performed in 

10% (v/v) goat serum, 5% human serum (Sigma), and 300 mM glycine in PBST for 30 min 

at room temperature.

Incubation with primary antibody was performed for 2 h at room temperature. The antibody 

for ZIP kinase immunostain was rabbit monoclonal anti-ZIP kinase (Abcam; ab210528) 

diluted 1:1000 in blocking solution. The antibody for HCMV protein IE1 immunostain was 

mouse monoclonal anti-IE1 (clone 1B12 gift from Tom Shenk69) diluted 1:50 in blocking 

solution. Following primary antibody incubation, samples were washed three times in PBST 

for 5 min. Secondary incubation was performed with goat secondary antibody conjugated to 

Alexa Fluor (488 or 568; ThermoFisher Scientific) diluted 1:2000 in blocking solution for 1 

h at room temperature. During secondary antibody incubation, the nucleus was stained using 

1 μg/mL DAPI (Thermo Fisher; 62248).

Following secondary staining, coverslips were washed three times in PBST, twice in PBS, 

and once in TBS. Coverslips were then mounted onto slides using 12 μL ProLong Diamond 

Antifade Mountant (ThermoFisher Scientific; P36970). Confocal images were acquired 

using an inverted fluorescence confocal microscope (Nikon Ti-E) equipped with a 

Yokogawa spinning disc (CSU-21), digital CMOS camera (Hamamatsu ORCA-Flash 

TuCam), and precision microscope stage (Piezo). Z stacks were acquired with 0.2 μm steps 

throughout the cell depth using a Nikon 100X Plan Apo objective and both Z stacks and 

maximum projections from each channel were exported as tiff files for quantitative analysis 

and publication.

Quantitative Image Analysis.

To assess the average localization of DAPK3, line scans were manually acquired in 

ImageJ70,71 across the middle slice of each cell using a wide (25-pixel), straight line to 

account for local variation in DAPK3 distribution. The resulting mean gray values for each 

channel along the given line in each channel were then exported for further analysis. To 

control for changes in line scan length due to differences in cell size and/or orientation, we 

normalized each line to its own length (see eq 5) and binned the resulting values into 50 

equally sized bins. To make the profiles across different channels comparable, we 

additionally normalized the profiles of each cell according to eq 6 on a per-channel basis

xnorm = x
xmax

(5)
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where x is the set of pixel values for a given line scan and xmax is the length of the line in 

pixels

ynorm = y − y−

σ (6)

where y is the set of mean grey values for a given channel of a given cell, y is the arithmetic 

mean of y, and σ is the standard deviation of y.

RESULTS AND DISCUSSION

Developing TRANSPIRE to Detect and Analyze Protein Translocations.

In general, spatial proteomics studies (Figure 1A) involve separation of organelles into 

different fractions via density fractionation or differential centrifugation.22–24,26,72 Organelle 

fractions are then analyzed using quantitative MS, using labeling with isobaric tags (e.g., 

tandem mass tags; TMT73) or stable isotopes (e.g., SILAC74), yielding spatial profiles for 

each detected protein across the designated organelle fractions. To ultimately extract 

information about protein localization, a variety of ML-based approaches have been 

developed that leverage the spatial profiles of organelle marker proteins to predict unknown 

protein localizations.22,26,33,40,42 These approaches have so far largely focused on the 

assignment of proteins to subcellular compartments within a given biological system (e.g., 

cell type) or stage. With some exceptions,33,43 less focus has been placed on discovering 

protein movement, i.e., characterizing how these protein localizations may change across 

different biological conditions.

To specifically probe for changes in localization between different states in spatial 

proteomics data sets, we developed an ML-based approach that utilizes custom-generated, 

“synthetic” translocation profiles to predict changes in protein distributions. Briefly, 

translocation profiles were generated by concatenating all possible combinations of defined 

organelle markers at each representative condition (Figure 1B; Model Training). To simulate 

nontranslocation events, combinations of markers for the same organelle were also included. 

These profiles were then used for classifier training, and actual translocations in the data set 

were predicted using the true spatial profiles of a given protein in each state as classifier 

inputs (Figure 1B; Model Application). Finally, to further extract information about the 

putative regulation and function of these movements, we identified co-translocating proteins 

using Mahalanobis distance analysis of translocation profiles, integrated information 

regarding known protein–protein interactions, and performed gene ontology enrichment 

analysis on clusters of translocating proteins (Figure 1B; Analysis and Integration).

