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Abstract

Bio3D is a family of R packages for the analysis of biomolecular sequence,

structure, and dynamics. Major functionality includes biomolecular database

searching and retrieval, sequence and structure conservation analysis, ensem-

ble normal mode analysis, protein structure and correlation network analysis,

principal component, and related multivariate analysis methods. Here, we

review recent package developments, including a new underlying segregation

into separate packages for distinct analysis, and introduce a new method for

structure analysis named ensemble difference distance matrix analysis (eDDM).

The eDDM approach calculates and compares atomic distance matrices across

large sets of homologous atomic structures to help identify the residue wise

determinants underlying specific functional processes. An eDDM workflow is

detailed along with an example application to a large protein family. As a new

member of the Bio3D family, the Bio3D-eddm package supports both experi-

mental and theoretical simulation-generated structures, is integrated with

other methods for dissecting sequence-structure–function relationships, and

can be used in a highly automated and reproducible manner. Bio3D is distrib-

uted as an integrated set of platform independent open source R packages

available from: http://thegrantlab.org/bio3d/.
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1 | INTRODUCTION

Bio3D1,2 is a group of related R packages with a focus on
processing, organization, and analysis of biomolecular
structures. Major features include search and retrieval
interfaces for major bioinformatics databases, sequence,
and structure conservation analysis, along with popular
computational methods for characterizing and predicting
protein structural dynamics. These include principal
component analysis (PCA),3–6 structure and correlation
network analysis (CNA),7–10 a wide range of normal
mode analysis (NMA) methods,11,12 and new ensemble
difference distance matrix (eDDM) analysis. Bio3D also

provides utilities to convert and process common file for-
mats in structural bioinformatics and couple these data
to the broader R ecosystem for advanced statistical analy-
sis, machine learning, and data visualization.13

A particular strength of Bio3D is its ability to connect
heterogeneous sequence and structural data to advanced
methods for predicting internal motions and analyzing
functional dynamics across protein families. This enables
Bio3D to be used as a powerful tool for the analysis
of experimental structures in the PDB.14 The recent
rapid growth of such structures provides an unprecedent
opportunity to understand sequence-structure–function
relationships from comparative analysis across large and
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diverse protein families for which structures are now
available. A challenge is to deal with related but “non-
identical” structures that may have different lengths due
to variable missing residues, insertions, and deletions.
Bio3D has a robust solution for performing analysis
across such heterogenous datasets. In Bio3D, all struc-
tures to be analyzed are aligned based on a multiple
sequence or structural alignment. Then, automatically
detected equivalent (aligned) residues across structures
are used for various comparative analysis methods such
as PCA, network analysis, NMA, and distance matrix
analysis. Each of these major methods will be discussed
in the context of application to experimental structure
sets in subsequent sections (examples of applying these
methods to structures derived from molecular simula-
tions, which is typically more straightforward due to their
homogenous composition, can be found online). We then
present a detailed example application of the new eDDM
method and conclude with a discussion of broader per-
spectives and future directions.

2 | BIO3D CURRENT STATUS AND
RECENT DEVELOPMENTS

Bio3D was originally developed as a single R package1 and
has recently grown to encompass multiple packages with
new and improved functionality (Figure 1). The Bio3D-core
package provides functionality for data processing and
basic analysis, including alignment, sequence and structure
comparisons, and inter-conformer analysis with PCA.
Additional packages serve as extensions containing related

functions that collectively solve a specific data analysis
task. These include Bio3D-nma for ensemble normal mode
analysis aimed at predicting and contrasting functional
dynamics across protein families, Bio3D-cna for protein
structure and correlation network analysis to characterize
correlated protein motions underlying allosteric regula-
tion, Bio3D-web enabling user-friendly online interactive
analysis of protein structures and their dynamics, Bio3D-
view for interactive 3D visualization, and Bio3D-eddm
for the new ensemble difference distance matrix analysis
approach to characterizing functionally significant confor-
mational changes. Collectively these packages represent a
comprehensive environment for analysis of sequence-
structure-dynamics relationships in user-defined protein
structure sets.

