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Abstract

For a complete understanding of a system's processes and each protein's role

in health and disease, it is essential to study protein expression with a spatial

resolution, as the exact location of proteins at tissue, cellular, or subcellular

levels is tightly linked to protein function. The Human Protein Atlas (HPA)

project is a large-scale initiative aiming at mapping the entire human prote-

ome using antibody-based proteomics and integration of various other omics

technologies. The publicly available knowledge resource www.proteinatlas.org

is one of the world's most visited biological databases and has been extensively

updated during the last few years. The current version is divided into six main

sections, each focusing on particular aspects of the human proteome: (a) the

Tissue Atlas showing the distribution of proteins across all major tissues and

organs in the human body; (b) the Cell Atlas showing the subcellular localiza-

tion of proteins in single cells; (c) the Pathology Atlas showing the impact of

protein levels on survival of patients with cancer; (d) the Blood Atlas showing

the expression profiles of blood cells and actively secreted proteins; (e) the

Brain Atlas showing the distribution of proteins in human, mouse, and pig

brain; and (f) the Metabolic Atlas showing the involvement of proteins in

human metabolism. The HPA constitutes an important resource for further

understanding of human biology, and the publicly available datasets hold

much promise for integration with other emerging efforts focusing on single

cell analyses, both at transcriptomic and proteomic level.
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1 | INTRODUCTION

Human physiology is tightly linked to the complex inter-
play between cell type-specific functions and molecular
interactions between cells. For a full understanding of
underlying disease mechanisms, it is necessary to study
the tissue architecture with a single-cell resolution. Ever
since completion of the human genome sequence, several
efforts have focused on mapping the entire human

proteome, the functional representation of the genome.
The standard approach for spatial localization of proteins
in tissue is antibody-based proteomics, for example,
immunohistochemistry (IHC) that allows for in situ
detection of human proteins in intact tissue samples.

Built upon this strategy, the Human Protein Atlas
(HPA) project has been established, with the overall aim
to reveal the spatial distribution of the entire human
proteome in different cells, tissues, and organs.1

Received: 31 August 2020 Revised: 29 October 2020 Accepted: 30 October 2020

DOI: 10.1002/pro.3987

218 © 2020 The Protein Society Protein Science. 2021;30:218–233.wileyonlinelibrary.com/journal/pro

https://orcid.org/0000-0001-5611-1015
mailto:cecilia.lindskog@igp.uu.se
http://www.proteinatlas.org
http://wileyonlinelibrary.com/journal/pro


Antibody-based imaging is combined with trans-
criptomics, mass spectrometry-based proteomics, kinet-
ics, and systems biology, forming the basis for the
comprehensive open-source database divided into six
different interconnected sub-atlases: (a) the Tissue Atlas
showing the distribution of proteins across all major tis-
sues and organs in the human body;2 (b) the Cell Atlas

showing the subcellular localization of proteins in single
cells;3 (c) the Pathology Atlas showing the impact of
protein levels for survival of patients with cancer;4

(d) the Blood Atlas showing the expression profiles of
blood cells and actively secreted proteins;5 (e) the Brain
Atlas showing the distribution of proteins in human,
mouse and pig brain;6 and (e) the Metabolic Atlas

FIGURE 1 The global structure of the Human Protein Atlas web portal. Exploration of the Human Protein Atlas data is guided

through a systemic and a gene-centric approach, both subdivided into six interconnected sub-atlases. The systemic approach entails

exploration of various sub-atlas proteomes, each specific to a group of genes belonging to a certain location or activity within the body, such

as an organ, blood, or genes involved in metabolism. The sub-atlas pages are accessed by clicking on either of the sub-atlas images on the

startpage. The other option is to search for specific genes using the startpage search field that can be combined with various different

filtering options. The search leads the visitor to a search result page, wherein the gene of interest can be selected to access gene-specific data,

both summarized in the gene summary page and presented in depth in the different gene-specific sub-atlases. In addition, the database

contains a page with data concerning SARS-CoV-2 relevant proteins, as well as downloadable datasets and educational material such as

dictionaries, found in the menu (blue frames)
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showing the involvement of proteins in human metabo-
lism7 (Figure 1).

The database is updated on a yearly basis, including
both new antibody characterization data in tissues and
cells, as well as new functionalities. Version 19 contains
>26,000 antibodies, covering >17,000 unique proteins,
thereby covering �87% of the human protein-coding
genome. The Blood Atlas, Brain Atlas, and Metabolic
Atlas constitute the most recent additions to the data-
base, providing novel insights on several different aspects
of human biology. In addition to these new sections, the
previous Tissue Atlas, Cell Atlas, and Pathology Atlas
have been expanded with new datasets and
functionalities.

HPA provides an important resource for both basic
and clinical research. Here, a summary of recent updates
are provided, together with examples highlighting how
the data can be useful for answering different research
questions, and how the six different sections are inter-
connected and complementary.

2 | THE TISSUE ATLAS

The integral part of the HPA database that has been the
main focus since the first release in 2005 is the Tissue
Atlas, that presents the cell type-specific spatial localiza-
tion of 15,313 proteins in >40 different human tissues

FIGURE 2 The Tissue Atlas—integration of mRNA expression with IHC. (a) Overview of the 37 main organ systems with RNA

expression levels based on three different datasets (HPA, GTEx, and FANTOM5), used for classification of tissue specificity and tissue

distribution. (b) Pie charts showing the number of genes belonging to each of the categories for tissue specificity and tissue distribution.