We predicted that by directly assessing changes across organelle representation between 

conditions we could extract differences in protein distribution, even if a protein is localized 

to more than one compartment. One challenge with this approach, however, is that training 

sets scale exponentially with the number of organelle markers that are available, both in 

terms of the number of samples and classes. For example, consider a study with markers for 

10 compartments and 40 marker proteins for each compartment—this would yield 160000 

profiles corresponding to 91 translocation classes. Sample sets of this magnitude are 
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impractical for use with common ML classifiers, such as support SVMs, since fit time scales 

at least quadratically with sample size. On the other hand, neural networks, k-nearest 

neighbors, and decision tree classifiers scale better in sample space but frequently suffer 

from poor calibration (classifier scores tend to not reflect prediction uncertainty75).

To address these issues of scalability and calibration, we took advantage of a modified 

Gaussian process classifier (GPC) framework that has been implemented in Python via the 

GPFlow package.76 Briefly, Gaussian process (GP) models constitute a flexible, 

nonparametric approach to supervised learning that benefit from well-calibrated uncertainty 

estimates due to their Bayesian treatment of uncertainty.77 Applications of GPC have been 

primarily limited to contexts where sample number is relatively small due to memory and 

computational restrictions that scale quadratically and cubically, respectively, with sample 

size. The introduction of stochastic variational inference for GP models has rendered GPC 

tenable for large data sets.55,78 Although GPs have been applied across the field of biology 

to address the prediction of properties such as transcription factor binding targets,79 cell 

growth rates,80 and epigenetic regulation of cholesterol homeostasis,81 GPC has not yet been 

used for the purpose of analyzing spatial proteomics data.

Our pipeline for TRanslocation ANalysis of SPatIal pRotEomics data (TRANSPIRE) 

leverages the GPC framework to detect and provide confidence scores for translocating 

proteins and their localization dynamics. We specifically leverage the stochastic variational 

Gaussian process (SVGP) classifier implemented in GPFlow, which has been shown to 

produce well-calibrated predictions with large training data sets.55 Our pipeline additionally 

integrates the output of this classifier with bioinformatic metrics to help discern the 

functional implications of such movements. We provide TRANSPIRE as an installable 

Python package via GitHub (https://github.com/cristealab/TRANSPIRE_JASMS2020), and 

provide documentation and example workflows for data analysis. The TRANSPIRE pipeline 

is applicable to spatial proteomics studies of varying experimental design and biological 

context, and here, we demonstrate its utility for predicting protein movements during viral 

infection in the context of two different experimental studies.

Reliable Prediction of Protein Translocation during Virus Infection.

As previously discussed, spatial proteomics studies can take on a variety of experimental 

designs, with one varied aspect being the type and extent of organelle fractionation. On one 

end of the spectrum is nuclear-cytoplasmic fractionation, while at the other end are studies 

that perform consecutive fractionation steps to provide increased organellar resolution. In 

considering this, we aimed to test the applicability of TRANSPIRE to studies using these 

different approaches. To start, we analyzed a multiplexed nuclear-cytoplasmic fractionation 

data set (Figure 2A) reported in Gilbertson et al.53 By using transfection with muSOX, a 

viral endonuclease encoded by Kaposi Sarcoma-associated herpesvirus (KSHV), this study 

uncovered nuclear-cytoplasmic shuttling events linked to KSHV-induced cellular mRNA 

decay. After integrating this data set with a set of known organelle markers for the cells used 

in this study (HEK293T),54 we leveraged TRANSPIRE to generate synthetic translocation 

profiles, optimize model parameters and hyperparameters, and finally predict muSOX-

induced shuttling events. Our results demonstrate that the classifier generally performs well 

Kennedy et al. Page 10

J Am Soc Mass Spectrom. Author manuscript; available in PMC 2020 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/cristealab/TRANSPIRE_JASMS2020


across the experimental conditions (Figure 2B and Table S4). Moreover, our analysis of 

muSOX-induced translocation events demonstrated an enrichment for proteins involved in 

RNA binding (Figure 2C and Table S5), in agreement with the observations reported in the 

original study. For example, among the top scoring predicted translocations were PABPC1, 

PABPC4, and LARP4 (Figure 2D and Table S6)—three of the essential factors that were 

validated and functionally investigated in the original study. We additionally note that 

TRANSPIRE does not predict translocations of these proteins in cells devoid of the cellular 

exonuclease Xrn1, further replicating the Xrn1-dependent nature of these movements as 

reported in the original study.