2.1 | The Bio3D core package

The Bio3D core package provides functions for data input
and output (I/O), format conversion and data manipula-
tion, and basic sequence and structure analysis including
database searching, sequence alignment, sequence and
structural conservation analysis, as well as multivariate
analysis of structural data including PCA and related
methods. A fully documented list of Bio3D functionality
can be found online: http://thegrantlab.org/bio3d/. Here,
we restrict discussion to a minimal set of functions for per-
forming a typical comparative analysis of available experi-
mental structures for a given protein family of interest.
This analysis is comprised of four main steps including:
(a) structure search and selection, (b) multiple alignment,
(c) structure fitting and analysis, and (d) principal compo-
nent analysis.

1. Structure search and selection: This step is to prepare
the structure set related to a given protein sequence for
subsequent analyses. Given a query protein sequence or
database identifier, all related structures can be col-
lected from the PDB database via the Bio3D functions
blast.pdb() or hmmer(). Identified structures are
ordered by decreasing sequence similarity to the query.
Users can optionally set a threshold (in terms of E-
value) to select and download structures to be used in
subsequent steps. A default threshold is automatically
generated by calling the plot. blast() or plot.
hmmer() functions. The structure set can be further
annotated and filtered by resolution, R-free, date of
deposition etc. using the pdb.annotate()function.
Selected structures are then downloaded with get.
pdb() and optionally split into individual chains for
further analysis (by setting the split = TRUE option).
In the following example, structures related to proteinFIGURE 1 The Bio3D family of R packages
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kinase A (with PDB ID: 1L3R, line 2) are identified
(line 3), annotated (line 6) and downloaded (line 9) for
further analysis:

# Extract the query sequence and perform database

search.

aa <- get.seq(“1L3R_E”)

blast <- blast.pdb(aa)

hits <- plot(blast)

# Annotate and filter BLAST results.

annotation <- pdb.annotate(hits)

pdb.id <- with(annotation, subset(hits$pdb.id,

resolution<=3))

# Download structures and split into individual

chains.

files <- get.pdb(pdb.id, path="pdbs", split=TRUE)

2. Multiple alignment: In this step, all selected structures
are subject to multiple alignment. Bio3D provides
numerous options for performing such an alignment.
These include the calling of external programs such as
MUSCLE,15 using the MUSCLE algorithm internally
as implemented in the Bioconductor “msa” package,16

and accessing to online alignment servers. All of these
methods are implemented in the pdbaln() and
seqaln() functions.

# Align structures.

pdbs <- pdbaln(files)

# Optionally trim the alignment to focus on e.g. the

‘kinase domain’.

pdbs <- trim(pdbs, col.inds=c(88:318))

# Produce an alignment overview figure.

plot(pdbs)

3. Structure fitting and analysis: In this step, all aligned
structures are fitted (i.e., superposed) using the
pdbfit() function based on their invariant struc-
tural core as identified by the core. find() func-
tion. Routine structure analysis, such as individual
residue fluctuations (RMSF) and overall structural
deviations (RMSD and TM scores) can be performed
at this stage.

# Identify structural invariant core and use it to

fit structures.

cores <- core.find(pdbs)

xyz <- pdbfit(pdbs, inds=cores)

