TABLE 7. ECNN and Random Forest Reduced Feature Selection Results.
Metric | ECNN Features | RF Features | Random Selection Features | |||||
---|---|---|---|---|---|---|---|---|
NN | RF | NN | P-Value | RF | P-Value | NN | RF | |
TPR | 0.758±0.014 | 0.721±0.0008 | 0.775±0.039 | 0.077 | 0.720±0.003 | 0.125 | 0.998±0.002 | 0.688±0.540 |
TNR | 0.759±0.025 | 0.780±0.0012 | 0.659±0.056 | 2.76E-11 | 0.743±0.002 | 2.00E-79 | 0.002±0.002 | 0.323±0.559 |
PPV | 0.766±0.016 | 0.773±0.0008 | 0.704±0.024 | 0.06E-19 | 0.745±0.001 | 1.21E-90 | 0.510±0.001 | 0.566±0.098 |
NPV | 0.751±0.005 | 0.728±0.0004 | 0.739±0.017 | 0.002 | 0.719±0.002 | 1.42E-36 | 0.308±0.314 | 0.233±0.251 |
FPR | 0.241±0.025 | 0.220±0.0011 | 0.341±0.056 | 2.10E-12 | 0.257±0.002 | 1.50E-78 | 0.998±0.002 | 0.677±0.559 |
FNR | 0.242±0.014 | 0.280±0.0008 | 0.225±0.039 | 0.062 | 0.280±0.003 | 0.490 | 0.002±0.002 | 0.312±0.540 |
Accuracy | 0.759±0.006 | 0.750±0.0003 | 0.718±0.007 | 8.71E-36 | 0.732±0.001 | 1.70E-79 | 0.510±0.001 | 0.509±0.001 |
F1 score | 0.762±0.002 | 0.746±0.0003 | 0.737±0.005 | 2.15E-38 | 0.732±0.001 | 3.82E-73 | 0.675±0.001 | 0.489±0.322 |
AUROC | 0.854±0.015 | 0.785±0.0008 | 0.734±0.031 | 4.54E-30 | 0.735±0.002 | 6.32E-91 | 0.591±0.002 | 0.604±0.532 |
Shown is a comparison of feature selection effectiveness between ECNN, random forest - a similar traditional feature selection methodology, and random feature selection. Two types of basic classification models: neural network and random forest, trained on the various feature selection subsets, are used in determining selection effectiveness via predictive performance. A baseline random subset of features was also evaluated P-value analysis is a comparison of ECNN features against RF features of the corresponding underlying predictive model.