(c) IHC staining of zona pellucida binding protein (ZPBP) in testis tissue, outlining the eight different cell types present in the sample: 1:

spermatogonia; 2: preleptoteine spermatocytes; 3: pachytene spermatocytes, 4: round/early spermatids; 5: elongated/late spermatids; 6:

Sertoli cells; 7: Leydig cells; 8: peritubular cells. ZPBP is highly expressed in round/early spermatids and elongated/late spermatids
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and organs. The analysis is combined with mRNA
expression data from three different body-wide datasets:
Internally generated HPA data,2,8 the genome-based tis-
sue expression (GTEx) consortium9 based on RNA-seq,
and the FANTOM5 consortium10 based on cap analysis
gene expression.

In order to provide a comprehensive overview of
expression levels across the entire human body and high-
light genes and proteins selectively expressed in certain
organs, a consensus classification was performed taking
into consideration all three RNA expression datasets.
Based on normalized expression levels (NX) across 61 tis-
sues, organs, and blood cell types5,11 summarized into
37 different main organ systems (Figure 2a), each gene
was classified based on tissue specificity and tissue distri-
bution. The tissue specificity is based on the fold-change
of mRNA expression levels across all analyzed 37 tissues
and organs, divided into five different specificity catego-
ries: (a) Tissue enriched: One tissue has at least fourfold
higher mRNA level compared to all other tissues,
(b) Group enriched: A group of 2–5 tissues have at least
fourfold higher mRNA levels compared to all other tis-
sues, (c) Tissue enhanced: One tissue has at least fourfold
higher mRNA level compared to the average level in all
other tissues, (d) Low tissue specificity: At least one tissue
has mRNA levels above cutoff, but gene does not belong
to any of the above categories, or (e) Not detected: All tis-
sues have mRNA levels below cutoff. Genes defined as
elevated (tissue enriched, group enriched, or tissue
enhanced) constitute particularly interesting targets for
organ-specific research, as the corresponding proteins are
responsible for many of the organ-specific functions that
may be disrupted in disease (Figure 2b).

In addition to tissue specificity, another level of cate-
gorization based on the consensus RNA expression
dataset has been introduced in the most recent version of
the Tissue Atlas—tissue distribution. The tissue distribu-
tion takes into consideration how many tissues that have
detectable mRNA levels above cutoff, and is divided into
five different categories: (a) detected in single, where only
a single tissue has detectable levels, (b) detected in some,
where more than one but less than one-third of the tis-
sues have detectable levels, (c) detected in many, where
at least a third but not all tissues have detectable levels,
(d) detected in all, where all 37 tissues have detectable
levels, and (e) not detected, where none of the 37 tissues
have detectable levels. The analysis showed that only
737 proteins are detected in a single tissue, constituting
especially interesting targets for organ-specific research
(Figure 2b).

Combining the mRNA-based tissue specificity with
IHC analysis allows for further investigation of the exact
location of the corresponding proteins, thereby revealing

important functional context. Based on this strategy,
HPA has published many separate papers focusing on
tissue-specific proteomes.12–26 One organ that has proven
particularly interesting is the testis, which constitutes the
organ with the highest number of tissue elevated genes.2

This is considered to be due to the complex nature of this
organ, whereby thousands of genes and proteins are acti-
vated and repressed during spermatogenesis, the process
where stem cells undergo several steps of mitosis and
meiosis before being developed into mature sperm. Many
of the corresponding proteins involved in this process
have an unknown function,27–30 and studying their
detailed cell type-specific locations gives important
insights into their potential function in spermatogenesis,
revealing targets important for further research on infer-
tility and reproductive disorders. Previously, manual
annotation of each testis image on the HPA was limited
to two main cell types—cells in seminiferous ducts, and
Leydig cells. This broad characterization however lacked
important details on the various cell types and cell states
present in this organ, and in order to perform an in-depth
analysis and add important information about exact cell
type-specific locations, the annotation was expanded to
eight different cell types by involving an expert in repro-
ductive biology (Figure 2c). This extended effort was built
upon existing publicly available images on the HPA, and
in a first study focusing on �500 genes with an elevated
expression in testis,31 detailed spatial localization of a
large number of previously uncharacterized proteins was
provided. The proposed strategy of adding more in-depth
characterization to already existing images has large
potential to be used also for the other normal tissues and
organs, not only focusing on the main organ-specific cell
types, but also looking at cell types present in all organs
such as endothelial cells, fibroblasts and different
immune cells. During the last few years, the emerging
technology of single cell RNA-seq (scRNA-seq) has
received increased attention,32 allowing for quantitative
measurements of single cell transcriptomes across differ-
ent human tissues and cell types. Further advances in
this field will lead to the possibility to identify genes and
proteins elevated in certain cell types that can be com-
bined with detailed cell type-specific characterization of
protein expression levels based on IHC.