4. Principal component analysis: In this step fitted struc-
tures are compared using principal component analy-
sis (PCA). PCA is a well-established multivariate
statistical technique used to reduce the dimensionality

of a complex data set to a more manageable number
of principal components (termed PCs). This method is
particularly useful for highlighting strong patterns
and relationships in large datasets (i.e., revealing
major similarities and differences) that are otherwise
hard to visualize. In terms of structure analysis, PCA
transforms atomic coordinates into a few PCs (typi-
cally 2 or 3) that represent directions where the struc-
ture set displays the largest collective variances. The
projection of structures using the resulting PCs is
called a conformer plot. These plots represent an effi-
cient way to interpret inter-conformer relationships.
The “scree plot” that displays the spectrum of eigen-
values (or the structural variance captured by the each
PC) sorted in the descending order can be used to
identify significant PCs that capture dominant collec-
tive variances in the structure set. Another useful out-
put of PCA is a representation of the collective
structural motions captured by the top PCs as these
are often related to protein function. Alternatively, the
relative displacement of a residue described by a PC
(termed residue loadings) can be displayed and ana-
lyzed. In Bio3D, all these outputs can be easily gener-
ated with the pca()function, which is specifically
designed for the analysis of structural data. Example
PCA results on PKA structures are shown in Figure 2.

# Perform PCA for aligned or non-gapped positions.

pc <- pca(xyz, rm.gaps=TRUE)

# Perform and view structural clustering in the PC1-

PC2 plane.

d <- dist(pc$z[, 1:2])

hc <- hclust(d)

hclustplot(hc, k=2, labels=pdb.id)

grps <- cutree(hc, k=2)

# Generate conformer plot, scree plot, and residue

loadings plot.

plot(pc, col=grps)

plot.bio3d(pc$au[, 1], sse=pdbs2sse(pdbs),

ylab="Loadings")

# Generate a trajectory showing the collective

motion defined by PC1.

# The output pc_1.pdb can be opened with PyMol or VMD.

mktrj(pc, pc=1, file="pc_1.pdb")

2.2 | Ensemble normal mode analysis
with Bio3D-nma

NMA has emerged as a popular approach for predicting
and characterizing the large-scale internal dynamics
of proteins. These low frequency slow motions are often
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of functional relevance.17 In addition to conventional
single structure NMA, Bio3D can readily perform simul-
taneous analysis of a large ensemble of structures
through our implementation of ensemble normal mode
analysis (eNMA). This enables the rapid characterization
and comparison of flexibility profiles across homologous
structures, without the conventional caveat of potentially
overinterpreting the differences between extreme cases
using a single artifactual structure. Furthermore, by
carefully contrasting the fluctuation profiles, one can pro-
vide new information on state-specific global and local
dynamics of potential functional relevance.

In Bio3D-nma, eNMA is performed using the func-
tion nma(), supplying only the aligned pdbs structure
ensemble as an input. This function supports versatile
popular elastic network models. By default, it implements
the efficient C-alpha based model11 that enables rapid
calculation of modes even for large structural ensembles.
We also provide a more accurate all-atom model obtained
through fitting the force constants to a local minimum
of multiple high-resolution structures using the Amber
99SB forcefield.18 An option to use rotation-translation
block method19,20 or a reduced atomistic model for accel-
erated calculations is available. The results include
aligned eigenvectors and mode fluctuations for all struc-
tures in the ensemble. Analysis is facilitated with a range

of approaches that aids in the prediction and identifica-
tions of distinct patterns of flexibility between different
conformational states or even across protein families.
Below we outline analysis of the resulting modes through
the functions plot() and geostas() for the investiga-
tion of fluctuation patterns and dynamic domains,21

respectively, using PKA as the example (Figure 3):

# Calculate NMA.

modes <- nma(pdbs)

# Plot fluctuation profiles.

plot(modes, pdbs)

# Dissect dynamic domains.

geostas(modes)

2.3 | Ensemble correlation network
analysis with Bio3D-cna

The Bio3D-cna package performs a range of protein
structure and correlation network analysis tasks. Here we
introduce the use of Bio3D-cna for an ensemble correla-
tion network analysis (eCNA). This approach has previ-
ously been applied to a wide range of different biological
systems.22–24 The method employs a similar idea to that
used in the previous dynamical network method, where

FIGURE 2 PCA of the PKA

kinase domain structures reveals a

closing motion of the small lobe

along the first principal

component (PC1) and two distinct

conformational clusters. (a) The

collective motion defined by PC1.