Upon validation of TRANSPIRE’s ability to predict protein movement in the context of a 

nuclear-cytoplasmic fractionation workflow, we next tested its performance on a more 

complex data set that investigated protein localization throughout the course of HCMV 

replication. Infection with HCMV is known to result in radical alterations of the host 

proteome,34,82,83 in conjunction with broad remodeling of organelle shape and functions.
44,84–86 Our previous finding of temporal changes in protein abundances within a wide range 

of subcellular organelles34 has led us to propose that HCMV infection induces protein 

translocations on a global scale. We therefore applied TRANSPIRE to study protein 

movement throughout the cycle of HCMV replication. We predicted that we could repurpose 

the data set collected by Jean Beltran et al.,34 which focused on assigning protein 

localization during infection, to uncover temporal protein movements between organelles. In 

brief, the study consisted of spatial profiles across six organelle fractions for paired 

uninfected and infected samples throughout the HCMV replication cycle (24, 48, 72, 96, and 

120 h post infection (hpi)) (Figure 2E). To maintain consistency, we retained organelle 

markers from the original study, and by using this information, TRANSPIRE generated over 

1 million synthetic translocation profiles representing 64 classes of movements and eight 

not-translocating classes (Table S7). Following hyperparameter optimization (see the 

Materials and Methods), these profiles were then used to train SVGP models for each 

infected vs uninfected time point comparison (Figure 2E).

To validate classifier performance in the context of the synthetic translocation data, we 

utilized a stratified cross-validation strategy (detailed in the Materials and Methods, and the 

results are provided in Table S8). Of note, we observed a level of overlap between organelle 

marker classes (Figure S1A), which resulted in overlap between synthetic translocation 

classes (Figure S1B). This is an inherent challenge of spatial proteomics and the 

experimental workflows leveraged for separating organelles. Despite this overlap, we still 

obtained relatively high F1 scores across all infection time points at both the level of binary 

(e.g., translocating vs not translocating) and multiclass assignment (Figure 2F). We further 

show that by grouping ambiguous organelles (plasma membrane/cytoplasm, ER/Golgi/

lysosome, and dense cytosol/nucleus) these scores are further increased (Figure 2F; 

multiclass (grouped)). This not only demonstrates the extent of classifier accuracy, precision, 

and recall, but it shows that, even if the model does not predict a single translocation class 

with high certainty, it retains the ability to predict translocations between groups of 

organelles. Finally, when the classifier does predict a label incorrectly in either of these 

scenarios, it generally does so with a much lower score than when it predicts a label 
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correctly, demonstrating that prediction scores scale accordingly with classifier uncertainty 

(Figure 2G).

If we look more closely at which classes of translocations are incorrectly predicted (Figure 

S2C), we observe that, in general, the most-frequently misclassified labels include those for 

translocations involving either the nucleus or the Golgi compartments. This was, perhaps, 

not surprising given that these two sets of markers overlapped with other marker classes and 

had much lower representation in the marker set (approximately 10 and 20 marker proteins, 

respectively). Furthermore, as expected, we observe that the classifier has some difficulty 

differentiating between sets of organelles that are relatively poorly separated (e.g., 

components of the secretory system). Again, however, we note that we can rescue many of 

these lower-scoring classes by grouping together organelles that we observe to be poorly 

separated (Figure S2D). Additionally, we see that the classifier generally performs well in 

the prediction of nontranslocating classes (Figure S2C; red boxes), overall, giving us 

confidence in the classifier’s ability to distinguish translocating from nontranslocating 

proteins.

HCMV Infection Induces Protein Translocations at a Global Scale.

