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Abstract

Children from low- and middle-income countries, where there is a high incidence of infectious 

disease, have the greatest need for the protection afforded by vaccination, but vaccines often show 

reduced efficacy in these populations. An improved understanding of how age, infection, nutrition, 

and genetics influence immune ontogeny and function is key to informing vaccine design for this 

at-risk population. We sought to identify factors that shape immune development in children under 

five years of age from Tanzania and Mozambique by detailed immunophenotyping of longitudinal 

blood samples collected during the RTS,S malaria vaccine phase III trial. In these cohorts, the 

composition of the immune system is dynamically transformed during the first years of life, and 

this was further influenced by geographical location, with some immune cell types showing an 
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altered rate of development in Tanzanian children compared to Dutch children enrolled in the 

Generation R population-based cohort study. High titer antibody responses to the RTS,S/AS01E 

vaccine were associated with an activated immune profile at the time of vaccination, including an 

increased frequency of antibody-secreting plasmablasts and follicular helper T cells. Anemic 

children had lower frequencies of recent thymic emigrant T cells, isotype-switched memory B 

cells and plasmablasts; modulating iron bioavailability in vitro could recapitulate the B cell defects 

observed in anemic children. Our findings demonstrate that the composition of the immune system 

in children varies according to age, geographical location and anemia status.

One Sentence Summary:

The composition and function of the immune system in African children is linked to age, location 

and anemia.

Introduction

Age shapes the composition and function of the human immune system. In particular the 

first five years of life are a pivotal time in immune development: after birth the immune 

system changes as thymic output increases, and maternally-derived immune mediators such 

as antibodies are lost (1, 2). This occurs in parallel with the acquisition and cultivation of the 

commensal microbiome, encounters with food antigens and exposure to numerous 

environmental microbes (1). These factors, combined with an individual’s genetics, shape 

the human immune system (3–6). In this early period of immune development the functional 

capacity of the immune system appears to be limited, resulting in a reduced ability to 

generate protective cellular and humoral immunity after vaccination and an increased 

susceptibility to infectious diseases (2). This results in higher rates of morbidity and 

mortality from infectious disease in young children world-wide: in 2017, pneumonia, 

diarrhea and malaria caused ~1.5 million deaths in children under five years of age (7). 

These infectious diseases disproportionately affect children in low- and middle-income 

countries (LMICs), particularly those in sub-Saharan Africa (7, 8). A higher pathogen 

burden, sub-optimal nutrition, impaired maternal health, and poor access to healthcare 

undoubtedly contribute to this increased burden of infectious disease. However, there is 

limited understanding of how these factors affect the development and function of the 

immune system during childhood in LMICs, and how immune system development differs 

between populations around the world.

In-depth immune phenotyping of peripheral blood samples from large cohorts provides a 

way to characterize which factors influence the composition of the human immune system. 

Such studies have estimated that between 20-40% of this inter-individual variation is driven 

by genetics, demonstrating that non-genetic factors play a dominant role in moulding the 

composition of the immune system (3, 9–11). Determining the contribution of non-genetic 

factors to human immunity is highly complex due to the wide range of potential factors and 

their putative interactions. Nevertheless, an individual’s age, their environment, and chronic 

viral infections have emerged as key factors that influence human immune variation over 

time (3–6, 9). While these immunophenotyping studies have increased our understanding of 
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the factors that influence the composition of the human immune profile, it has been difficult 

to integrate this knowledge in the context of immune function.

This study aimed to characterize how age and other non-genetic factors alter the 

composition of the immune system of young children living in Tanzania and Mozambique 

and to link immune status to vaccine responsiveness. Comprehensive immune profiling and 

transcriptomic analysis was performed on peripheral blood samples collected over a 32-

month period from infants and children that were under 5 years of age and participants in a 

phase III study of the malaria vaccine RTS,S/AS01E (12). This study also aimed to compare 

immune composition to Dutch children from the Generation R study (5).

Results

Blood leukocyte subsets are stable one month after vaccination

First we compared peripheral blood mononuclear cells (PBMC) samples from the RTS,S 

trial by flow cytometry. In the RTS,S trial, conducted across seven countries in sub-Saharan 

Africa, participants were vaccinated three times at monthly intervals with RTS,S/AS01E or a 

comparator vaccine, followed by a booster dose of vaccine at month 20 (12). PBMC from 

participants from Tanzania and Mozambique collected at baseline, 3, 21 and 32 months into 

the trial (Fig. 1A,B, tables S1–2) were analyzed by flow cytometry using both the 

unsupervised T-Distributed Stochastic Neighbour Embedding (tSNE) method (fig. S1), and 

by manual gating to identify well-characterized innate and adaptive immune cell populations 

(Figures S2–5, Tables S3–5). Multidimensional scaling (MDS) analysis of tSNE data from 

Tanzanian children (5-17 months old at enrollment, n=116) revealed that the immune profile 

of participants did not differ between vaccine groups at either 3 months (B3) or 21 months 

(B21) after vaccination (Figure 1C, D). The frequencies of individual tSNE clusters or 

manual gated populations were not different between participants given the RTS,S or a 

comparator vaccine at any time point sampled (B0, B3, B21, B32, Figure 1E–H), nor did the 

type of vaccine administered or the sex of participants significantly contribute to the inter-

individual variance observed for immune cell types at any time point (Figure S6A–D). In 

addition, no cell types or tSNE clusters were changed between baseline and B3 for any 

group (Fig. 1E, F). Therefore, no vaccine-induced changes to blood immune cells were 

detected one month after vaccination, indicating that neither the RTS,S or comparator 

vaccine caused lasting changes to the participant’s immune profile, and that children’s 

immune profiles are stable over a short timescale of 3 months. Likewise, reanalysis of blood 

transcriptomes from clinical trial of the RTS,S vaccine in adults from North America (13) 

showed minimal vaccine-induced gene expression changes remained 21-28 days vaccination 

(Fig. S6E). These findings are consistent with previous studies showing that changes in the 

cellular composition of the adult immune system after vaccination occur in the first two 

weeks after vaccination, followed by a return to baseline (4, 14). However, comparison of 

the B0 with B21 samples identified 76 tSNE clusters and 25 manual gated cell types that 

were altered during this timeframe (all vaccine groups combined, Fig. 1G, H), indicating 

that the immune landscape of children changes over a 21-month period. Consistent with this, 

fewer strong correlations of cell subset frequencies were observed between baseline and 32 
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months than between baseline and B3 (Fig. S7–9). This change over a short period is unique 

to children, as adults have stable immune profiles over a 2-6 year period (3, 4).

Dynamic development of the immune system occurs during childhood

To determine how age impacts the blood immune cell composition in the first years of life, 

we compared the immune profile at B3 of infants (4.8-5.8 months old, n=43) and children 

(7.5-22 months old, n=55) from Mozambique (Fig. 2A). The two age groups separated from 

each other by the first MDS dimension of tSNE clusters (Fig. 2B, p < 10−16), and manual 

gating analysis revealed that 33 immune subsets were different between the age-groups (Fig. 

2C). These results, and regression modelling (Fig. 2D), demonstrate that age was the biggest 

contributor to immune variation between these participants. For example, naïve B cell and 

CD25+CD127low Treg cell frequencies were elevated in infants compared to children (Fig. 