The exact cell type-specific localization of proteins is
not only important for understanding normal organ-
specific functions, but also for revealing mechanisms cru-
cial for disease progression and therapy decisions. One
example of such a study, taking advantage of the strin-
gent antibody validation workflow implemented in the
HPA, is the recently published body-wide protein expres-
sion profile of the Angiotensin I converting enzyme
2 (ACE2), suggested to be the key protein involved in
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SARS-CoV-2 host cell entry.33 For a full understanding of
the susceptibility for SARS-CoV-2 infection and the pro-
gression to severe and fatal disease, it is necessary to
study the cell type-specific expression of suggested entry
factors. It has previously been suggested that entry of
SARS-CoV-2 via ACE2 would explain the severe clinical
manifestations observed in various tissues and organs,
including the respiratory system. In the new study, it
could confidently be shown that none or only very low
levels of ACE2 were present in the normal respiratory
system, which was in contrast to previous studies.34 Fur-
ther studies are urgently needed to study the dynamic
regulation of ACE2, and to confirm whether the low
ACE2 expression in the human respiratory system is suf-
ficient for SARS-CoV-2 infection, or if other factors are
needed for host cell entry.35,36

The protein expression profile of ACE2 is the result of
the extensive knowledge gathered from the three different
RNA expression datasets published on the HPA portal,
combined with stringent IHC analysis and several other
external datasets both on the RNA and protein level. The
IHC data was generated using strategies proposed by the
International Working Group for Antibody Validation
(IWGAV).37 IWGAV was formed with representatives
from several major academic institutions and proposed
five different pillars to be used for antibody validation, to
ensure reproducibility of antibody-based studies. Valida-
tion must be performed in an application-specific manner,
using at least one of the strategies suggested by IWGAV.
HPA has implemented the criteria for enhanced validation
as suggested by IWGAV, and in the present version 19 of
the HPA, >10,000 antibodies have been validated using at
least one of these criteria.38 The overall aim is to increase
this number in upcoming versions. For IHC, two different
strategies for antibody validation can be used:
(a) orthogonal strategy, based on comparison of protein
expression levels using an antibody-independent method,
analyzing the expression levels of the same target across
tissues expressing the target protein at different levels; or
(b) independent antibody strategy, defined as a similar
expression pattern observed by an independent antibody
targeting a non-overlapping region of the same protein. In
the Tissue Atlas, 3,775 genes meet the criteria for
enhanced validation, where the corresponding proteins
have been targeted by at least one antibody validated by
orthogonal or independent antibody strategy.

The Tissue Atlas workflow, that combines
transcriptomics-based tissue specificity with stringent IHC
analysis, has also proven important in further characteri-
zation of “missing proteins,” defined as proteins that lack
evidence of existence on the protein level according to the
international initiative Human Proteome Project (HPP)
and its reference knowledgebase neXtProt.39 The current

count of “missing proteins” stands at 1900, out of which a
high proportion appear to be localized in special tissues
not part of the standard tissue repertoire in the HPA.40 By
adding novel tissue types based on transcriptomics infor-
mation from the GTEx and FANTOM5 datasets, >300 pro-
teins specifically expressed in, for example, eye, thymus,
hair follicles, and specialized regions of the brain could be
characterized, out of which a large proportion cor-
responded to “missing proteins.”41 Future efforts in adding
more specialized tissues, based on information from exter-
nal datasets both on the mRNA and protein level, hold
promise for increasing the coverage of the tissue-based
map of the human proteome by including such rarely
expressed proteins. In the quest for characterizing “miss-
ing proteins,” consideration should also be taken regard-
ing the fact that some proteins may only be expressed
during development, for example, expressed in fetal tis-
sues, or under certain functional circumstances, for exam-
ple, in lactating breasts. Another set of proteins
highlighted by the HPP is “uncharacterized proteins” that
have been confidently identified but lack functional anno-
tation. One such group of uncharacterized proteins belong
to the protein evidence category PE1, that is, have evi-
dence on the protein level, and are thus defined as uPE1
proteins.42 For this set of proteins, corresponding to 1,136
Ensembl genes in the HPA of which 899 have available
data in the Tissue Atlas, the spatial information may guide
in selecting appropriate tissues and cell types for further
functional characterization.

Antibody-based data is currently not considered for
evidence of protein existence in neXtProt, but future inte-
grative studies with mass spectrometry and IHC are
planned in order to increase the understanding of which
types of proteins that can be confidently detected by one
method and not the other. This is of special interest in
the quest for “missing proteins.”

3 | THE PATHOLOGY ATLAS

In order to compare the protein expression levels under
normal circumstances with a disease state, the Pathology
Atlas was introduced, with main emphasis on cancer. The
major release in 2017 presented the association of all
human protein-coding genes with clinical outcome in
17 major cancer types, based on genome-wide expression
data from the Cancer Genome Atlas.4 This systems level
approach allows for exploration of genes that correlate
with favorable or unfavorable prognosis, that is, genes
where high RNA expression levels are associated with
either longer or shorter survival time. All primary data is
summarized in an interactive survival scatter plot for each
gene, which gives a unique opportunity to study the
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correlation between expression levels and survival time for
each individual patient, or focusing separately on factors
that could potentially affect the survival data, such as gen-
der, dead/alive or a certain cancer stage. In version 18.1
released at the end of 2018, additional features were added
to the existing survival scatter plots. Both axes were com-
plemented with kernel density curves demonstrating the
data density over the axes, which facilitates interpretation
(Figure 3a). The top density plot shows the distribution of
expression levels among dead and alive patients, while the
right density plot visualizes the data density of the number
of years the dead patients survived based on high or low
expression levels, respectively. In addition to the density
curves, a P-score landscape is shown together with dead
median separation (Figure 3b), that defines the difference
in median mRNA expression between dead patients with
high and low expression. This is intended to aid the user
in visually exploring custom cutoffs and the associated P-
scores and dead/median separation.