To minimize the likelihood of false positives, we leveraged the model performance on the 

synthetic translocation data to calculate false-positive rates corresponding to given 

translocation score thresholds on a per-condition basis (Figure S3A). We settled on a 

stringent cutoff of 0.3%, as this cutoff retained proteins already known to translocate during 

infection. Upon input of the actual infected and uninfected spatial profiles into the trained 

TRANSPIRE classifier, we found that although most proteins are predicted to remain static, 

over 800 proteins were projected to translocate with scores greater than our confidence 

cutoff (Figure 3A and Table S9). Something to consider is that changes in protein 

distribution may occur as a result of physical movement of a protein between compartments, 

as well as targeted protein synthesis or degradation. Therefore, we next assessed whether 

TRANSPIRE-predicted translocations exhibited changes in abundance at the whole 

proteome level. Performing this additional analysis revealed that, on average, the proteins 

predicted to translocate exhibit relatively little change in abundance between infected and 

uninfected states (Figure S3B) and that, globally, translocation scores are not correlated with 

changes in protein abundance (Figure S3C). As expected, however, several proteins 

predicted to translocate also have relatively large changes in protein abundance. For 

example, the immune response factors STAT1 and ISG15 were identified to translocate from 

the cytoplasm to the dense cytosol, and their abundances increased upon infection by 

approximately 7-fold and 97-fold, respectively.82 We additionally noted that protein 

movements were primarily predicted to occur between well-connected organelles, for 

example, between the plasma membrane and cytoplasm or between secretory system 

components. The most abundant number of translocations occurred between the plasma 

membrane/cytoplasm and the dense cytosol/nucleus (Figure 3A). This was encouraging 

given the number of nucleocytoplasmic shuttling events already reported during HCMV 

infection and the prominent rearrangements made to secretory organelles upon formation of 

the HCMV viral assembly complex (vAC).84,87–90
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In general, the translocation predictions made by TRANSPIRE agreed with the original 

study, particularly for the high confidence predictions (Figure 3B, Q2 and Q3). Of the 

predictions that were not in agreement with the original study (Figure 3B Q1 and Q4), only 

1.1% (Q1) and 0.2% (Q4) of these predictions passed our selection criteria (i.e., few of these 

disagreements were made with high confidence). Of this small proportion of possible 

disagreements, it is possible that those in Q1 arise as a result of increased sensitivity of the 

TRANSPIRE classifier, while those in Q4 may correspond to a small (but expected) 

proportion of false negatives. However, it is also possible that these proteins may be 

incorrectly classified by both methods, for example for proteins with ambiguous 

localizations or for those undergoing localization-dependent changes in abundance (as stated 

above). Among proteins passing our selection criteria, we observed more than 900 

previously unreported confident translocation events corresponding to approximately 500 

proteins that were either not identified or identified with low confidence in the original study 

(Figure 3B, points highlighted in red). Additionally, we show that higher TRANSPIRE 

translocation scores tend to enrich for proteins known to have the capacity to traffic between 

compartments, i.e., proteins with high or very high translocation evidence scores from the 

Translocatome database91 (Figure 3C). On the other hand, lower TRANSPIRE translocation 

scores tend to be negatively correlated with high Translocatome evidence scores, and instead 

enrich for proteins with low evidence scores (Figure 3C).

It was reassuring that TRANSPIRE pointed to known protein movements with established 

functions at various stages during the HCMV replication cycle. For example, early in 

infection we detected translocations that contribute to immune signaling and HCMV evasion 

of immune surveillance, while late in infection we identified movements that contribute to 

virus assembly (Figure 3D). Specifically, we detected the movement of major 

histocompatibility complex (MHC) class I-related chain A (MICA) away from the cell 

membrane, which inhibits NK cell-mediated immune surveillance.8,92 Additionally, 

TRANSPIRE was able to detect the shuttling of STAT1, a critical regulator of interferon-

stimulated gene (ISG) expression, from the cytoplasm to the nucleus. This shuttling has been 

shown to be important for HCMV-induced rewiring of ISG signaling.93,94 By 24 hpi, 

TRANSPIRE had also identified translocation of mannose-6-phosphate receptors M6PR and 

IGF2R from the lysosome to the Golgi apparatus. These proteins have been reported to 

colocalize with HCMV envelope glycoprotein gH at the vAC,95 the formation of which 

involves the reorganization of Golgi membranes.90 Finally, TRANSPIRE also identified the 

plasma membrane to lysosome translocation of the unconventional myosin MYO18A, a 

protein that we have previously reported to be important for efficient HCMV replication.34

Protein Translocations Are Prevalent in Processes Contributing to Virus Replication and 
Host Defense.

