Skip to main content
. 2020 Nov 24;9:3000113. doi: 10.1109/JTEHM.2020.3040236

TABLE 3. Full Feature Set Classification Results.

Evaluation Metric ECNN RF P-Value
Mean±Std. Dev. 95% CI Mean±Std. Dev. 95% CI
TPR 0.746±0.036 0.719 0.773 0.746±0.005 0.742 0.750 0.986
TNR 0.762±0.043 0.729 0.794 0.714±0.007 0.709 0.718 0.004
PPV 0.766±0.024 0.748 0.785 0.710±0.005 0.706 0.713 2.27E-06
NPV 0.744±0.019 0.730 0.758 0.750±0.003 0.747 0.752 0.404
Accuracy 0.755±0.005 0.750 0.757 0.729±0.002 0.728 0.731 2.61E-11

Comparative analysis of predictive performance between ECNN and random forest - a traditional classification model with the capability to perform feature ranking and selection. As shown, ECNN provides statistically significant, superior accuracy whilst providing superior feature selection (see table VII)