2E). Reciprocally, frequencies of CD4+ T cell memory and T helper cell subsets were 

increased in children (Fig. 2E). Of note, circulating T follicular helper (cTfh) cells and 

plasmablasts were more abundant in children (Fig. 2E), cell types that are known to increase 

transiently after infection or vaccination (4, 14). This could be because children had higher 

exposure to infections and vaccinations than infants and these cells act as circulating 

biomarkers of an ongoing immune response in secondary lymphoid tissues (15). 

Alternatively, these data may indicate that children are more capable than infants of 

mounting the cellular immune response required for the production of humoral immunity. 

Consistent with the latter hypothesis, infants had reduced IgG titers to the RTS,S vaccine 

components hepatitis B surface antigen (HBV.S) and Plasmodium falciparum 
circumsporozoite surface protein (CSP) compared to children in the trial (Fig. 2F, Fig. 

S10A–B).

Further longitudinal analyses revealed that the immune profile of infants and children 

continued to change over the 32-month duration of the vaccine trial (Fig. 2G), indicating 

ongoing immune development throughout early childhood. To investigate the immune 

ontogeny over this longer time period, we utilised the larger cohort of samples collected over 

32 months from children in Tanzania (n=116, Fig. 3A), which confirmed that age is a major 

driver of immune variation in this cohort (Fig. 3B). To determine how specific immune cell 

types change during the first years of life, sample age and sex was modelled against cell type 

frequency using linear mixed effect regression (LMER)(Fig. 3C, Age range 4.8 months – 4.3 

years). This identified 20 cell types that changed in the first years of life in Tanzanian 

children with age, including increases in Ig isotype-switched memory B cells, T helper cells, 

and dendritic cell subsets with age (Fig. 3C, D).

The change in the composition of the immune system as children get older was recapitulated 

using RNA-sequencing of whole PBMC from Tanzanian children from B0 (Age 5.3-17.2 

months, n=21) and B32 (Age 37-50 months, n=9) (Fig. 4A–B, data file S1). Blood 

transcriptional module analysis (16) identified gene signatures of cell division, CD4+ T cell 

proliferation and B cells as enriched in samples from younger children (B0, Fig. 4C). An 

erythrocyte differentiation signature was more abundant in younger children indicating the 

presence of nucleated red blood cells or reticulocytes that are common in infants, and are 

retained during density centrifugation of whole blood. In older children (B32), signatures of 
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dendritic cell, NK cell and CD4+ T cell activation were enriched, along with hallmarks of 

NFKB and AP-1 activation and cytokine signalling, suggesting of a higher state of immune 

activation (Fig. 4D). These data demonstrate that the steady-state blood transcriptome in 

children is strongly influenced by age, indicative of the profound changes to the immune 

system that occur during this early period in life.

In addition to age, genetics and other extrinsic factors can contribute inter-individual 

variation in the immune landscape (9). As many of the age-related changes to immune cell 

types and gene expression identified in this cohort were highly heterogeneous between 

individuals, we sought to quantify the contribution of age to immune variation during this 

dynamic time-frame in young African children. For this we applied multi-omics factor 

analysis (MOFA) to our flow cytometry and RNA-Seq data (Fig. 4E), which is an 

unsupervised method to that can deconvolve the sources of heterogeneity in diverse data 

types (17, 18). The MOFA model attributed the variance in the whole dataset evenly 

between the RNA-Seq and flow cytometry assays (Fig. 4F). Age clearly separated by the 

first two MOFA factors, which combined explained 46.2% of the total variance in the 

dataset, and the first two factors combined strongly correlated the age of each sample (Fig. 

4G,H). MOFA showed that a decrease in naïve B cells and an increase in activated dendritic 

cells, effector memory CD4+ T cells and memory B cells in flow cytometry and 

transcriptomic data best explained the age-associated immune variance (Fig. 4I–L). This 

analysis shows that age has a major influence on the immune landscape in the first years of 

life, with T and B lymphocytes and dendritic cells showing the most dynamic changes.

Comparison of Tanzanian and Dutch children reveals that age and location associate with 
differences in the immune landscape

To investigate whether these changes over time are characteristic of human immune 

ontogeny broadly or whether there is an immune signature that is specific to childhood in 

Tanzania, we reanalyzed published data from a longitudinal immunophenotyping study of 

Dutch children that were followed from birth to 6 years of age (Generation R cohort, (5)). 

Children from the same age range in both studies (20-125 weeks of age), and the 19 cell 

subsets that were measured with the identical marker combinations in both cohorts were 

included in the analysis (Fig. 5A). LMER modelling of immune cell frequencies against age 

and sex revealed that some immune cell types were similar between cohorts, but some 

subsets were influenced by the child’s country of origin (Fig. 5B, C): Vδ2+ cells and CD8+ 

T effector memory cells showed the same pattern in both cohorts, but the accumulation of 

memory cells as a proportion of CD4+ and CD8+ T cells differed between Dutch and 

Tanzanian children. In particular, the frequencies of CD4+ T effector memory cells in Dutch 

children under 1 year of age were lower, but had converged with Tanzanian children by 2 

years of age (Fig. 5B, C). A higher frequency of total memory B cell subsets was also 

observed in Tanzanian children, however the abundance of immunoglobulin isotypes was 

variable between the CD27− and CD27+ memory B cell subsets (Fig. 5B, C). Tanzanian 

children showed a shift towards more IgM, and fewer IgG and IgA expressing cells in the 

CD27− compartment. In contrast, frequencies of CD27+IgG+ and CD27+IgM+ cells were 

higher in Tanzanian children (Fig. 5B, C). Together, these data suggest that some immune 
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cells mature as part of a common childhood immune maturation program, but others may be 

distinct in Tanzanian and Dutch children.

A common trajectory of immune development in neonates has been proposed from studies 

of newborns in Europe, West Africa and Australasia (6, 19) To determine whether Tanzanian 

and Dutch children follow a similar path of immune development, we applied a diffusion-

pseudotime algorithm(20) to the immunophenotyping data that spanned birth to 8 years of 

age Children’s immune profiles were distributed along a continuous spectrum that originated 

with samples from newborn Dutch children and progressed with age (Fig. 5D, Fig. S11). 

The two cohorts clustered together and followed the same pseudotime path (Fig. 5D), which 

has been reported to indicate a shared trajectory that is not influenced by technical 

differences between datasets (21). A pseudotime measure of immunological age was 

determined for each sample relative to their position along the trajectory, and this position 

was strongly correlated with a transition from naïve to memory lymphocytes (Fig. 5D, E). 

20-125-week-old children from Tanzania had higher pseudotime values than Dutch 

counterparts of the same age-range (Fig. 5F, G). These data suggest that immune cell types 

develop along a common pathway throughout childhood, but the rate at which these changes 

occur can vary between countries.

Immune development during childhood proceeds differently in Tanzania and Mozambique.