Exploration of the potentially prognostic genes based
on mRNA data can be complemented by studying the
>5,000 images of IHC stained cancer tissues of

20 different cancer types, providing the basis for further
cancer research. The expression levels in cancer can also
be compared with corresponding normal tissue or cell
types in the Tissue Atlas, identifying proteins that could
serve as diagnostic biomarkers. Due to the importance of
IHC in diagnostic pathology, analysis of the cell type-
specific expression patterns of potential prognostic and
diagnostic biomarkers gives an unique opportunity to
search for novel candidates related to cancer types where
the currently used markers in the clinic are not enough
to guide treatment modalities or predict patient outcome.

The data from the Pathology Atlas has proven to be
useful to validate findings in a large number of studies
focusing on various aspects of cancer research, including
therapeutic efforts43–46 or more basic understanding of
tumor biology, such as tumor heterogeneity.47,48

4 | THE CELL ATLAS

Taking the spatial distribution of proteins to an even
more detailed level includes determining the location of

FIGURE 3 The Pathology Atlas—association of gene expression with clinical outcome. (a) Interactive survival scatter plot of cyclin

dependent kinase 1 (CDK1) in lung cancer. The plot shows the clinical status (i.e., dead or alive) for all individuals in the patient cohort. The

top kernel density plot demonstrates the expression level (FPKM) distribution among dead (red) and alive (blue) patients. The right density

plot shows the data density of the survived years of dead patients with high and low expression levels, respectively, stratified using the cutoff

indicated by the vertical dashed line. The cutoff is automatically generated, representing the lowest P score. (b) The P score landscape (black

curve; left axis) is shown together with dead median separation (red curve; right axis), highlighting the difference in median mRNA

expression between patients who have died with high and low expression, respectively
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all human proteins at a subcellular level, such as differ-
ent organelles. The Cell Atlas presents the subcellular
distribution of 12,390 proteins based on high-resolution
immunofluorescence images of cell lines. The proteins
are mapped to 32 different subcellular structures
corresponding to 13 main organelles. Since the major
update in 2016, further efforts have focused on increasing
the number of enhanced validated antibodies, and pres-
ently, 1,484 genes meet the criteria for enhanced valida-
tion. Three main strategies are used for enhanced
validation of protein expression patterns in cell lines:
(a) Genetic validation/siRNA, where the staining proce-
dure is repeated on siRNA transfected U-2 OS cells in
order to knock-down the expression of the protein,49

(b) Recombinant expression validation, where the anti-
body is further analyzed in HeLa cell lines stably
expressing a GFP-tagged target protein, and
(c) Independent antibody validation, where two or more
independent antibodies directed towards non-
overlapping regions of the target protein are used to
assess the reliability of the staining.

Further development of the Cell Atlas includes char-
acterization of the cell cycle specific proteome, providing
a comprehensive map of spatiotemporal heterogeneity of
the humane proteome.50 The analysis was based on inte-
grating proteomics at subcellular resolution with scRNA-
seq and pseudotime measurements of individual cells
within the cell cycle. It was shown that 17% of the human
proteome displays cell-to-cell variability, of which 26%
has a connection to cell cycle progression. The spatially
resolved proteomic map of the cell cycle will be inte-
grated in the upcoming version 20 of the HPA database,
presenting the first evidence for 235 novel cell cycle-
associated proteins, and serving as a valuable tool for
accelerating molecular studies of the human cell cycle
and cell proliferation.

In addition to the vast amount of biological informa-
tion provided in the HPA database, the massive image
collection of >10 million annotated images serves a valu-
able resource as benchmark datasets for further develop-
ment of deep learning models for image classification
and segmentation. The HPA has been engaged in two
such different projects based on the high-resolution
images provided in the Cell Atlas. One project focused on
a general audience through a groundbreaking gamified
citizen science effort,51 in which the gaming community
was involved through integration of subcellular classifica-
tion tasks in EVE Online, a popular massively multi-
player online game. The resulting mini-game called
“Project Discovery” was played by >300,000 citizen scien-
tists that achieved the major milestone of together gener-
ating >33 million classifications of protein subcellular
location. The classifications were both compared with

and used for boosting an artificial intelligence (AI) model
for automated prediction of subcellular location, the first
generalized tool for annotating proteins with multiple
locations. The citizen science project constitutes a unique
example of a workflow to rapidly leverage the output of
large-scale science efforts.

In another project, the computational community
was involved through an open Kaggle challenge,52 where
>2000 teams participated over a period of three months
in predicting multiple subcellular labels per image. This
classification is easy to a trained eye, but challenging to
automate. The presented solutions showed a wide variety
of applied strategies, and the winning model out-
performed the previous effort for multi-label classifica-
tion by �20%. The presented models can be used for new
image classifications or feature extractions for a wide
range of biological applications.

5 | THE BRAIN ATLAS

While the Tissue Atlas includes four different regions of
the human brain (cerebral cortex, hippocampus, caudate,
and cerebellum), these parts do not fully represent the
heterogeneous nature of the brain, with many nuclei and
cell types organized in complex networks. In an extended
effort, an integrated view of one-to-one orthologs of pro-
teins located in different regions of the human, mouse,
and pig brain was added as the new Brain Atlas,24

released in 2019. The regional expression in the brain of
these three mammalian species was profiled based on
1710 human brain samples, 119 pig brain samples, and
67 mouse brain samples. A gene classification was based
on 10 main anatomical regions of each mammalian brain
(Figure 4a). As many as 2,587 genes were elevated in the
brain compared to other organs when taking into consid-
eration the highest normalized expression value within
these 10 regions in comparison to the rest of the human
body (Figure 4b). This number of elevated genes is the
highest of all human organs, thereby highlighting the
brain together with the testis as the organs with most
proteins potentially involved in organ-specific functions.
A separate classification was then performed for the
brain, in order to identify genes elevated in individual
brain regions. Interestingly, many of the top genes
regionally elevated in the brain have not been previously
described in neural cells. Some of these genes were not
elevated from a whole-body perspective, and many of the
previously identified “signature genes” for brain specific
cell types were shown to have higher expression in cer-
tain peripheral tissues. Two such examples are ankyrin
1 (ANK1), a transport protein elevated in skeletal muscle,
and transcription factor AP-2 beta (TFAP2B), enriched in
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epididymis. In brain, both of these proteins were specifi-
cally expressed in cerebellum (Figure 4c). Another impor-
tant finding in the Brain Atlas is that many key genes
were differentially expressed between the three species,
calling for caution when results from animal models are
translated into research on the human brain.