Given the extended time frame of the HCMV replication cycle and its apparent induction of 

global changes in protein distributions, we wanted to further examine the spatiotemporal 

dynamics of these movements. At a global level, TRANSPIRE predicted that the vast 

majority (over 85%) of translocating proteins undergo these movements by or before 72 hpi 

(Figure 4A). This is in agreement with the understanding that most HCMV-induced cellular 

dysregulation events are evident (or becoming evident) by this stage of infection. We also 
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observed that translocations to the dense cytosol occurred early in infection (by 24 hpi), 

while translocations to or from secretory organelles primarily occurred later (Figure 4B), 

which correlates with the formation of the vAC.

To determine which pathways are targeted by these movements, we performed a gene 

ontology (GO) association enrichment analysis for all translocating proteins throughout 

infection (Figure 4C and Table S10). To assess whether groups of proteins exhibit 

coordinated co-translocation, we additionally calculated the Mahalanobis distance between 

all translocating proteins (Figure S3D). Comparison of these values with distances between 

proteins in the CORUM database allowed us to establish a metric for evaluating the extent of 

co-translocation for given sets of proteins (Figure S3E). We noted that pathways involved in 

cellular signaling processes (particularly immune signaling), cell cycle regulation, 

metabolism, and trafficking were significantly enriched for protein movements as well as co-

translocations (Figure S4A–K and Table S11). While many of these categories include 

proteins that have already been identified to translocate during infection, we also observed 

numerous previously unappreciated protein movements.

A significantly enriched functional category included proteins with roles in cholesterol 

metabolism, such as the low-density lipoprotein receptor (LDLR), scavenger receptor 

SCARB1, and members of the clathrin-mediated adaptor protein 2 complex (AP-2) (Figure 

5A). For example, LDLR was predicted to translocate from the plasma membrane to the ER/

Golgi/Lysosome early during the replication process (Figure 5B). HCMV infection is well-

known to dysregulate cellular lipid synthesis96 and, more specifically, upregulate 

intracellular cholesterol levels.97 Given that cholesterol content of the HCMV viral envelope 

has been shown to positively correlate with the infectivity of newly formed virions,97 we 

asked whether LDLR may be degraded at the lysosome, possibly as an antiviral host 

response to infection. Indeed, referencing one of our previous studies,82 we found that 

LDLR protein abundance levels decrease throughout HCMV infection (Figure 5C). We 

further validated this decrease by performing parallel reaction monitoring (PRM) analysis of 

two unique LDLR peptides during infection (Figures 5D and S5A). However, it remains 

possible that this decrease in protein abundance is driven by mechanisms other than 

lysosomal degradation. We therefore consulted a study that monitored alterations to the viral 

and cellular transcriptome during HCMV infection98 and noted that LDLR mRNA levels are 

also decreased (Figure S5B). This was concomitant with an upregulation of the mRNA 

levels of PCSK9, the protein responsible for targeting LDLR to the lysosome for 

degradation (reviewed in ref 99) (Figure S5B). Given the extended half-life of the LDLR 

protein (14–24 h100), it is, perhaps, not surprising that a cellular response aiming to rapidly 

decrease LDLR levels would target its regulation at both the transcriptional and post-

translational levels. In support of the importance of LDLR family member proteins, the 

infection-induced upregulation of LRP1 has also been implicated as a host antiviral response 

to HCMV infection.97 Given our results, it is possible that LDLR translocation and putative 

degradation at the lysosome may also contribute to host-mediated cholesterol restriction.

Perhaps not surprising, another functional category significantly enriched among the 

translocating proteins was cellular trafficking. Transport factors are not only necessary for 

facilitating protein movements, but also for virus trafficking and assembly.90,101 These 
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factors include members of the dynein motor complex and the ER-to-Golgi intermediate 

compartment (ERGIC) (Figure 5D), both of which have been shown to exhibit 

reorganization upon infection.90,102 However, some of the other factors that we observed to 

translocate have not previously been reported to undergo HCMV-induced changes in 

localization. Among these are members of both clathrin-independent and clathrin-dependent 

trafficking mechanisms, including coatomer subunits involved in ER-to-Golgi transport and 

clathrin adaptor protein complexes AP-1, AP-2, and AP-3 (Figure 5E). In uninfected cells, 