The observation that the immune landscape in children is influenced by location at the 

continental level prompts the hypothesis that there may be differences in immune 

development between African countries. Children from Mozambique (n=55) clustered 

distinctly from children of the same age from Tanzania (n=116) by both MDS dimensions of 

tSNE clusters (B0 samples, Fig. 6A). We identified 31 immune subsets that varied between 

the sites, and, apart from total and naïve B cells, the altered cell types showed lower 

frequencies in children from Tanzania. These cells came from diverse immune lineages, 

including NK cells, monocytes, and memory B and T cells (Fig. 6B). The influence of the 

different African sites on immune composition was present at baseline (B0) and continued 

throughout the 32-month study period (Fig. 6C). At baseline children from Mozambique had 

increased frequencies of activated monocytes, activated CD4+ and CD8+ T cells (HLADR
+CD38+) and Th subsets compared to children from Tanzania (Fig. 6D). This was 

accompanied by elevated cTfh cell and plasmablasts frequencies at baseline (Fig. 6D). 

Interestingly, the increase in cTfh cells and plasmablasts in children from Mozambique was 

linked to higher IgG titers to both components of the RTS,S vaccine (Fig. 5E and fig. S12A–

B, Tanzania n = 123, Mozambique n=137). This decrease in antibody responses to the 

RTS,S vaccine in Tanzanians compared to Mozambicans was validated in an independent 

sub-cohort of infants from the phase 3 trial for which serum antibody titres were measured 

(fig. S12C–D), indicating that country-specific differences are present from early in life. 

Despite the close proximity of the two countries within East Africa, our results demonstrate 

that country of origin alters immune development in children.

Within this study, age was not different between the two sites (Fig. 6F), and despite a trend 

towards Mozambican children being older, age and sex made a minimal contribution to the 

country specific variance observed (Fig. 6G). Weight did not differ between these two 
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cohorts (Fig. 6H), and 55% of participants were male at both sites, although Tanzanian 

children were slightly taller for their age (Fig. 6I). In our transcriptomic dataset from 

Tanzanian children at B0 we observed enrichment for gene signatures of erythrocyte 

maturation and oxygen transport, which suggests that anemia may impact the blood 

transcriptome. This led us to speculate that anemia may influence the geographic differences 

observed in our study, and we observed lower hemoglobin concentration in children from 

Tanzania compared to Mozambique (Fig. 6J). This was also reflected in the higher frequency 

of children characterized as having moderate or severe anemia in Tanzania (60%) compared 

to Mozambique (44%), based on WHO definitions (22). This prompts the hypothesis that 

anemia may be one of the factors influencing immune composition in children.

Anemia is linked with an altered composition of the immune system in children and 
reduced iron bioavailability impairs plasmablast generation

To investigate whether anemia influences the immune landscape we compared gene 

expression and immune profiles in blood samples between age-matched anemic (<8.5g/dL 

hemoglobin, n=6) and non-anemic (>10.5g/dL hemoglobin, n=9) children from Tanzania 

and Mozambique subsampled from within our dataset based on hemoglobin concentration 

(Fig. 7A). Anemia status influenced the blood transcriptome (Fig. 7B, data file S2), with a 

strong enrichment of an erythrocyte differentiation and heme biosynthesis gene signature in 

anemic children (Fig. 7C), indicative of an increase in reticulocytes as a compensatory 

mechanism during anemia. In non-anemic children, blood transcription modules of mitosis, 

CD4+ T cell differentiation, B cells and plasma cell were enriched (Fig. 7D), suggesting that 

anemia is associated with changes to the cellular composition of the immune system. 

Anemia contributed significantly to the immune variation (Fig. 7E), and the immune cell 

types altered in anemic children mirrored the transcriptomic analysis; anemic children had 

fewer recent thymic emigrant CD4+ T cells, IgG memory B cells and plasmablasts than non-

anemic children at B0 (Fig. 7F). In this cohort, the anemic status of children changed over 

time, enabling us to evaluate immune phenotypes in older children who developed anemia 

later in life. The immune cell types impacted by anemia at B0 were also reduced in anemic 

children at B21 (Fig. 7G), none of which were anemic at B0.

The immunophenotyping data suggested that induction of plasmablasts and memory B cells, 

important cell types for the protective immunity afforded by vaccination, are negatively 

impacted in children with anemia. We sought to determine whether the availability of iron 

could explain the B cell defects observed in anemic children by modulating iron 

bioavailability during plasmablast differentiation in vitro. Cellular iron was modulated by 

supplementing media with apo-transferrin (APO) which facilitates iron uptake by 

lymphocytes, and by limiting intracellular iron using a cytostatic dose of the iron chelator 

ciclopirox olamine (CPX, Fig. 7H, Fig. S13). Increased cellular iron enhanced B cell 

proliferation, and conversely proliferation was impaired when iron availability was reduced 

(Fig. 7 H–J). Likewise, increased bioavailability of iron enhanced plasmablast differentiation 

(Fig. 7K–L), which was mirrored by an increase of class switched antibody produced in 

these cultures (Fig. 7M). These data show a direct effect of bioavailable iron on B cell 

biology in vitro, and suggest that dietary iron deficiency or infection may impair 

development of adaptive immunity in anemic children.
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Discussion

In this study we show that the composition of the immune system in children from sub-

Saharan Africa undergoes dynamic changes in the first years of life. This maturation profile 

differs from that of Dutch children sampled over the same period of early life, suggesting 

that the rate of immune maturation is influenced by country-specific factors. Consistent with 

this finding, location within Africa also had a large effect on the composition of the immune 

system, and was linked to differential responses to the RTS,S/AS01E vaccine. Groups of 

children who responded with higher antibody titers to the RTS,S vaccine had circulating 

cells indicative of a more receptive immune system at the time of first vaccination, including 

increased baseline frequencies of antibody secreting cells and cTfh cells. To determine what 

underpins this productive immune profile we examined several factors, and found that 

anemia was linked to poor baseline frequencies of several immune cell types, including 

memory B cells and plasmablasts. Importantly, we were able to show a direct link between 

plasmablast formation and antibody production driven by the bioavailability of iron in vitro, 

demonstrating a direct effect of iron on B cell responsiveness. This indicates that anemia, 

which is common in children from LMICs, is associated with an altered composition of the 

immune system in the first years of life. Together, this study shows that the development and 

function of the immune system in children from sub-Saharan Africa varies according to their 

age, geographic location and by co-morbidities and nutritional status that cause anemia.

The factors that underpin the difference in immune profiles from children living in Tanzania 

and Mozambique are likely to be multifactorial; with contributions from genetics, climate, 

diet, sanitation, maternal health and the differential prevalence of infectious diseases. We 

observed that children from Mozambique had a more ‘activated’ immune profile than 

children from Tanzania at baseline. This corresponded to increased antibody production after 

RTS,S vaccination in children from Mozambique. These findings are consistent with the 

protective efficacy of Rotavirus vaccination being highly variable between different African 

sites (23). Disentangling the contributions of environment or genetics at a population level is 

complex, although twin studies in Gambian infants suggest that environmental factors 

predominantly influence antibody persistence after vaccination (24). Our findings suggest 

that an individual’s immunological profile at time of first vaccination may impact the 

ensuing antibody response, and are not consistent with suggestions that a highly-activated 

immune system in individuals from LMICs prohibits good responses to vaccination (25–27). 