As a complement to the IHC images of human brain
in the Tissue Atlas, the Brain Atlas also includes
immunofluorescently stained whole sections of mouse
brain for a selection of proteins involved in normal brain
physiology, brain development and neuropathological
disorders. This allows localization of the proteins to spe-
cific structures that are challenging to target when
assessing human samples, and as many as 129 different
areas and subfields of the brain are covered for 271 differ-
ent brain-relevant proteins. One example is the N-
terminal EF-hand calcium binding protein 1 (NECAB1),
specifically expressed in soma and dendrites of neuronal
cells (Figure 4d).

6 | THE BLOOD ATLAS AND THE
HUMAN SECRETOME

Transportation of cells and proteins throughout the
human circulatory system is vital to our survival. Physio-
logical functions such as the immune system, systems-
level control of homeostasis, transport of nutrients and
hormone regulation are all dependent on the circulating
cells and proteins found in the blood. Since blood is eas-
ily accessible and a rich source of systemic health-related
information, it has become the most commonly used
material for clinical and medical research analysis. The
effort of the HPA program to map the complete human
proteome was regarding blood previously limited to gene
expression in peripheral blood mononuclear cells
(PBMCs). The complete group of actively secreted human
proteins to blood or elsewhere, also known as the
“human secretome,” was another research area in need
of further exploration. A tandem of efforts was therefore

FIGURE 4 The Brain Atlas—exploration of gene expression in the mammalian brain. (a) Overview of the 10 main regions with RNA

expression data from all three species (human, pig, and mouse), used for classification of genes according to expression levels. (b) Pie charts

showing the number of genes belonging to each of the categories for tissue specificity and tissue distribution, comparing brain to other

human tissues. (c) IHC images of ANK1 and TFAP2B that on a body-wide level are elevated in other tissue types, but in the brain showed

regional expression only in cerebellum. (d) Immunofluorescent images of whole mouse brain, as well as five specific regions detailing the

protein expression of NECAB1 at a cell type-specific level
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undertaken to map the complete proteome of blood cells
as well as the proteins secreted by human cells.5,53 The
resulting data have been included into the HPA website
in the form of a new Blood Atlas released in 2019, as well
as integrated into the general exploration of protein
expression.

A genome-wide single-cell transcriptomics study was
performed to map the expression of all protein-coding
genes in flow cytometric sorted blood immune cell
populations.5 Data from the study can be found summa-
rized in the Blood Atlas part of the HPA website, as well
as integrated into the individual gene pages. In the
“human blood cell”-part of the Blood Atlas, expression
profiles have been created for the 18 blood cell types and
six lineages analyzed in the study, highlighting the

specificity and distribution of the expression of all
protein-coding genes among the blood cell populations
(Figure 5a). The mRNA levels of individual protein-
coding genes in multiple blood immune cell populations
can be explored in the Blood Atlas gene pages of HPA,
where four different transcriptomic datasets have been
made available. In addition to the HPA dataset of
18 blood cell types, two additional datasets have been
imported from other recent transcriptomics studies,
including the analysis in 15 blood cell types by Schmiedel
et al.54 and 29 blood cell types as well as total PBMCs by
Monaco et al.55 A normalized “consensus dataset” was
also created from the HPA blood cell dataset to enable
between-sample-comparison with mRNA data from
tissues.

FIGURE 5 The Blood

Atlas—exploration of gene

expression in human blood cells.