AP-1, AP-2, and AP-3 are generally responsible for trafficking endosomes between the 

trans-Golgi network (TGN), plasma membrane, and lysosomes, respectively. Intriguingly, 

each of these complexes exhibited translocation profiles during infection that were distinct 

from one another—both spatially and temporally (Figure S5C). For example, TRANSPIRE 

predicted AP-1 to translocate from the plasma membrane/cytoplasm to the ER/Golgi/

lysosome at around 72 hpi, which is supported by the recent report of its localization to the 

vAC.103 On the other hand, AP-3 was predicted to translocate from the cytoplasm to the 

dense cytosol by 24–48 hpi, while at 48 hpi AP-2 was predicted to undergo movements 

between components of the secretory system. Of these complexes, all three have been 

implicated in the replication cycles of a number of other viruses, including human 

immunodeficiency virus (HIV), dengue virus, and West Nile virus.104,105 However, with the 

exception of AP-1, the contribution of the redistribution of these factors to HCMV infection 

is largely unknown. Broadly, clathrin-mediated processes have been shown to contribute to 

HCMV virion maturation and trafficking, and numerous HCMV viral proteins have been 

shown to engage with clathrin-associated factors.106–108 Overall, these changes in 

distribution of clathrin-associated proteins appear to not only reflect HCMV-induced 

changes in subcellular organization, but also the necessity of HCMV modulation of diverse 

cellular trafficking pathways to achieve proper replication.

HCMV Infection Induces the Redistribution of DAPK3 as a Possible Link to Activation of 
Wnt Signaling.

In addition to cholesterol metabolism and trafficking, we also discovered an enrichment of 

translocating factors involved in the regulation of Wnt signaling—another pathway known to 

be perturbed by HCMV infection.109,110 Among these proteins are subunits of the 

proteasome, which are responsible for regulating the cytoplasmic levels of the transcription 

factor β-catenin, as well as DAPK3 (also known as ZIPK), a multifunctional kinase involved 

in several cellular processes including Wnt signaling (Figure 5F).111 DAPK3 was predicted 

to translocate with high confidence (score >0.95), moving from the plasma membrane/

cytoplasm to the dense cytosol/nucleus (Figure S5D).

To investigate this further, we assessed DAPK3 distributions in uninfected and infected cells 

using confocal microscopy (Figure 6A). To better capture its movement during the early 

stages of infection, we assessed DAPK3 localization at 6, 12, and 24 hpi, using the 

immediate-early HCMV protein IE1 as a marker of infected cells. We found that in 

uninfected cells DAPK3 predominantly localizes to the plasma membrane and cytoplasm, 

with very few puncta found in the nucleus. However, upon infection, the presence of DAPK3 

at the plasma membrane sharply decreases. This is particularly evident when looking at 

infected and uninfected cells directly next to one another in the same image (white and red 
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arrows, respectively, in Figure 6A). We quantitatively confirmed this decrease by acquiring 

line scans across uninfected and infected cells (Figure 6B). Additionally, this decrease at the 

plasma membrane generally correlates with little change in the amount of DAPK3 observed 

in the cytoplasm (Figure 6C), which suggests that the relative ratio of cytoplasmic to plasma 

membrane associated DAPK3 is significantly higher in infected cells. We also saw that 

infected nuclei exhibited increased DAPK3 signal, which appeared to manifest as puncta and 

peak at 12 hpi (Figure 6A and 6C). Thus, we confirmed HCMV induces translocations of 

DAPK3 between multiple sets of cellular compartments.

Like other viruses,112,113 HCMV infection has been observed to activate Wnt signaling.110 

However, it appears to accomplish this in a noncanonical fashion, relying, in part, on 

expression of the HCMV protein pUS28.110 pUS28 is a virally encoded chemokine receptor, 

and its regulation of the Rho-associated kinase (ROCK) signaling axis has been implicated 

in HCMV-induced Wnt signaling.110 Nevertheless, the downstream effectors of this cascade 

remain unknown. Given that DAPK3 is a downstream substrate of ROCK114 that positively 

regulates Wnt signaling,111 it is tempting to speculate that nuclear translocation of DAPK3 

contributes to this HCMV-induced increase in Wnt signaling. In support of this notion, 

ROCK activation has been shown to restrict HCMV propagation,115 and ROCK is known to 

phosphorylate DAPK3 at a site that inhibits its nuclear localization.114 Given our findings, it 

is possible that the plasma membrane to cytoplasm and nucleus translocation of DAPK3 

represents a missing link in HCMV induction of Wnt signaling.

CONCLUDING REMARKS

Here, we introduce the TRANSPIRE computational pipeline and demonstrate its ability to 

predict the spatiotemporal dynamics of protein movements from spatial proteomics data sets. 