Children from sub-Saharan Africa showed altered immune development with age compared 

to Dutch children, and had accumulated memory/effector lymphocytes at earlier years in life 

indicative of advanced immunological age relative to biological age. Viral pathogens may 

underpin the immune development differences between Tanzanian, Mozambican and Dutch 

children, as infection with Epstein-Barr virus and Cytomegalovirus and HIV exposure have 

been linked to changes to several of the T and B cell memory populations observed to 

change in this study (9, 28–30). Differences in the childhood vaccination programs could 

contribute to country-specific immune landscapes, as the BCG vaccination, given to African 

but not Dutch newborns, is known to have non-specific effects on innate immunity and 

lymphocytes(31). It is remains unclear how these and other factors contribute to the reduced 

responses to rotavirus, cholera, and polio vaccines in infants from LMICs compared to 
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Europe and North America (23, 32–38), however our study indicates that reduced vaccine 

responses in LMIC children does not result from a delayed or impaired immune 

development relative to high-income countries.

The prevalence of anemia in preschool aged children in sub-Saharan Africa is over 65%, and 

represents a major public health problem due to its association with increased risk of death 

and impaired cognitive development (22). In this study, children from Tanzania were more 

likely to have moderate to severe anemia than children from Mozambique, and anemia was 

associated with changes to the PBMC transcriptome and reduced frequencies of CD4+ T 

cells, IgG+ memory B cells and plasmablasts. The major drivers of childhood anemia are 

iron and folate deficiency, infectious disease (e.g. malaria, HIV, bacteraemia, 

schistosomiasis), and inherited hemoglobinopathies (22). It is possible that infectious 

diseases are responsible for shaping the immune system in anemic children, but it is also 

possible that anemia directly impacts the composition and responsiveness of the immune 

system. After infection or immunisation, B and T cells rapidly proliferate and whilst it is 

known that iron plays a critical role in both cellular metabolism and DNA synthesis (39, 40), 

the precise role that iron plays in adaptive immune responses remains unclear (41). We show 

that sufficient bioavailable iron is needed for optimal production of plasmablasts and IgG 

responses by human B cells in vitro, which is consistent with in vivo work in mice (42–44). 

In humans, homozygous mutation of transferrin receptor 1 causes a primary 

immunodeficiency, characterised by hypoglobulinemia and defects in isotype switched 

memory B cells (45). Together with the data presented here this supports the notion that the 

low iron state of anemia may impact plasmablast differentiation directly. This impairment in 

B and T cell responses could explain the poorer vaccine outcomes that have been reported in 

anemic children and iron deficient adults (44, 46), although further studies are needed to 

dissect the contributions of iron-deficiency, genetic polymorphisms and co-infections to the 

reduced plasmablast differentiation we observed in this study.

Childhood vaccination programmes, such as the Expanded Program on Immunization, save 

millions of lives worldwide by preventing disease caused by pertussis, measles, polio, 

diphtheria, tuberculosis, and tetanus (47). For many of these early vaccination schedules, 

several vaccine doses are administered within the first 12 weeks of life. In this study, IgG 

responses to the RTS,S vaccine were much lower in 6-12 week old infants than children over 

5 months of age, consistent with responses to other vaccines given in early life (1, 48). 

Infants three months into this trial had an ‘inactive’ immune phenotype, consisting of low 

frequencies of memory B cells, memory CD4+ T cell subsets, and an elevated Treg cell 

frequency. It has been reported that neonatal CD4+ T cells tend to differentiate into Treg 

cells (49, 50), which could explain the higher Treg frequency and could promote 

tolerogenicity of antigen presenting cells and thus limit T cell responses in infants. Tfh cell 

generation, germinal center formation, and plasma cell survival is impaired in neonatal mice 

(48, 51–55), and here we show that human infants show reduced cTfh and plasmablast 

differentiation compared to older children. These immune composition differences likely 

underpin the reduced responses in infants to the RTS,S vaccine, which based on the phase 3 

trial results has been licensed only for use in children at 5-17 months of age (56). Our 

findings may also be applicable to other vaccines, and suggests a “one size fits all” 

approaches in vaccinology is suboptimal. It is conceivable that the optimal age range to 
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vaccinate infants and children would need to be determined for each vaccine and location, as 

American infants with a more mature adaptive immune system elicit stronger responses to 

diphtheria-tetanus-pertussis (DTP) vaccine (57) but weaker responses to measles-mumps-

rubella (MMR) immunization (58).

The data presented here suggests that age, location and anaemia may alter the rate of 

immune development in children. Like all large-scale human immunology studies however, 

there are limitations: Collection and immune phenotyping of the Dutch cohort was 

independent of the RTS,S vaccine trial, because of this it was not possible to determine how 

differences at the continental level relate to immune system function. . Within the RTS,S 

trial, country-specific differences in vaccine-specific antibody responses were observed 

across the seven African (59), however PBMC samples were only available from two 

countries for use this study. An understanding of what underpins the geographical changes 

in immune function will require larger scale cohorts, that include multiple countries. Due to 

the low malaria incidence in Tanzania and Mozambique during the RTS,S vaccine trial, it 

was not possible to investigate how immune status related to vaccine efficacy and immune 

function in this cohort. Further, it will be important to understand whether differences in 

immune profile relates to changes in susceptability to infectious disease. Future studies will 

clearly be of value to elucidate the influence of genetics, the microbiome, pathogens, and 

nutrition on immune development, anemia, and vaccine efficacy in different populations 

around the globe.

Despite the success of childhood immunizations to date, there are still numerous infectious 

diseases, such as malaria, that require a vaccination solution. It is likely that such solutions 

will come from a combination of innovative vaccine design and an understanding of the host 

response to vaccination. RTS,S is the most clinically advanced malaria vaccine, and has now 

been rolled out in pilot implementation programs in areas of Ghana, Kenya and Malawi (60), 

but we need to be better informed about what underpins this vaccine’s efficacy at the 

individual and population level to use it effectively. The data reported here demonstrate that 

multiple factors influence the immune system of children in sub-Saharan Africa, with age 

and location having the strongest influence on immune composition and were linked with 

differential responses to the RTS,S vaccine. Therefore, a better understanding of what 

underpins productive immune responses at early age has the potential to improve the 

efficacy of many childhood vaccine approaches in different populations globally.

Materials and Methods

Study design

The overall objective of this study was to investigate how the composition of the immune 

system changes throughout childhood in African and Dutch children by using flow 

cytometry and transcriptomics. This study was performed using cryopreserved PBMC from 

a subset of participants the RTS,S/AS01E Phase 3 trial (ClinicalTrials.gov NCT00866619), 

described elsewhere (12). Participants received either three doses of RTS,S/AS01E at 

months 0, 1, 2 and a booster dose at month 20 (R3R group); three doses of RTS,S/AS01E 

and a comparator vaccine at month 20 (R3C group); or a comparator vaccine at month 0, 1, 

2 and 20 (C3C group). The trial consisted of two age-categories based on participant age at 
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enrolment which were used in this study for consistency; “infants” were 6-12 weeks old and 

“children” were between 5-17 months of age. The comparator vaccine for infants and 

children was meningococcal serogroup C conjugate vaccine (Menjugate, Novartis) and 

rabies (Verorab, Sanofi Pasteur), respectively. Samples analyzed here were collected in two 

different centers: Manhiça Health Research Center, Fundação Manhiça (FM-CISM, 

Mozambique), and Ifakara Health Institute and Bagamoyo Research and Training Center 