(a) A schematic visualization of

the tree of hematopoiesis is

found in the Blood Atlas,

including six lineages and

18 blood cell types that are

clickable to enable access to

expression profiles with

information regarding

expression-related specificity and

distribution. (b) RNA expression

levels of known protein markers

for specific blood cell types, and

(c) representative IHC images of

corresponding protein expression

patterns in human tissues
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Global expression analysis using the data from the
study found blood cells to be most highly correlated with
bone marrow and lymphoid tissues, both of which are
rich in immune cells, as well as revealing a relatively
large portion of intracellularly expressed proteins among
the blood cells compared to organs with a high degree of
actively secreted proteins, such as the liver and the pan-
creas. Concerning expression specificity, genes with ele-
vated expression in certain blood cell types or lineages
are indicated in the Blood Atlas expression profiles along
with lists of the genes that have the highest level of
enriched expression in each cell population. The analysis
confirmed the expression specificity of many of the
markers used to distinguish different blood cell types. In
Figure 5b, RNA expression levels of four such example
genes are provided, complemented with IHC-based loca-
tion in human tissues (Figure 5c). These examples
include the canonical cell surface receptor CD19, found
to be exclusively expressed in B-cells, the transcriptional
regulator forkhead box P3 (FOXP3), that was found to be
mainly expressed on regulatory T cells (Tregs), as well as
two proteins with enriched expression in cells of myeloid
origin: the CCAAT/enhancer binding protein epsilon
(CEBPE), expressed in eosinophils, and macrophage
receptor with collagenous structure (MARCO), expressed
in monocytes. CEBPE is a transcriptional activator linked
to the primary immunodeficiency specific granule defi-
ciency (SGD), where granulocyte differentiation is
impaired.56 IHC images of CEPBE in HPA show clear
expression of the protein in bone marrow, where granu-
locyte differentiation occurs (Figure 5c). MARCO is a
macrophage-associated pattern recognition receptor
(PRR) involved in the innate recognition and phagocyto-
sis of Gram-positive and Gram-negative bacteria.57 Based
on mRNA levels, MARCO was expressed in two types of
monocytes, the intermediate and the classical type.
Monocytes are progenitors to both macrophages and den-
dritic cells, a relationship which was supported by the
mRNA expression of MARCO in myeloid type dendritic
cells as well as IHC-based protein expression in resident
macrophages, including Kupffer cells of the liver
(Figure 5b,c). Overall, neutrophils, basophils, and plas-
macytoid dendritic cells were found to have the highest
amount of genes with cell type-enriched expression.

The distribution of gene expression conveys which
and how many of the genes that are expressed or not
expressed in the various cell populations. Blood cells
were together found to express about half (�10,000) of
the protein-coding genes and almost two-thirds of the
amount of genes expressed in tissues (�14,000–16,600),
demonstrating the diversity of the multicellular compos-
ite tissues compared to single cells. A large amount (889)
of interesting genes were also identified based on the fact

that they had enriched gene expression and were only
found to be expressed in a single cell type, indicating the
possibility of those genes having important biological
functions linked to the phenotypes of respective cell type.

A large-scale effort of annotating the complete set of
actively secreted proteins, the “human secretome,” was
performed in parallel to the transcriptomic study of blood
cells.53 A group of 2,641 genes were predicted to have at
least one secreted protein isoform and consequently
selected for deep analysis to determine a final location, a
site of origin and the relative abundance of each candi-
date. The analysis was in large based on existing data
from both internal and external sources, including anti-
body and mass spectrometry-based methods. The
resulting human secretome data can be found in the
Blood Atlas, as a complement to the human blood cell
exploration, as many of the secreted proteins have blood
related functions. All of the predicted actively secreted
proteins have been classified according to their final loca-
tion in the human body, based on manual annotation of
antibody-based spatial proteomics combined with publi-
shed literature, bioinformatics analysis, and experimental
evidence. The classes include three main categories:
intracellular, secreted to blood, and secreted locally,
where the latter was divided into seven location-based
sub-categories (Figure 6a). The resulting nine classes of
secretome proteins can be explored in the human
secretome-part of the Blood Atlas, wherein the group of
proteins belonging to each class are described in terms of
functions, specificity and distribution of mRNA expres-
sion across 37 analyzed tissues, and tissue origin of the
predicted secreted proteins (Figure 6a–d).

The analysis found that a somewhat surprisingly
small portion (729) of the proteins are secreted to blood,
while many of the predicted secreted proteins (933) were
found to be retained intracellularly or fused to cell mem-
branes, bringing the number of actively secreted proteins
down to 1,709. Among the proteins secreted to blood,
72 are products or targets of FDA-approved drugs. Apart
from well-known groups of proteins such as cytokines,
interleukins, interferons, and chemokines (154), comple-
ment and coagulation factors (68), hormones (75), growth
factors (33) and enzymes (83), in-depth analysis of the
proteins secreted to blood revealed about 100 proteins
with unknown functions, and hence potentially attractive
candidates for future studies (Figure 6b). A large portion
(217) of the proteins secreted to blood are tissue enriched
(Figure 6c), where more than half originate from the liver
(Figure 6d). One such protein is coagulation factor 2, or
thrombin (F2), exclusively expressed by the liver and sub-
sequently secreted to the blood where it exerts its func-
tion during coagulation, in part by cleaving fibrinogen
into the coagulation agent fibrin. Spatial IHC analysis
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reveals presence of F2 in a subset of liver hepatocytes as
well as high expression in plasma, visible in tissues from
all parts of the body (Figure 6e).

The presence and quantity of the proteins predicted
to be actively secreted was investigated by compiling
experimental data from mass spectrometry, antibody-
based assays and proximity extension assay (PEA). A
large majority (99%) of the combined protein mass was
found to be contributed by a small number of proteins,
while the majority of the proteins were detected at low
concentrations. Areas in need of further exploration were
identified, as it was not clear whether many of the pro-
teins detected at low concentration were actively secreted
or leaked from dying cells. As many as 142 of the proteins
predicted to be secreted to blood could not be detected
with the current methods. The complete set of plasma

concentrations of blood proteins, compiled from various
sources, based on antibody and mass spectrometry-based
methods, can be found in the “human plasma prote-
ome”-part of the Blood Atlas.