Grey lines on the small lobe of

PKA are generated through a

conformational interpolation

along PC1. Bottom left is the scree

plot of the PCA, which indicates

that PC1 is dominant. (b) The

conformer plot of all select PKA

structures defined by PC1-PC2.

Each point represents a structure

and the point color indicates the

cluster id from a conformational

clustering. (c) Residue

contributions or loadings to PC1.

(d) Heatmap of inter-conformer

distance matrix and structural

clustering calculated in the

PC1-PC2 plane

GRANT ET AL. 23



a protein structure network is constructed based on a
4.5-Å contact map and network edges are weighted by
values derived from residue dynamic cross-correlations.8

However, in eCNA, instead of using a single distance
cutoff-based contact map, network edges are defined by
significant correlations across multiple conformational
ensembles (e.g., multiple simulation replicas). The objec-
tive here is to capture significant and strong correlations
that are excluded in the conventional method just
because the residue distance is beyond an empirical
cutoff. In Bio3D, residue cross-correlations are calculated
with the dccm() function. The dynamical data can be
from MD, NMA, multiple experimental structures, or
a single multi-model PDB from, for example, NMR.
Significant correlations are then identified with the func-
tion filter.dccm(), which inspects both robustness
of correlations across simulation replicas and spatial dis-
tance between related residues (see ref.23 for full detail).

The eCNA method can be coupled with suboptimal
path analysis to predict potentially functional residues. In
this analysis, multiple distinct shortest or (sub)optimal
paths between pre-specified sites (termed “source” and
“sink,” which are usually functionally relevant such as
the active site and an allosteric site) are searched. A path
is a set of network edges connecting the two sites, and
path length is defined by the sum of edge weights. In
eCNA, network edges are weighted by −ln(|cij|), where cij
is the correlation between residues forming the edge.
Hence, path length distributions can be used to compare
overall coupling strengths between distinct networks
(longer paths mean weaker coupling). The importance of
a residue is measured by normalized node degeneracy
(i.e., the fraction of suboptimal paths going through the
node or residue). A typical workflow of eCNA based sub-
optimal path analysis, using PKA as an example, is give
below (see Figure 4 for the result):

# Calculate correlations from an ensemble normal mode

analysis.

cijs <- dccm(modes)

# Filter correlation matrices for multiple ensembles

defined by ‘grps’.

cij <- filter.dccm(cijs, xyz=pdbs, fac=grps)

# Build networks. ‘cutoff.cij=0’ because ‘cij’ is

filtered in the last step.

net <- cna(cij, cutoff.cij=0)

# Find 100 distinct suboptimal paths between the active

site

# and a potential allosteric site of PKA.

pa <- cnapath(net, from=142, to=218, k=100)

# Plot node degeneracy and path length distributions.

plot(pa, pdb=pdb)

# View paths in a 3D structure. A ‘pdb’ is generated as

the reference.

# A script is generated that can be opened with VMD.

pdb <- pdbs2pdb(pdbs, inds=1, rm.gaps=TRUE, all.

atom=TRUE)[[1]]

vmd(pa, pdb=pdb, spline=TRUE)

2.4 | Bio3D-web

Bio3D-web provides a fully online interface to a subset of
Bio3D functionality for comparative structure analysis.
Methods include a range of conventional sequence and
structure conservation assessment methods, as well as
inter-conformer characterization with PCA (Figure 5)
and ensemble NMA for comparison of predicted flexibil-
ities and major structural displacements. In contrast to
the conventional Bio3D packages, Bio3D-web does not
require any installation or writing of R/Bio3D code.
Rather, you explore through an online interactive inter-
face. The design of Bio3D-web is based on the Shiny web

FIGURE 3 Ensemble normal modes analysis of PKA structures. (a) Residue wise fluctuation profiles across the ensemble of collected

PKA structures reveal distinct flexibility patterns for two conformational states. (b) Dissection of dynamic domains obtained through

interpolating along the first five modes of the collected PKA structures
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FIGURE 4 Ensemble correlation network analysis of PKA reveals distinct coupling paths between open and closed structural

ensembles. (a) Identified suboptimal paths are viewed as lines mapped on the PKA structure, color coded by the structural ensemble (blue,

closed; red, open) used to build the network. Line radii are scaled by path lengths (shorter paths are thicker). (b) Path length distributions.