(IHI-BRTC, Tanzania). These areas have been described in detail elsewhere (61). Both sites 

had low-medium malaria transmission intensity at the time of the study (12, 62), and 

incidence of clinical malaria was low across all vaccine groups. Samples for this study were 

randomly selected from among participants for which samples were available from all time-

points and had no reported malaria episodes throughout the follow-up period (Table S1) to 

exclude any influence of malaria infection on immune parameters. PBMCs from study 

month 0, 3, 21 and 32 were available for children (Tanzania and Mozambique), and month 3, 

21, and 32 for infants (Mozambique only). A description of the number of participants and 

samples, sample randomisation, excluded data, vaccine groups, and nested anemia 

subgroups are outlined in a consort table (Table S2). The analysis of Dutch children involved 

reanalysing immunophenotyping data from the Generation R study, a prospective 

population-based cohort study from birth until young adulthood of children born between 

2003-2006 (63, 64). For age-matched comparisons to Tanzanian children, a subset of 

samples from Generation R children between 20-125 weeks of age were analysed (504 out 

of 1182 children, 748 samples in total). To investigate whether iron influences B cell 

biology, iron bioavailability was modulated during plasmablast differentiation assays in vitro 

using healthy UK adult PBMC samples. Investigators conducted all assays, data collection 

and processing blinded to vaccination group, age-group, study time-point, and study site.

Ethical Approval

Approval for the RTS,S immunological study was obtained from the Ethical Committee of 

the Hospital Clínic in Barcelona (CEIC, Spain), the National Health and Bioethics 

Committee (CNBS, Mozambique), the Ethikkommission Beider Basel (EKBB, 

Switzerland), the National Institutional Review Board (NIMR, Tanzania), the Ifakara Health 

Institute IRB (IHIIRB, Tanzania), and the PATH’s Research Ethics Committee (REC, USA). 

Use of RTS,S samples in the UK, and healthy UK adult PBMCs were approved by the UK 

Health Research Authority (REC reference 17/EE/0063, 15/EE/0071, respectively) and 

Babraham Institute Human Ethics Committee. The Generation R study received approval 

from the Medical Ethical Committee of the Erasmus MC, University Medical Center 

(Rotterdam, the Netherlands). Written informed consent was obtained from parents or 

guardians of participating children in accordance with the Declaration of Helsinki.

African blood sample preparation and antibody staining

PBMCs were isolated at the African institution laboratories by density gradient 

centrifugation (65), cryopreserved in liquid nitrogen and shipped to the Babraham Institute 

where the PBMC were thawed and rested for 2 hours at 37°C. Cell number and viability 

were measured using a Nucleocounter (NC-3000, Chemometec). Samples with low viability 

(<50% live cells) were discarded. Two flow cytometry panels (Panels 1 and 2, Table S3) 

were used to stain between 500,000 and 2 million cells per panel. In brief, cells were 
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incubated with Fc-Receptor blocking antibody for 30 minutes at 4°C, followed by staining 

with antibody master mixes for 1 hour at 4°C, followed by fixation with 4% 

paraformaldehyde (Cytofix, BD Biosciences). Fluorescence minus one (FMO) controls were 

performed for each antibody, in each experiment. Up to 96 PBMC samples were stained per 

experiment (total of 718 samples over 9 experiments). Participants’ longitudinal samples 

were tested in the same experiment, and each experiment contained a randomised assortment 

of samples from each study site, vaccine arm, and age-group to control for batch effects.

African sample flow cytometry and data processing

Samples were acquired on a BD LSR Fortessa 5-laser cytometer, with identical settings for 

each experiment. 8-peak Rainbow calibration particles (Spherotech) were used to confirm 

consistent laser power and detector sensitivity in each experiment. Raw .fcs files were pre-

processed for quality control to remove events outside the normal range for flow-rate, 

dynamic range and signal acquisition (Flow AI, (66)). Data files were removed of duplicates 

and dead cells prior to all analysis, followed by downstream gating for tSNE and manual 

gating (Fig. S2–5). High inter-assay concordance of control UK blood samples included in 

each experiment showed limited batch effects in flow cytometry staining (Fig. S14). For 

tSNE analysis gated subpopulation data (CD3+ T cells, CD19+ B cells, CD4+ T cells, CD8+ 

T cells, and CD3−CD19− leukocytes) were exported as .csv file, and fluorescence values 

were arc sin transformed using manually defined fluorescence cut offs and a cofactor value 

of 50 (Fig S1). For each subpopulation, 1000 cells from each sample were randomly sub-

sampled to a maximum of 723,000 cells. Samples with less than 3000 events for 

subpopulations after FlowAI QC filters were excluded from the analysis (66). The tSNE 

algorithm was applied to each subpopulation independently (2500 iterations, 

perplexity=100) using RtSNE (67), followed by clustering using dbscan package. A total of 

336 distinct cell clusters characterized by distinct combinations of surface marker expression 

were identified, and cluster frequencies were calculated for each sample as a proportion the 

1000 cells analysed for each subpopulation. Manual gating of 70 well characterized cell 

subsets was performed using FlowJo software (Table S4–5, and Fig. S2–5). Manually gated 

data was imported into R using flowWorkspace package (68), and cell subset frequencies 

were extracted as percentage of total leukocytes, and as a percentage of CD3+, CD19+, 

CD4+, CD8+, or forward and side-scatter intermediate cells. For the Generation R cohort of 

Dutch children, existing immunophenotyping data was analyzed for the 19 cell subsets in 

which the antibodies and gating strategies were in common for both RTS,S and GenR 

cohorts (5). Cell subsets frequencies as a percentage of CD3+, CD19+, CD4+, or CD8+ cells 

were used from participants either from birth-414 weeks of age (n= 2010 samples), or 

between 25 and 125 weeks of age (n=748 samples). For all cohorts, relative frequencies (as a 

% of total lymphocytes or as a % of ‘parent’ population) were used, as the absolute counts 

for each cell type were not available.

B cell in vitro cultures and plasmablast differentiation

PBMCs were isolated from healthy UK adult apheresis leukocyte cones by density gradient 

centrifugation and cryopreserved in liquid nitrogen. PBMC were thawed and rested for two 

hours at 37°C, stained with CellTrace Violet cell proliferation dye (ThermoFisher 

Scientific), then B cells were enriched using MagniSort human B cell enrichment kit 
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(ThermoFisher Scientific). Purified B were cultured for 5 days to differentiate plasmablasts. 

Briefly 100,000 B cells were cultured per well in RPMI culture media (CM) supplemented 

with 10% heat inactivated foetal calf serum, 10mM HEPES ph 7.4, 1X non-essential amino 

acids, 1mM sodium pyruvate, 2mM L-glutamine, 100 units/mL Penicillin, 100 units/mL 

Streptomycin (all from ThermoFisher), 50ng/mL human IL-21 (Peprotech), and 200ng/mL 

of recombinant human CD40L crosslinked with 50ng/mL anti-Hemagglutinin peptide 

antibody (both R& D systems). Iron bioavailability was modulated by the addition of 

40μg/mL apo-transferrin (APO) for 5 days (ThermoFisher Scientific), or 500nM of 

Ciclopirox olamine (CPX) added on day 1 of culture, a concentration of CPX that did not 

impact B cell viability in vitro (Fig. S13). After 5 days of culture at 37°C, culture 

supernatants were collected and secreted IgG measured by ELISA using a rat anti-human 

IgG Fc capture antibody (M1310G05, BioLegend), a mouse anti-human IgG-biotin 

detection antibody (HP6017, BioLegend), Streptavidin-HRP (GE Healthcare), and TMB 

substrate set (BioLegend). IgG concentration was determined by using a standard curve of 

human IgG (Sigma). Proliferation and plasmablast differentiation was measured by flow 

cytometry by staining with Panel 3 (Table S3), with cell number determined using counting 

beads (123count eBeads, ThermoFisher Scientific). Primary data included in data file S3.