7 | THE METABOLIC ATLAS

The Metabolic Atlas is a collaborative effort with Chal-
mers University of Technology, to map and facilitate a
holistic understanding of human metabolism by combin-
ing a newly created genome-scale metabolic model
(GEM): Human1, with visual metabolic maps and HPA
multi-omics data, parts of which have been incorporated
into the HPA.7 Human1 was created based on the compo-
nents and information from three human GEMs (HMR2,

FIGURE 6 The Human Secretome—annotation of actively secreted proteins. (a) The complete set of predicted actively secreted

proteins were annotated and divided into nine different classes based on their final location in the body. Each class was analyzed regarding

(b) protein function, (c) expression specificity and distribution, and (d) tissue of origin among tissue enriched proteins (exemplified by the

class “secreted to blood”). (e) Spatial IHC analysis of F2 in five tissues, a protein that is annotated as secreted to blood by the liver, with

exclusive mRNA expression in the liver
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iHsa, and Recon3D),58–60 and constitutes the most exten-
sive model of human metabolism, taking into account
13,417 reactions, 4,164 metabolites, and 3,625 genes. As a
means to overcome issues of reproducibility and trans-
parency, details of the extensive curation of Human1 has
been stored into a public Git-repository on GitHub to
allow for research community-driven development of the
model. The Metabolic Atlas (metabolicatlas.org) is an
open-access website that provides the infrastructure for
the exploration of Human1 and other GEMs through 2D
and 3D visualization of metabolic maps together with
integrated data concerning the thousands of reactions,
compounds, and genes that form the metabolic systems.
HPA transcriptomic data corresponding to 37 different
human tissues has been integrated into the metabolic
maps of Human1, showing relative mRNA expression of
each enzyme in the displayed metabolic pathway.

Parts of the Metabolic Atlas features, including
Human1-based metabolic maps and metabolic pathway
data, have recently been incorporated into HPA as a Met-
abolic Atlas sub-atlas, providing information regarding
the tool together with lists of all of the human metabolic
pathways and associated enzymes (Figure 7a). The meta-
bolic data is also integrated into the general exploration
of the proteome via the Tissue Atlas gene pages, dis-
playing a metabolic summary of associated reaction

pathways and cellular compartments for proteins
involved in human metabolism (Figure 7b). Metabolic
maps of each reaction pathway are also imported from
metabolicatlas.org and are accompanied with heatmaps
displaying mRNA expression of all pathway-associated
genes across 37 human tissues.

In addition to being tools for visualization of meta-
bolic pathways, GEMs are also used to compare meta-
bolic network structures, predict gene essentiality and
simulate flow of metabolites, flux, through a reaction net-
work. Flux simulations can be used to predict the com-
plex behavior of metabolic systems in response to various
internal and external changes, such as pathological
imbalances, and thus get predictions of outcomes,
such as changes in growth rates. GEMs thus have the
potential to discern novel metabolic therapeutic targets
that other less complex methods are unable to recognize.
Various ways of utilizing Human1 were demonstrated
by the developers,7 including a comparative study of
transcriptome-based metabolic reaction structures among
healthy and cancer tissues. It revealed a closer metabolic
relationship between a cancer type and the healthy tissue
type from where the cancer originates than between vari-
ous cancer types originating from different tissues. This
suggests that cancer development is somewhat con-
strained by the metabolic reaction structures of the tissue

FIGURE 7 The Metabolic Atlas—integration of metabolic pathways with tissue-specific proteomics. Features of the Metabolic Atlas

(metabolicatlas.org) have been integrated into HPA as (a) a sub-atlas with summarized information and maps regarding all human metabolic

pathways (example showing the mitochondrial subcellular compartment with the Urea cycle indicated by a brown box) and (b) integrated into

the Tissue Atlas part of the exploration of individual genes, including a summary of gene-associated metabolic information, maps of associated

metabolic pathways and heatmaps showing the mRNA expression of all pathway-associated genes in 37 tissues
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from which it originates, which means that acquired
alterations to the metabolism during cancer development
are significantly shaped by the varying nature of metabo-
lism in different tissues of the body.

8 | DATA AVAILABILITY AND
OUTREACH

The main findings from each of the six different sub-
atlases are comprehensively summarized on landing
pages with clickable figures, tables, lists, and examples,
for quick access to results related to each aspect of the
human proteome. Users of the HPA can also combine
personal advanced search queries based on, for example,
general gene and protein data, protein classes, tissue or
cell type-specific expression and validation criteria, using
information from each of the different sub-atlases. The
results from these queries are presented as gene-centric
lists that are both clickable and downloadable in different
formats. Another approach to access the extensive
datasets found in the HPA is through 26 different down-
loadable files (https://www.proteinatlas.org/about/
download) containing genome-wide data across various
assays, allowing for large-scale bioinformatic studies.

The HPA spends considerable efforts on outreach,
and the database is sustained through community contri-
bution to European infrastructure ELIXIR,61 where the
HPA is listed as one of the core data resources with
importance for the wider life-science community.
Another important aspect of outreach is educational
material. One such example is production of a series of
“Movie of the month” during 2020 and 2021. These edu-
cational movies allow for taking a journey into the body
through 3D videos that transport you deep inside various
organs. The imaging is based on antibody-based profiling
of tissues and light sheet microscopy. The videos are
available at the HPA website as well as on a YouTube
channel. The HPA educational material also includes a
histology dictionary,62 that serves as a helpful tool for
both students and scientists interested in gaining further
knowledge on the different tissue and cell structures that
form the basis for the tissue and cell type-specific protein
expression patterns. By knowing how to interpret the
>10 million high-resolution images publicly available on
www.proteinatlas.org, the visitors on the HPA can
answer novel research questions not yet elucidated by the
HPA team, for example, protein expression in rare struc-
tures or cell types, or patterns of regional expression. In
HPA20, released in the autumn of 2020, a major update
of the normal and pathology tissue dictionary is provided,
allowing for free exploration of entire large-scale tissue
sections stained with hematoxylin and eosin, where all

major cell types and structures have been highlighted
and described.

