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ABSTRACT
This paper presents the design and analysis of a newly proposed form of care delivery called an
integrated practice unit (IPU) in which a multi-disciplinary team of providers and staff work
together to cover the full care cycle for a given condition. In an IPU, the different providers
circulate among the patients, according to the need for their expertise, while patients remain in a
single location once they check-in. From the patient’s perspective, the benefits of such an
arrangement should be self-evident. For payers and providers there will also be benefits as the
fee-for-service market gives way to structured payments for each episode of care. Before setting
up an IPU, it is necessary to gain an understanding of how available resources will limit patient
flow and system performance. Treating resources such as providers, imaging equipment, and
rooms parametrically, the primary goal of our work is to determine the number of patients that
can be seen per day in an IPU while trying to constrain overtime, length of stay, and waiting time
to best practice targets. Discrete-event simulation serves as our analytic tool.

While we are involved in the design of a comprehensive suite of musculoskeletal IPUs, we
illustrate our approach with an extensive computational study of one: a Lower Extremity Joint Pain
IPU. Using the simulation methodology, we are not only able to determine the number of patients
that can be scheduled for an in-clinic visit each day, but also the daily number of follow-up patients
that can be served virtually through telemedicine with no additional resources andminimal impact
on IPU performance. These results assisted the Department of Surgery at the Dell Medical School at
The University of Texas in the optimal design of its first IPU, which opened in the fall of 2017.
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1. Introduction

As the focus of healthcare shifts from how much “doc-
toring” is provided to maximising value and patient
health, many aspects of current delivery models will
change. The concept of an Integrated practice unit
(IPU) – a co-located, multi-disciplinary team of provi-
ders who treat the full care cycle (Koenig, Keswani, &
Bozic, 2016; Porter, 2010) – has been suggested as a
patient-centred approach to the management of chronic
illnesses such as osteoarthritis, cardiomyopathy, and dia-
betes. To successfully implement a model that places the
patient at the centre of the process, a new paradigm for
scheduling and resource utilisation of outpatient services
must be developed. In an IPU, the providers move
around the patient rather than the patient moving to
and from the providers. The beauty of this system is
the “built-in” nature of communication between differ-
ent providers and disciplines, which should yield untold
efficiencies compared to the siloed, fragmented current
state. The problem is how to operationalise the complex
interaction between the parties efficiently while achieving
a favourable patient experience. Speedy throughput is a
key performance measure for outpatient practices.
Surveys have shown that waiting time is one of the top

differentiators for “best practice” facilities, so reducing
delays can offer a competitive advantage when patients
have a choice (Cartwright & Windsor, 1993; McCarthy,
McGee, & O’Boyle, 2000).

As envisioned, IPUs should lead to improved patient
outcomes, more efficient use of patient time, and better
use of resources, which translates into more providers
working at the “top of their license”. They also have the
potential to align with new reimbursement schemes (e.g.,
bundled payments based on condition) and information
systems aimed at data sharing and coordination across
multiple services (Koenig & Bozic, 2015; Koenig et al.,
2016). These concepts have self-evident value in light of
the current economic climate in which market changes
are driving care delivery systems towards value-based
models. Nevertheless, without more sophisticated man-
agement tools, the increased complexity of operating an
IPU has the potential to elevate healthcare delivery costs
and decrease the value achieved when compared to tra-
ditional outpatient clinics.

Several institutions, includingMD Anderson Cancer
Center in Houston and Virginia MasonMedical Center
in Seattle (Porter & Lee, 2013, October), along with The
Dell Medical School (DMS) at the University of Texas at
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Austin, have begun trials with co-located, multi-disci-
plinary teams to treat a variety of conditions. One of the
purposes of this paper is to describe the methods and
analysis used to help set up a cluster of musculoskeletal
IPUs at the DMS. Our presentation concentrates on the
Lower Extremity Joint Pain IPU (or simply, Joint Pain
IPU), but we have conducted similar studies to date for
Upper Extremity, Back Pain, Fracture Care, Sports
Injury, and Work Life IPUs using the same approach.
As a result of this experience, we believe that the meth-
odology is generalisable to all such multi-provider
clinics as well as to a range of other venues such as
home health where home-bound patients must be seen
by several specialists in a day.