Sequencing and bioinformatics

PBMCs from Tanzanian children at B0 and B32 were stored in RNA-later post-thaw. RNA 

from samples with high viability (>90%) and sufficient cell number (>3x106 cells) were 

isolated using RNeasy plus Mini kit (Qiagen). Libraries were generated from samples with 

high RNA quality (RIIN >7) using TruSeq Stranded mRNA Library prep (Illumina) by 

Eurofins (n= 30). Libraries were sequenced to an average depth of 24 million 1x50bp single 

end reads per sample (range 17-34 million) on a HiSeq 2500 (Illumina, v4 chemistry). Raw 

data was aligned using GRCh38 assembly, reads within CDS quantitated, and differential 

expressed genes (DE) determined using the DeSeq2 package embedded within the Seqmonk 

software (https://www.bioinformatics.babraham.ac.uk/projects/seqmonk/). Significantly 

differentially expressed genes had an fdr-adjusted p-value of <0.01 from DESeq2 and an fdr-

adjusted p-value of <0.05 from the intensity-difference test. Heatmaps of DE genes were 

generated using Pheatmap package in R (69), with hierarchical clustering by Euclidean 

distance. Blood transcriptional module (BTM) analysis used gene sets previously reported 

(16) and gene set enrichment tool within the Seqmonk software. BTMs were deemed 

significant if they had an enrichment z-score of less than −0.5 or greater than 1.5, and an 

adjusted p-value of <0.05. Enriched BMTs were graphed using the giraph software 

integrated within Seqmonk. Microarray data from Kazmin et al ((13), GSE89292) was 

analysed using the GEOquery (70) and limma (71) packages in R for the 14 RTS,S 

vaccinated north American adults for which there was data available for days 0, 1, 6, 28, 56, 

57, 62 and 77. Days 1, 6 and 28 were compared relative to day 0. Days 57, 62 and 77 were 

compared relative to day 56. Probe sets were deemed significantly differentially expressed if 

they had a 2-fold change in expression and an fdr-adjusted p-value of less than 0.01.

Multi-Omics Factor Analysis (MOFA)

MOFA is a factor analysis model that enables integration of diverse data sets in a completely 

unsupervised fashion, and was implemented in R with Python dependencies as previously 
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described (17). Flow cytometry data was pre-processed as follows: cell subset frequencies 

were converted to z-scores by subtracting the mean and dividing by the standard deviation 

determined using full African dataset (n = 718 samples) for the 30 samples that also had 

transcriptomic data. RNA-Seq reads were counted with Rsubread and vsn normalised using 

DESeq2 package. Genes were ranked according to variance across all 30 samples, and the 

5000 most variable genes was used as this produced the most robust MOFA model. Samples 

with missing data for either flow subsets or gene expression were removed from the analysis 

resulting in 27 samples. Flow and RNA-Seq data matrices were used to the train model 

using default settings (number of factors = 25, drop factor threshold 2% of variance), which 

was then run 10 times independently and the best trained model selected using the EMBO 

output value. All models converged on seven latent factors, and factor loadings for cell types 

and genes were determined using MOFA’s TopWeights function, with blood transcriptional 

modules analysed using the geneset enrichment algorithm implemented in the MOFA 

package (p<0.05), with gene sets as previously published (16).

Serological data and covariates

Serological data were available for a subset of the total participants from each trial site of the 

phase III trial. Anti-CSP and anti-HBV.S antibodies were measured by standardised enzyme-

linked immunosorbent assays and antigens in a single laboratory (72). Vaccine response was 

determined by subtracting baseline antibody titre (in arbitrary units) from B3. Additional 

variables such as participant’s height, weight, and hemoglobin concentration were collected 

as previously described (12), and available for a subset of participants from each trial site.

Immunological trajectory and pseudotime analysis

The immune trajectory was assembled as previously described (21). The frequencies for the 

19 cell subsets were first normalised for abundance; the mean and s.d. of frequency values 

for the 10th to 90th percentile of for each cell type for the entire Dutch cohort (1801 

samples). These values were used normalize cellular frequencies for both cohorts 

(frequency-mean10-90 / s.d.10-90). With both cohorts in a combined dataset, principal 

component analysis was performed. Cell types for which the absolute correlation to PC1 was 

greater than 0.5 were included (n= 18 cell types). The diffusion maps algorithm was then 

applied to the scaled frequencies using the destiny R package (20, 73), the resulting 

diffusion pseudotime values scaled to a range of 0-1,.

Statistical analysis with categorical variables

All statistical tests for cell type frequencies assumed non-parametric data; two group 

comparisons were made using either two-tailed Mann-Whitney tests, or Wilcoxon tests for 

paired from the same individual at different time points. False discovery rate (FDR, or 

Benjamini–Hochberg) adjustment was applied to all multiple testing. tSNE-defined data 

were used to determine changes to the frequency of individual clusters, with between-group 

comparisons analyzed with the Mann-Whitney test and paired samples from individuals 

analysed by Wilcoxon signed-rank test. tSNE-defined cluster frequencies were also used for 

multi-dimensional scaling (MDS) approaches in which Euclidean distances were calculated 

from Spearman correlation matrices of all 336 tSNE clusters per sample and multi-

dimensional scaling performed using monoMDS from the vegan package (74). Mann-
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Whitney tests were used to compare MDS co-ordinates between groups. Heatmaps of 

manual gated cell subsets that were altered by age-group or site were generated using 

Pheatmap package (69), with hierarchical clustering by Euclidean distances.

Statistical analysis of cell types using linear modelling

Linear regression was used to determine the contribution of vaccine group (Fig. 1), age 

group (Fig. 2), country (Fig. 6), or anemia (Fig. 7) as categorical variables to cell type 

frequencies by fitting the following models for each cell subset “i”; MVaccine <- lm(data[,i] ~ 

vaccine group + patient ID + sex); MAge_group <- lm(data[,i] ~ age group + sex); MCountry <- 

lm(data[,i] ~ country + age + sex) ; MAnemia <- lm(data[,i] ~ anemia + age + sex). The 

relative importance for each covariate to the cell subset variance was calculated using the 

relaimpo R package (75).Linear mixed-effect modelling (LMER) analysis was used to 

model immune cell subset dynamics over time with the lme4 package using maximum 

likelihood (76). These models included random intercepts, and enabled the incorporation of 

longitudinal follow-up data from individual children. Frequencies of each immune parameter 

were modelled using age (in weeks) as a continuous variable, sex and location 

(Tanzania/The Netherlands) as categorical variables, and included participant ID (PID) to 

account for repeated measures over time. In samples from Tanzania samples aged 20-220 

weeks (Fig. 4E, n=414), for each cell subset “i” (n=20) the effect of age was tested by 

ANOVA for following models; MNull <- lmer(data[,i] ~ (1| patient ID)); MSex <- 

lmer(data[,i] ~ sex +(1| patient ID)); MAge <- lmer(data[,i] ~ age + sex +(1| patient ID). 