(c) Residues with high (>0.5) normalized node degeneracy (numbers in the table) in either the “open” or “closed” network are shown. The

“source/sink” residues are highlighted in grey

FIGURE 5 Screenshot of the PCA step in Bio3D-web. The top navigation menu lists major analysis steps, with the current step “4.
PCA” highlighted. Control panels of the particular analysis are on the left, while results are displayed on the right. Here example results

display the conformer plot (upper left panel) and cluster dendrogram (lower panel) of the aromatic amino acid hydroxylases including

phenylalanine hydroxylase (black), tyrosin hydroxylase (green), tryptophan hydroxalse (blue), and substrate bound “closed” phenylalanine
and tryptophan hydroxylase structures (red)
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application framework25 and emphasizes simplicity over
exhaustive inclusion of the many additional analysis
methods available in the full Bio3D package suite.
This effectively reduces the required technical expertise
and thus facilitates advanced structural bioinformatics
analysis for a broader range of students and researchers.
For example, Bio3D-web is used in undergraduate- and
graduate-level bioinformatics and structural biology
courses at UC San Diego and elsewhere. In research set-
tings, Bio3D-web is most often used to quickly explore
protein structure datasets; map their structural, confor-
mational, and internal dynamic properties, and thus
understand general trends that can inform more special-
ized analyses.

2.5 | Ensemble difference distance
matrix analysis with Bio3D-eddm

The Bio3D-eddm package implements ensemble difference
distance matrix analysis (eDDM), a new method for struc-
ture comparison. eDDM compares residue-residue atomic
distances across multiple structure sets to identify signifi-
cant conformational changes that may underlie certain
functional processes. A typical analysis comprises the fol-
lowing three major steps:

1. Collecting and preparing the structure set: This step
is the same as that described in Steps 1 and 2 of
Section 2.1. Note however that no structural fitting
(i.e., superposition) is required for an eDDM analysis.
Also, in eDDM, aligned structures must include informa-
tion on all equivalent heavy atoms across structures for
subsequent atomic distance calculations. This is setup
with an additional call to the read. all() function.

# Read aligned structures with all heavy atoms.

pdbs.aa <- read.all(pdbs)

2. Calculating difference distance matrices and associated
statistics: This step is done with the eddm() function.
Distance matrices are calculated first from aligned struc-
tures or optionally provided as input. Each entry of a
distance matrix represents the minimal atomic distance
(based on all heavy atoms) between two residues. Then,
distances are compared between structural groups
defined by either structural annotations (e.g., the ligand
identity associated with each structure obtained from
the Bio3D function pdb.annotate()) or a structural
clustering analysis. In the latter approach, PCA can be
directly applied to the distance matrices using the Bio3D
function pca.array() (see example in the next sec-
tion). Besides difference of mean distances between

groups for each residue pair, an assessment of the statis-
tical significance of the difference is performed using a
two-sample Wilcoxon test. In these calculations, residue
pairs showing long distances (i.e., non-interacting)
across all structures are omitted. Different methods
to “mask” these long distances are available in the
eddm() function. The default method calculates “effec-
tive” distances, by which changes for long-range residue
pairs are scaled down to zero while changes involving
short-range interacting residues are kept intact.