This pipeline illustrates the value of using a Gaussian process classifier framework for 

organelle proteomics studies. We show the applicability of this pipeline for studying nuclear-

cytoplasmic protein shuttling, as well as protein movement between diverse subcellular 

compartments during infection. Our application of this pipeline to studying HCMV infection 

revealed global, infection-induced protein translocations that were temporally regulated. 

These protein translocations reflected processes important for virus replication and host 

defense, such as cholesterol metabolism, subcellular trafficking, and Wnt signaling. Using 

microscopy, we validated the HCMV-induced translocation of the death associated protein 

kinase 3 (DAPK3), a movement that may contribute to the ability of the virus to modulate 

Wnt signaling. Given the ubiquitous importance of protein movement within cellular 

processes, the methodology employed by TRANSPIRE can be readily applied, as well as 

expanded to study translocations in the context of a wide variety of experimental designs 

and biological questions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Workflows for spatial proteomics and the TRANPIRE pipeline for studying protein 

localization and movement. (A) General workflow for assessing the subcellular distribution 

of cellular proteins using organelle fractionation-based spatial proteomics. Most commonly, 

these approaches combine multiplexed isobaric labeling and quantitative mass spectrometry 

with machine learning to discern information regarding protein localization. Organelle 

marker proteins are used to inform machine learning-enabled classification. (B) Data 

processing and analysis pipeline for TRANSPIRE, a computational method leveraging a 

Gaussian process classifier (GPC) to characterize protein movements between organelles. 

By training the classifier with synthetic translocation profiles derived from different 

combinations of organelle markers, this classifier can detect and score the probability of 

protein translocation events. The output of the classifier is further combined with 

Mahalanobis distance analyses to identify co-translocating proteins and protein complexes. 
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Integration of this analysis with known interactions and gene ontology enrichment can help 

reveal the putative function of these changes in protein distribution.
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Figure 2. 
Assessing the reliability of TRASPIRE classification for predicting protein translocations in 

the context of viral infection. (A) Experimental workflow from Gilbertson et al.,53 a study 

focused on understanding nuclear-cytoplasmic shuttling events upon KSHV-induced cellular 

mRNA decay (induced by transfection of the KSHV endonuclease muSOX or its 

catalytically inactive counterpart muSOX D219A). (B) Boxplots of weighted F1 scores 

describing classifier performance across five balanced training folds and three biological 

replicates for each experimental condition. (C) Gene ontology enrichment on proteins 

predicted to translocate by TRANSPIRE point to RNA binding proteins, in agreement with 

the results of the original manuscript. (D) Selected profiles of proteins predicted to 

translocate by TRANSPIRE in an Xrn1-dependent manner. Solid lines and shaded areas 

represent the mean and standard deviation, respectively, of protein profiles across the three 

biological replicates reported in the study. (E) Experimental workflow for the HCMV spatial 
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proteomics study that was subsequently analyzed by TRANSPIRE. Using 6-plex TMT 

labeling, Jean Beltran et al. generated spatial profiles of proteins in uninfected and (HCMV)-

infected cells at 24, 48, 72, 96, and 120 hpi. The curated organelle markers defined in the 

original study were used to generate synthetic translocation profiles from all pairwise 

combinations of organelle markers. Equal subsets of profiles corresponding to each 

combination of markers were then used to train the classifier and performance was validated 

on a held-out subset of test data. Following training, the classifier was then applied to predict 

translocations within the data set and high confidence predictions were further characterized 

by integrating information regarding known protein interactions and gene ontology 

enrichment analysis. (F) Boxplots of weighted F1 scores describing performance on the 

held-out test data set across all time points of infection at both binary (e.g., translocating 

versus not translocating) and multiclass levels, as well as for classifier predictions after 

grouping ambiguous organelles. Ambiguous organelle groups were: plasma membrane/

cytoplasm, ER/Golgi/lysosome, and dense cytosol/nucleus. (G) Classifier score distributions 

for correct and incorrect classifier predictions before and after grouping ambiguous 

organelles. Note that these scores refer to multiclass translocation assignments rather than 

the binary translocation scores discussed later in the manuscript.
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Figure 3. 
HCMV infection globally induces protein movements. (A) Sankey diagram depicting all 

high confidence predictions made by TRANSPIRE across all infection conditions. Each 

color (besides red) represents a different organelle, while the width of the strip represents the 

number of proteins that correspond to that organelle in each state. (B) Agreement between 