ANOVA p-values were FDR adjusted, and conditional and marginal R2 for MAge were 

calculated using the MuMIn package (77). For comparison of Dutch and Tanzanian samples, 

data was combined into a single dataset. The effect of sex and location as a (fixed effect and 

as an interaction term with age) were tested for each cell subset “i” (n=19) using ANOVA of 

following models; MNull<-lmer(data[,i] ~ age +(1| patient ID)) ; MSex <-lmer(data[,i] ~ age 

+sex +(1| patient ID)); MLocation<-lmer(data[,i] ~ age +location +sex +(1| patient ID)) ; 

MAge*Location<-lmer(data[,i] ~ age*location +sex +(1| patient ID)). Model intercepts and 

slopes were used to predict cell subset frequencies for 20-220 weeks, data were normalised 

to week 20 values, and graphed using the Pheatmap package. All statistical analyses were 

performed with R software version 3.4.1. Normally distributed residuals were confirmed for 

all linear and mixed-effect models for all cell types.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. No changes to blood leukocyte subsets are detected one month after third vaccination.
A) The timeline for vaccinations and blood sampling during the vaccine trial follow-up 

period. The three vaccination groups are shown (R3R, R3C, C3C). Vaccinations are shown 

in blue (R = RTS,S, C = Comparator). Comparator vaccine differed between age groups 

(Menjugate for infants, Verorab for children). Red numbers indicate the month of follow-up 

at which blood samples were collected. B) The distribution of participant age (in months) at 

each of the blood sampling time-points for Tanzanian children (n=414 total samples). Non-

metric multidimensional scaling (NMDS) for Tanzanian children at blood sample 3 (C) or 
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blood sample 21 (D) based on the 336 tSNE clusters and vaccine group (B3; R3R &R3C n = 

63, comparator n= 17, B21; C3C n = 18, R3C n= 39, R3R n=44). Samples from R3R and 

R3C groups were combined at B3 as identical vaccines had been received. The frequencies 

of 336 tSNE clusters (E, as a proportion of each subpopulation) or 70 manually gated cell 

subsets for each participant (F, as a % of all leukocytes) were compared between vaccine 

groups at B0 and B3, and within groups at B3 relative to B0 (All = All Tanzanian children n 

= 80). Between-group comparisons were analyzed with the Mann-Whitney test, B0 vs B3 

used paired data and Wilcoxon signed-rank test. The −log10 p-value is plotted for each 

cluster or subset (fdr adjusted for multiple comparisons). tSNE clusters (G) or manual gated 

cell subsets (H) were compared within vaccine group at B21, and in all children (pair-wise) 

at B21 relative to B0. In E-H any population with an adjusted p-value of less than 0.01 were 

deemed significantly different, the dotted line indicates padj=0.01.
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Figure 2. Dynamic development of memory B and T cells occurs between 6 months and 2 years 
of age.
A) The age (in months) of infant and children age-groups from Mozambique during study 

follow-up. Red box indicates the B3 samples (n = 37 infants, n = 52 children). B) Non-

metric multidimensional scaling (NMDS) for children and infants at B3 based on the 336 

tSNE clusters, with the coordinates for each dimension compared Mann-Whitney test. C) 

Heat map showing the manually gated cell subsets (as % of all leukocytes) with an fdr-

adjusted p-value of less than 0.001 between children and infants at B3 by Mann-Whitney 

test. Cell types are shown as rows, and each column represents an individual participant. 
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Rows and columns were clustered using Euclidean distance, and the cell subset frequency 

converted to z-scores. Individuals without any missing values shown (n = 22 infants, n = 30 

children) D) The contribution of sample age group and sex to the cell type variance as 

determined from linear regression models, shown as a boxplot summary of the 33 cell types 

shown in C (n= 89 samples). E) Representative cell type frequencies (as % of ‘parent’ 

population) for infants and children, with p-value from Mann-Whitney test (fdr adjusted for 

70 subsets, n = 37 infants, n = 52 children). F) Anti-HBV.S or -CSP IgG titer (B3-B0 AU) 

from a cohort of RTS,S vaccinated participants from Mozambique (n=198 infants, n= 137 

children), with p-value from Mann-Whitney. The 336 tSNE clusters (G) or 70 manually 

gated cell subsets (H) were compared between infants and children at B3, B21 and B32, and 

the −log10 fdr-adjusted p-value is shown, with dotted line indicating padj=0.01.
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Figure 3. Dynamic changes of the immune landscape during early childhood.
A) The age in months of Tanzanian children at blood samples throughout follow-up period 

(n = 414 in total). B) Non-metric multidimensional scaling (NMDS) for children at B0 (n = 

78) and B32 (n = 109) based on the 336 tSNE clusters, with the coordinates for each 

dimension compared by Mann-Whitney test. Colors correspond to time-point (B0 = white, 

B32 = black). C) Heatmap of cell subsets which were significantly different between B0 and 

B32 in Tanzanian children (p<0.0001 and conditional R2 >0.25), with the frequency 

predicted from LMER models shown normalized to week 20 frequency. p-values for the 

effect of sex and age determined by ANOVA of LMER models after fdr adjustment shown in 

grey boxes, and the marginal and conditional R2 of LMER model shown in purple for each 

cell subset. D) The frequency of four representative cell subsets (as a % of parent 

population) plotted against age for each sample, with linear-mixed effects regression 
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(LMER) modelling (red line). Marginal R2 and p-value for fit of LMER models shown in 

boxes above each plot.
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Figure 4. Blood gene expression signatures reflect innate and adaptive immune cell changes 
during early childhood.
A) The age (in months) of the Tanzanian children at blood samples B0 and B32 for which 

RNA sequencing was performed. Dots represent individual samples, B0 (n=21) and B32 

(n=9). B) Hierarchical clustering of 2146 differentially expressed (DE) genes between B0 

and B32 (1148 upregulated at B0, 1008 upregulated at B32). Significantly different genes 

had an fdr-adjusted p-value of <0.01 from DESeq2 and an fdr-adjusted p-value of <0.05 

from the intensity-difference test, and were clustered using Euclidean distance. Each column 

represents an individual sample, and genes shown as rows. Enriched blood transcriptional 
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modules (BMTs) at C) B0 and D) B32, represented as colored circles with annotations as 

text. Colors and connecting lines show gene-sets with related genes, and summary terms 

shown in text boxes. BTMs enriched from within all expressed genes (17,607) with an 

enrichment score greater than 1.5 or less and −0.5 and a fdr adjusted p-value of <0.01 

(Kolmorogov-Smirnov test) are shown. E) A stylized representation of the Multi-Omics 

Factor Analysis (MOFA) modelling, which was built using 5000 most variable genes from 

RNA-Seq and 61 immune cell types measured by flow cytometry for 27 samples (19 B0, 8 

B32), and reduces these 5061 parameters to latent factors (LF). F) The percentage of total 

variance (R2) in the MOFA model explained by flow cytometry or RNA-Seq data sets. G) 

Scatter plot showing the distribution of samples by the first 2 LF determined by MOFA 

modelling. Each sample shown as a circle (B0 = white, B32 = black). The percentage of 

total variance, and the contribution of flow and RNA to each factor are indicated in the axes 

labels. H) The correlation between the age in weeks for each sample and the sum of values 

for LF1 and LF2 (Factor sum, B0 = white, B32 = black). Linear regression fit shown by the 

red line, and R2 and p-value from Pearson correlation are shown. The proportional loading 

for the 12 cell types with the strongest contribution to I) Factor 1 or K) Factor 2 are shown. 