# Perform eDDM calculations.

# Note that ‘grps’ is a pre-defined variable for

structural grouping.

tbl <- eddm(pdbs.aa, grps=grps)

3. Identifying significant distance changes: This step fil-
ters the output of eddm() to focus on statistically sig-
nificant distance changes. This is done by calling the
subset.eddm()function. A significant change is
defined by 1) the p-value of the statistical significance
test is below an empirical threshold (e.g., 0.005 or a
user defined value, provided through the “alpha”
argument of the function) and 2) the absolute distance
change is above a threshold (e.g., 1 Å or a user defined
values, provided through “beta”). Optionally, only
“switching” residues can be reported by turning on
the switch. only option. Switching residues are
defined as residues that show a group-level contact
(i.e., a contact that persists for a certain fraction of
structures in the group, for example, 80%) with one or
multiple residues in one group but show a contact
with a distinct set of residues in the second group. It is
envisaged that such switching residues may serve as
potential mediators of allosteric communication,
where the residues switch their interacting partners to
relay an allosteric “signal.” The result of eDDM analy-
sis can be visualized in both 2D and 3D through utility
functions provided in Bio3D-eddm.

# Identify significant residue distance changes.

keys <- subset(tbl, alpha=0.005, beta=1.0)

# View eDDM results.

plot(keys, pdbs=pdbs.aa)

pymol(keys, pdbs=pdbs.aa, grps=grps, as="sticks")

3 | APPLICATION OF EDDM TO G
PROTEIN-COUPLED RECEPTORS

G protein-coupled receptors (GPCRs) are essential
membrane proteins responsible for regulating many
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important intracellular signaling pathways.26 Here, we
use the eDDM method to compare available crystallo-
graphic structures of the β-adrenergic receptor (β-AR)
GPCR family. Starting with the sequence of human
β2-adrenergic receptor, related structures are collected
from the PDB using BLAST27 implemented in Bio3D.
Low-resolution structures (>3.5 Å) are excluded, leading
to a structure set containing 20 individual β-adrenergic
receptor chains. Structures are clustered into three
groups by PCA applied to the distance matrices derived
from the structure set (Figure 6a) Inspections reveal that
Group 2 contains the known activated GPCR (PDB:
3SN6).28 Hence, Group-2 structures are considered as
representatives of the “active” state of the receptor
and accordingly Group 1 and 3 are considered distinct
“inactive” states.

Totally 36 significant residue-residue distance changes
are identified, involving 34 unique residues. For brevity
here we compare Group 1 and Group 2 only, which
display the largest separation along the dominant PC
(i.e., PC1; Figure 6a). Only switching residues, that is, res-
idues showing distinct contact networks between groups,
are reported (see Figure 6b for select residue pairs). A
dominant cluster of distance changes is discovered to be
around the intracellular loop 2 (ICL2) of the receptor,
which connects transmembrane (TM) helices H3 and H4
(Figure 6c). Interestingly, there are significant increases
of distance between H3/H5 and the N-terminus (cyto-
plasmic end) of H6 upon the transition from Group
1 (inactive) to Group 2 (active) (red tiles vertically aligned
H6 in Figure 6c). The result is consistent with existing
model of GPCR activation, where an outward movement

FIGURE 6 Application of eDDM to GPCRs. (a) PCA of distance matrices derived from β-AR structures. Each point represents an

individual structure projected into the PC1-PC2 subspace, where PC1 and PC2 represent the directions where atomic distances have the

largest collective variance (with the percentage of total variance captured by each PC indicated in the axis label). Structures are clustered

into three groups colored differently. Inset, the scree plot showing the spectrum of eigenvalues of the PCA. (b) Box-whisker plots of select

residue-residue atomic distances from an eDDM analysis of the structures used in A. (c) The 2D “tile” plot of the eDDM analysis result

showing the distribution and magnitudes of identified significant residue distance changes (from Group 1 to Group 2; unit: Å). (d) Molecular

mapping of key distance changes. On the right are close views of top key changes and associated residues. Representative structures are from

PDB 2R4R (for Group 1),30 which is a structure bound with an inverse agonist and so representing the inactive state of the GPCR, and PDB