TRANSPIRE translocation predictions and the original study. To make this comparison, we 

generated a putative “translocation score” from the organelle assignments described in the 

original study (see eqs 5 and 6). Scores closer to 0 or closer to 1 indicate less uncertainty, 

while scores closer to 0.5 represent high uncertainty. (C) Translocation scores plotted against 

the relative enrichment for proteins with low, high, and very high translocation evidence 

scores in the Translocatome database.91 Cutoffs were defined as per the Translocatome 

publication (e.g., low ≤ 0.4487, high > 0.4487 ≤ 0.6167, and very high > 0.6167), and the 

enrichment baseline was determined by the translocation evidence scores for all proteins 

Kennedy et al. Page 28

J Am Soc Mass Spectrom. Author manuscript; available in PMC 2020 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



detected in the study. D) TRANSPIRE identification of proteins known to translocate upon 

HCMV infection. (Top) Protein translocation profiles compared to synthetic translocation 

profiles for the corresponding predicted translocation class. Solid lines and shaded areas 

represent the mean and standard deviation, respectively, of protein profiles across all time 

points for uninfected and infected cells. (Bottom) schematic overview of the role of these 

movements during HCMV infection. Mean translocation scores and their standard deviations 

across time points are reported. Abbreviations: PM, plasma membrane; DC, dense cytosol.
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Figure 4. 
Temporal, spatial, and functional nature of protein movements reflect the HCMV 

modulation of cellular pathways. (A) Onset times for protein movement events identified by 

TRANSPIRE. Onset was defined as the first time point with a translocation score above the 

determined cutoff. (B) Spatiotemporal dynamics of protein movements during HCMV 

infection illustrated as a Sankey diagram. (C) Results of gene ontology (GO) analysis of all 

translocating proteins. GO terms are color-coded by the general category that they belong to. 

Gray data points on the right-most graph represent the −log10(p-value), and the dashed line 

represents a significance cutoff of 0.05. GO terms that returned a p-value of 0.0 based on 

FDR resampling are represented with a p-value of 0.0001 for visualization purposes. PM, 

plasma membrane; DC, dense cytosol.
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Figure 5. 
HCMV infection targets cholesterol metabolism, cellular trafficking factors, and Wnt 

signaling via protein translocations. (A) Translocating and co-translocating proteins involved 

in cholesterol metabolism. Co-translocations that correspond to a known interaction are 

shown in blue, while other co-translocations are shown in gray. Node border color denotes 

the time of translocation onset. (B) Translocation profiles of LDLR relative to the synthetic 

translocation profiles generated for plasma membrane (PM) to ER/Golgi/Lysosome 

movements. (C) LDLR protein levels decrease throughout HCMV infection. Error bars 

represent the standard deviation of three biological replicates. (D) Validation of decrease in 

LDLR levels by targeted mass spectrometry. Error bars represent the standard deviation 

across two unique LDLR peptides quantified by parallel reaction monitoring (PRM). (E) 

Translocating and co-translocating protein categories involved in intracellular trafficking. 

Edge width scales with the number of TRANSPIRE-identified co-translocations that 
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represent known (blue) or unknown (gray) associations. (F) Translocating and co-

translocating proteins involved in Wnt signaling.
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Figure 6. 
HCMV stimulates DAPK3 translocation between multiple subcellular compartments. (A) 

Immunofluorescence microscopy images (maximum projections) of DAPK3 distributions in 

uninfected and HCMV-infected cells early during HCMV infection (6, 12, and 24 hpi). The 

immediate-early HCMV protein IE1 is provided as marker of infected cells. Yellow arrows 

denote the nucleus that is cross-sectioned in the right-most panel. For emphasis, white 

arrows highlight plasma membrane accumulations of DAPK3 in uninfected cells, while red 

arrows point to infected cells that have lost this phenotype. (B) Line scan analysis of DAPK3 

distributions (shaded to highlight the plasma membrane and cytoplasm, with the nucleus 

between the cytoplasm shadings) in uninfected and infected cells at 6, 12, and 24 hpi. The 

schematic in the upper-left corner is a representation of the orientation of the line scans 

relative to the cell body. (C) Overlay of the distribution of DAPK3 relative to the nucleus in 

uninfected and infected cells at 6, 12, and 24 hpi. Solid lines and shading represent the mean 
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and standard deviation, respectively, across line scans from all cells analyzed at a given 

condition.
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