The p-values (-log10 fdr-adjusted) for BTMs that were significantly enriched (p-adjusted 

<0.05) among genes identified by J) Factor 1 and L) Factor 2, and corresponding enrichment 

scores. I-L) Colour and symbol representing the direction of loading or enrichment in factor 

space (blue = negative, red = positive).
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Figure 5. Comparison of Tanzanian and Dutch children reveals that age and location are linked 
with changes in the immune landscape.
A) The age in months for Tanzanian samples relative to Dutch cohort. The green box 

indicates the 20-125 week age-range used for age-matched LMER modelling, with 176 total 

samples from 102 Tanzanian children, and 748 total samples from 504 Dutch children. The 

purple box represents the birth-414 week age-range used for immune trajectory building. B) 

Cell subsets that were measured in both cohorts and were significantly altered with age in 

either cohort are shown as the frequency predicted from LMER models, normalized to the 

Tanzanian cohort week 20 levels. p-values determined by ANOVA for the effect of sex and 
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location (Tanzanian or Dutch cohorts), and for the interaction between age and location are 

shown in grey boxes, with fdr adjustment. C) The frequency (% of either B cells, CD4 or 

CD8 T cells) of representative cell subsets are shown from 20-125 weeks of age for the 

Tanzanian (Grey) and Dutch samples (blue). Solid lines represent respective LMER models, 

with p-values from ANOVA for location, age and sex effects shown in boxes below (fdr 

adjusted for the 19 of cell subsets). D) Diffusion-map dimensionality reduction of Dutch and 

Tanzanian samples using scaled cellular frequencies and the diffusion-pseudotime algorithm. 

Each dot represents a sample, color represents the pseudotime output values, and the red 

arrow indicates the direction of the trajectory that starts with the Dutch newborn samples. 

First panel shows all samples used for building the trajectory (421 total samples from 157 

Tanzania children, 1801 total samples from 1119 Dutch children), and second and third 

panels show Dutch and Tanzanian samples in the 20-125wk age-range, respectively, used in 

LMER models in B and C. The correlation coefficients (R2) for the 18 cell types which 

significantly correlated with the pseudotime are shown as colored boxes. E) The distribution 

of naïve and memory B cell frequencies along the diffusion-map trajectory are shown for 

2222 samples, with color representing the scaled cell type frequency. F) Age (in weeks) and 

corresponding pseudotime age for samples in the 20-125 wk age–range shown in D, with p-

values determined by Mann-Whitney test.
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Figure 6. Childhood immune development is influenced by location within Africa.
A) Non-metric multidimensional scaling (NMDS) for children at B0 from Tanzania (n= 78) 

and Mozambique (n=30) based on the 336 tSNE clusters, with the coordinates for each 

dimension compared by Mann-Whitney test. B) Heat map showing manually gated cell 

subsets (as % of all leukocytes) with an fdr-adjusted p-value of less than 0.01 between each 

site at B0 by Mann-Whitney test. Cell types are shown as rows, and each column represents 

an individual sample. Rows and Columns were clustered using Euclidean distance, and the 

cell subset frequency converted to z-scores (Mozambique n= 19, Tanzania n=86). C) The 
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336 tSNE clusters or 70 manually gated cell subsets were compared between samples from 

Tanzania and Mozambique at B0, B3, B21 and B32 by Mann-Whitney test. The −log10 fdr-

adjusted p-value is shown, with the dotted line indicating padj=0.01. D) Representative cell 

type frequencies for each site (as a % of parent population), with p-value from Mann-

Whitney test (fdr adjusted for 70 subsets). E) The increase in Anti-HBV.S or Anti-CSP IgG 

(B3-B0 AU) at B3 (B3 minus B0) from a larger cohort of RTS,S vaccinated participants 

from each site (n=137 Mozambique, n= 123 Tanzania), with p-value from Mann-Whitney 

test. F) The age of children for immunophenotyping samples from each site (Tanzania n = 

33, Mozambique n = 94). G) The contribution of sample age, sex, and country (Tanzania or 

Mozambique) to the cell type variance as determined from linear regression models, shown 

as a boxplot summary of the 31 cell types shown in B. H) Weight and I) height (z-scores, 

age-adjusted according to global reference values) for each site (Tanzania n = 359, 

Mozambique n = 974). J) Blood hemoglobin concentration (g/dL) for each site, with dotted 

lines representing the various disease categories (Tanzania n = 359, Mozambique n = 974).
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Figure 7. Anemia is linked to changes in immunophenotype and iron availability directly impacts 
B cell biology.
A) The age of anemic (<8.5g/dL hemoglobin, n = 43) and non-anemic (>10.5g/dL 

hemoglobin, n = 52) from Tanzania and Mozambique at B0. Black squares indicate samples 

where RNA sequencing was performed on whole PBMC in addition to immunophenotyping. 

B) Hierarchical clustering of 376 differentially expressed (DE) genes between anemic (n=6) 

and non-anemic (n = 8) Tanzanian children. Significantly different genes had an fdr-adjusted 

p-value of <0.01 from DESeq2 and an fdr-adjusted p-value of <0.05 from the intensity-

difference test, and were clustered using Euclidean distance. Each column represents an 
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individual sample, and genes shown as rows. Enriched blood transcriptional modules 

(BMTs) in C) anemic and D) non-anemic children, represented as colored circles with 

annotations as text. Colors and connecting lines show gene-sets with related genes, and 

summary terms shown in text boxes. BTMs enriched from within all expressed genes 

(17,607) with an enrichment score greater than 1.5 or less and −0.5 and a fdr adjusted p-

value of <0.01 (Kolmorogov-Smirnov test) are shown. E) The contribution of sample age, 

anemia status and sex to the cell type variance as determined from linear regression models. 

Representative cell subset frequencies that were significantly different between anemic and 

non-anemic children at F) B0 (non-anemic n=52, anemic n = 43) and G) B21 (non-anemic 

n=99, anemic n = 20), with p-value from Mann-Whitney test. (H-M) Purified B cells from 

UK adults were stained with CellTraceViolet and incubated in culture media with IL-21 and 

CD40L (CM) for five days. Some cultures were supplemented with either apo-transferrin 

(APO) throughout or with ciclopirox olamine (CPX) after 24 hours of culture. H) The 

percentage and number of live B cells at Day 0 and Day 5 in CM, APO and CPX culture 

conditions. I) Representative histogram of cell trace violet on day 5 (black = CM, red = 

APO, blue = CPX), and J) the percentage of cells that have undergone one or more divisions 

on day 5. K) Plasmablast gating strategy (Live IgD−CD27+CD38+IRF4+ B cells). L) The 

percentage of plasmablasts, and fold change (FC) relative to CM alone. M) The 

concentration of IgG in culture supernatants as measured by ELISA, and fold change 

relative to CM culture conditions. H-M) p-values determined using Holm-Sidak’s multiple 

comparison testing, except for fold change analyses for which a one-sample t-test was used. 

Representative of 3 independent experiments with 6-8 UK adult blood samples.
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