3SN6 (for Group 2),28 an activated GPCR structure. The N-terminal T4 lysozyme of 3SN6 is omitted for clarity
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of the cytoplasmic end of H6 is required to accommodate
G-protein binding.28

Mapping of identified key residues on GPCR struc-
tures reveals dynamic regions that connect the extracellu-
lar orthosteric site to the intracellular G-protein binding
surface (Figure 6d). The top two distinct regions (ranked
by the maximal absolute distance change associated with
each switching residue) are around ICL2 (directly inter-
acting G proteins) and the middle of TM helices closer
toward the extracellular ligand binding site. In the first
region, Asp130 of H3 switches interactions from Ser143
to Tyr141 in ICL2 upon activation, mainly due to the rel-
atively large displacement of ICL2 (Figure 6d). Asp130
is part of the highly conserved E/DRY motif of GPCRs
that is known to be essential for GPCR function.28 In
the second region, Leu124 of H3 is highlighted as a
key switching residue, which interacts with Ile278 and
Met279 of H6 in the inactive state whereas it switches to
interact with Tyr326 of H7 upon activation. Tyr326 is part
of the highly conserved NPxxY motif that has been pro-
posed to be important for GPCR activation.28 Tyr326 is
also identified as a key mediator of GPCR activation by a
previous analysis of different GPCR family structures.29

Interestingly, the locations of identified “key residues”
in this previous work are similar to those revealed by
eDDM. Additional sites identified by eDDM here may be
specific to β-adrenergic receptors and would require fur-
ther investigation to reveal any potential functional sig-
nificance. Detailed instruction and code to reproduce this
complete analysis is available as Supporting Information.

4 | PERSPECTIVES AND FUTURE
DIRECTIONS

Bio3D provides a versatile integrated environment with
unique capabilities for examining the structural dynamic
mechanisms of evolutionary related proteins. In this
article we have reviewed some of the major functionalities
of Bio3D and introduced the new eDDM method
implemented recently in Bio3D. This approach takes
internal atomic distances as input and so is free of
the requirement for structural superimposition that is usu-
ally required in conventional Cartesian coordinate-based
approaches. The eDDM method captures both subtle and
large-scale conformational changes and is potentially a
sensitive tool to detect functionally related protein struc-
tural dynamic changes. By comparing structural ensem-
bles, eDDM can distinguish significant changes from
those changes likely to be due to statistical uncertainties;
hence, the method is more robust than simple compari-
sons between individual structures. Bio3D-eddm and
other Bio3D packages, including the Bio3D core package,

Bio3D-nma, Bio3D-cna, and Bio3D-web are open source
and freely available.

A number of previously implemented software solu-
tions (including multiple web servers31–35 and standalone
software packages36–42) offer related solutions including
single structure NMA, MD or protein structure-based net-
work analysis. However, these typically lack extensive
coupling to major biomolecular databases and methods
for evolutionary and comparative analysis intrinsic to
Bio3D. Bio3D also includes many commonly used func-
tions for simulation analysis and specifically tailored plot-
ting and visualization functionality as well as coupling to
the well-developed R environment for statistical analysis,
machine learning and graphics. We believe that this com-
bination currently offers unparalleled capabilities for both
exploratory interactive and large-scale batch analysis of
structural dynamic mechanisms in biomolecular systems.

Future development of Bio3D aims to further improve
the capability and scalability of the package family. A
major direction is to fully support multiple chain-based
analyses, including biological assembly-based sequence
and structure searching, alignment, and analysis. Also,
internal functions for improved interactive 3D structure
visualization will be developed to enhance the experience
of integrated data exploration. This is related to the on-
going development of the Bio3D-view package. Other
potential future developments include connections to
sequence databases and servers for directly mapping
structural dynamics to next-generation sequencing data,
more efficient memory management for analyses of espe-
cially large systems and long MD trajectories, continued
improvement of I/O including the support of the recent
MMTF (MacroMolecular Transmission Format) file for-
mat.43 Many of these features are already under develop-
ment for the next major version of Bio3D.
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