To aid research related to the SARS-CoV-2 pandemic
and allow researchers to quickly access all gene and pro-
tein expression data on SARS-CoV-2 related proteins, a
dedicated page on the HPA database has been created
(Figure 1). The clickable list allows for filtering of all
SARS-CoV-2 related proteins based on tissue specificity
or subcellular location, and studying their expression pat-
tern in situ.

Several future national and international efforts are
planned to expand the educational impact of the HPA
resource even further, including more educational videos,
Wikipedia summaries, and integration in student text-
books as well as tutorials related to both lab protocols
and how to navigate the HPA database. Feedback from
users is an integral part of the daily workflow, and many
HPA researchers are active in responding to contact
emails and participating in discussions on social media,
thereby contributing to the scientific community and
informing on recent progress in the field of antibody-
based proteomics.

9 | DISCUSSION

For further understanding of cell and tissue heterogene-
ity, differentiation, diseases, and various biological pro-
cesses involved in health and disease, it is necessary to
study proteins at a single cell level. While various emerg-
ing technologies based on mass spectrometry are being
developed in order to detect and quantify proteomes in
single cells,63–67 none of these currently have the resolu-
tion provided by IHC. By linking the identification of
proteins with in situ location at tissue, cellular or subcel-
lular level, important aspects of spatio-temporal expres-
sion are provided, since the location is tightly linked to a
proteins' function. This is particularly important as a
large proportion of human proteins still have an
unknown function. There are four main approaches for
spatial proteomics: in situ mass spectrometry, fraction-
ated cell lysates, proximity labeling, or imaging-based
proteomics.68,69 The clear advantage of imaging-based
proteomics is that the proteins are analyzed in the native
location with a single-cell resolution.

The major initiative that aims to systematically study
protein expression and localizations based on spatial pro-
teomics is the HPA project. Initiated in 2003, the HPA
approach allows the dissection of the human proteome
from different perspectives, such as identifying all pro-
teins localized to a certain cell type or organelle, house-
keeping proteins, proteins related to certain pathways, or
proteins enriched in a particular organ. In 2010, the HPA
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achieved a major milestone with protein expression data
covering >50% of the protein-coding genome.70 During
the last decade, the HPA open-access knowledge resource
(www.proteinatlas.org) has grown into one of the world's
most visited biological databases with more than 300,000
visitors per month. The available data and images allows
scientists from both academia and industry to freely
explore the human proteome, and the massive image col-
lection of >10 million high-resolution images serves as
an important resource for the computer vision commu-
nity as benchmark datasets to develop deep learning
models for image classification and segmentation. Several
peer-reviewed publications are published by external
groups every day using data generated as part of the HPA
project. The HPA has thus contributed to several thou-
sands of external publications in the field of human biol-
ogy and disease, including both basic and clinical
research. The database is updated on a yearly basis, and
in 2019, three new major sections were added: the Brain
Atlas, the Blood Atlas and the Metabolic Atlas, providing
novel insights into various aspects of the human prote-
ome. The HPA will continue to evolve in future releases,
adding both novel data and functionalities, refining the
details of the human proteome.

The HPA spends a considerable effort on antibody
validation and has implemented application-specific
criteria for enhanced validation as suggested by IWGAV.
There are, however, still challenges in this field.
Antibody-based proteomics has a narrow dynamic range,
the results are only semi-quantitative, and cross-reactivity
is a well-known issue. To reduce the risk of cross-reactiv-
ity, all internally generated HPA antibodies have been
affinity purified and analyzed with protein arrays. Anti-
bodies that do not bind specifically to the intended anti-
gen among other randomly selected protein fragments
are not approved for further use. In addition, a manual
evaluation of the staining pattern at tissue, cellular, and
subcellular level is performed, resulting in the assign-
ment of a reliability score. While this still does not rule
out that cross-reactivity may occur, transparent display of
the results from these quality steps divide the available
data into various categories, highlighting which set of
proteins that have been most confidently validated. Fur-
ther developments in the field of antibody validation are
clearly warranted, and integration with other methods on
the single cell level will likely lead to increased under-
standing of antibody specificity.

One emerging technology that likely will lead to
important implications for proteomics and holds promise
for integration with IHC is scRNA-seq. This approach
allows for studying mRNA transcripts expressed in
smaller subsets of cells, and is excellent for studying cell

heterogeneity. The Human Cell Atlas consortium32 is a
large-scale international initiative aiming to create a
comprehensive map of all human organs and cells based
on scRNA-seq, by a coordinated effort comprising >1,000
different institutes across >70 countries. scRNA-seq is
especially interesting to compare with IHC, as the
methods allow for direct comparisons of cell type-specific
expression patterns. In addition to the Human Cell Atlas,
several other large-scale initiatives aim at characterizing
human organs and cells based on scRNA-seq, including
the Human BioMolecular Atlas program and the Chan
Zuckerberg Initiative, among others. Some tissue-specific
projects are international collaborations spanning over
several of these initiatives, involving multiple research
groups and combining expertise on established proteomic
and transcriptomic techniques with novel technologies
for spatial localization of mRNA transcripts, or various
methods for analysis of multiple proteins in the same
sample (multiplex).

Also in the mass spectrometry field, powerful technol-
ogies are being developed with the aim to allow detection
and quantification of proteins in single cells. It is an
exciting era of “big data” that will transform medicine
and increase our understanding of human biology at
entirely new levels. The large-scale spatial proteomics
datasets provided by the HPA hold much promise for
integration with other ongoing and future efforts using
both transcriptomics and quantitative proteomics
methods, for a complete understanding of the human
proteome in health and disease.
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