The work was done over 10-month period and was
primarily aimed at determining the number of
patients that can be seen in-clinic during an 8-hour
working day as a function of patient mix, the num-
bers and types of providers and support staff avail-
able, and the number of exam rooms in the facility.
An additional objective was to estimate the number
of virtual medicine (VM) patients that can be accom-
modated by the schedule. Although patient outcomes
are the primary means by which a healthcare system
is evaluated, there is often a trade-off between out-
comes and costs. To address managerial concerns, it
was necessary to consider more detailed metrics at
the operational level including patient length of stay,
resource utilisation, provider idle time, and IPU clos-
ing time. In systems like this where uncertainty
abounds, we found that maximising performance
could only be achieved by tightly coordinating provi-
der and patient flow.

In generic terms, an IPU can be viewed as an
extended combination of a flexible flow shop and an
open shop (Pinedo, 2016), where different types of
patients (jobs) arrive, perhaps according to a given
schedule, and require individualised levels of service
from a subset of providers (machines) but not neces-
sarily in a given order. Extensions include the need
for additional resources as well as constraints on
system performance measures like maximum length
of stay and makespan. In practice, patients in an IPU
are stationary and the providers move from one to
another, but from a modelling point of view this
detail is inconsequential. Which providers see which
patients during their visit, depends on the patient’s
medical condition, its severity, and whether the visit
is the first for a particular patient or a follow-up.
Leeftink, Bikker, Vliegen, and Boucherie (2018) pro-
vide a thorough review of the health care multi-dis-
ciplinary planning literature. According to their
classification scheme, the IPUs we consider are flex-
ible mixed-shop (i.e., combination of flow and open
shops) systems with multiple appointments for each
patient scheduled on a single day. The stochastic
elements include arrivals, appointment durations,

and care pathways. Since we use the results for clinic
design, the scheduling problem is offline.

What complicates the modelling of an IPU com-
pared to a flexible flow shop is the fact that some
resources like surgeons and physical therapists
must be scheduled in sequence, while others, such
as rooms and translators, must be scheduled con-
currently. In addition, the order in which patients
see some of the providers is not fixed. When arrival
and service time uncertainties are taken into
account, optimisation formulations for determining
patient and resource flows become intractable.
Solutions to exact models are limited to only a
handful of patients and providers, even without
the additional complications (e.g., see Anand &
Panneerselvam, 2015). As an alternative, we have
built a discrete-event simulation model in Simio
(www.simio.com) that has allowed us to capture
all of the critical components of a generic IPU
along with the system-level uncertainties.
Simulation has long been used to investigate poli-
cies and procedures in healthcare delivery (e.g., see
Braly, 1995), and offers many modelling advantages
over mathematical programming. While it is
straightforward to account for room availability in
a simulation model, for example, we are unaware of
any equivalent open shop or job shop models that
include the equivalent of this restriction.

The primary contributions of this research centre on
the introduction of a prototypical IPU and the analysis
that accompanied its implementation. Specifically,

(1) We define an IPU and develop a generic simula-
tion model that can serve as a blueprint for a
variety of musculoskeletal conditions including
lower and upper extremity joint pain, back pain,
fracture care, sports injuries, and foot care.

(2) We determine the maximum number of
patients that can be treated each day in the
Joint Pain IPU at DMS along with perfor-
mance metrics for a given set of resources.

(3) We also determine the daily number of follow-
up patients that can be treated virtually via
telemedicine by the Joint Pain IPU providers
with no additional resources and without
sacrificing clinic performance.

(4) We develop near-optimal patient appointment
schedules and provider assignments as a func-
tion of resource availability through the use of
simulation and designed experiments.

(5) We quantify the benefit of scheduling patients
with smaller processing time means or var-
iances first.

(6) We provide managerial insights into provider
and resource utilisation, the effectiveness of
various scheduling schemes, and other mea-
sures of system performance.
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To be sure, a multi-disciplinary approach to
diagnosis and treatment has been relatively com-
mon for certain conditions for decades. There are
two main factors, however, that distinguish an IPU
from a more general multi-disciplinary clinic. The
first is that the usual “multi-disciplinary care”
model involves moving patients around a circle of
appointments with individual clinicians not all
necessarily in the same location. This can provide
a wide range of perspectives and can sometimes
foster conversations between the disciplines, but
the interdisciplinary approach is not “built in” to
each patient visit. It is probably more efficient on a
“per provider” basis but does not foster the inter-
disciplinary approach in the same way as an IPU.
Our model does not pre-suppose which providers
will be needed for a given patient, but rather allows
us to customise each visit on an as needed basis.
The second difference is that many multi-disciplin-
ary teams are not set up to purposefully manage
the full care cycle of a condition from mild to
severe. They are usually focused on a certain epi-
sode within the cycle (often the most severe stage,
such as the need for surgery or transplant). An IPU
is designed to efficiently manage all aspects of a
condition.

