Skip to main content
. 2020 Nov 24;9:3000113. doi: 10.1109/JTEHM.2020.3040236

TABLE 7. ECNN and Random Forest Reduced Feature Selection Results.

Metric ECNN Features RF Features Random Selection Features
NN RF NN P-Value RF P-Value NN RF
TPR 0.758±0.014 0.721±0.0008 0.775±0.039 0.077 0.720±0.003 0.125 0.998±0.002 0.688±0.540
TNR 0.759±0.025 0.780±0.0012 0.659±0.056 2.76E-11 0.743±0.002 2.00E-79 0.002±0.002 0.323±0.559
PPV 0.766±0.016 0.773±0.0008 0.704±0.024 0.06E-19 0.745±0.001 1.21E-90 0.510±0.001 0.566±0.098
NPV 0.751±0.005 0.728±0.0004 0.739±0.017 0.002 0.719±0.002 1.42E-36 0.308±0.314 0.233±0.251
FPR 0.241±0.025 0.220±0.0011 0.341±0.056 2.10E-12 0.257±0.002 1.50E-78 0.998±0.002 0.677±0.559
FNR 0.242±0.014 0.280±0.0008 0.225±0.039 0.062 0.280±0.003 0.490 0.002±0.002 0.312±0.540
Accuracy 0.759±0.006 0.750±0.0003 0.718±0.007 8.71E-36 0.732±0.001 1.70E-79 0.510±0.001 0.509±0.001
F1 score 0.762±0.002 0.746±0.0003 0.737±0.005 2.15E-38 0.732±0.001 3.82E-73 0.675±0.001 0.489±0.322
AUROC 0.854±0.015 0.785±0.0008 0.734±0.031 4.54E-30 0.735±0.002 6.32E-91 0.591±0.002 0.604±0.532

Shown is a comparison of feature selection effectiveness between ECNN, random forest - a similar traditional feature selection methodology, and random feature selection. Two types of basic classification models: neural network and random forest, trained on the various feature selection subsets, are used in determining selection effectiveness via predictive performance. A baseline random subset of features was also evaluated P-value analysis is a comparison of ECNN features against RF features of the corresponding underlying predictive model.