In the next section, we review the relevant litera-
ture on patient scheduling, multi-disciplinary clinics,
and the use of simulation in healthcare delivery. In
Section 3, we summarise the design approach to
musculoskeletal IPUs and highlight some of their
perceived benefits. This is followed in Section 4 by a
discussion of patient and provider flow in an IPU and
a description of our simulation model. The analysis
of the Joint Pain IPU is contained in Section 5 along
with the experimental design. We end in Section 6
with a series of observations obtained from the
research and some suggestions for future work.

2. Literature review

In the fee-for-service environment, scheduling and
capacity management models have largely focused on
a single clinic or service. This is true both in practice
and in the academic literature (Berg & Denton, 2012;
Chakraborty, Muthuraman, & Lawley., 2013; Gupta &
Denton, 2008; Millhiser, Veral, & Valenti, 2012). A
property of many healthcare systems is heavy conges-
tion that can lead to excessive delays or even bring flow
to a halt (Jenkins & Gisler, 2012). In part, this is due
insufficient attention paid to patient flow issues but also
to the financial structure of healthcare (Savin, 2006).
For appointment scheduling systems, the goal is to
balance patient waiting time, provider idle time, and
overtime, but the emphasis more often than not, is on
the latter two components. Highly congested queueing
systems, like an emergency centre or ambulatory clinic,

may find themselves in a perpetual state of dysfunc-
tional equilibrium, which degrades their ability to deli-
ver quality care. Crowding in waiting rooms and
treatment areas, loss in privacy, delays in accessing
needed equipment, and delays in providing medication
can all add to patient anxiety and suffering. In addition,
the need to shuttle patients in and out of treatment
rooms as they wait for test results or resources reduces
everyone’s productivity.

Due to arrival time and service time variation,
patients often end up waiting despite the fact that
they have reserved time slots. Moreover, it is com-
mon practice at many outpatient clinics to overbook
the day, in part, to ensure that patients are always
available to see their provider (Noon et al. 2003).
Many related issues are presented by Gupta and
Denton (2008) who give an overview of common
rules for constructing schedules and responding to
disruptions in real time.

2.1. Use of simulation and optimisation for
patient flow analysis

The use of simulation to analyse and improve health-
care delivery has a long history, especially in efforts to
reduce patient waiting times and length of stay (e.g.,
see Braly, 1995). In an early study, Klassen and
Rohleder (1996) used discrete-event simulation to
address the problem of how to schedule patients as
they call for appointments, absent of an accounting
for future requests. Their main goal was to compare
various scheduling rules aimed at minimising a com-
bination of patient waiting time and provider idle
time. Swisher, Jacobson, Jun, and Balci (2001) were
one of the first to build a model using an object-
oriented simulation package with graphical capabil-
ities. They studied a family practice facility with the
goal of maximising a combination of clinic profit, and
patient and staff satisfaction. Results were based on a
fractional factorial design that included the number
of mid-level practitioners, the number of nurses, the
number of medical assistants, the number of check-in
rooms, the number of examination rooms, and the
number of specialty rooms.

Applying a combination of simulation and optimi-
sation, Woodall, Gosselin, Boswell, Murr, and
Denton (2013) investigated patient flow at the Duke
Cancer Institute. They first developed a discrete-event
simulation model (in Arena) to predict patient wait-
ing times and resource utilisation across various parts
of the centre, and showed that nurse unavailability
during oncology treatment caused a serious bottle-
neck. Next, they developed a mixed-integer program-
ming model to relieve the bottleneck by optimising
the weekly and monthly schedules of the different
types of nurses. Gartner and Kolisch (2014) looked
at the problem of planning elective surgeries at a
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hospital under constrained resources with the objec-
tive of maximising the contribution margin. As in
our case, it was necessary for them to schedule
patients around multiple resources. Their first step
was to define a set of the most prevalent care path-
ways to assess provider, staff, equipment, and labora-
tory needs for each patient type. They then developed
two integer programming models to determine when
patients should be scheduled for surgery over the
planning horizon. Oh, Muriel, Balasubramanian,
Atkinson, and Ptaszkiewicz (2013) investigated a
less complex problem in which both provider and
staff needs were considered when scheduling patients
in a primary care environment. Both acute and
chronic cases where included in the analysis, as well
as the uncertain time spent with each resource. Their
objective was to minimise a weighted measure of
provider idle time and patient wait time. Key model
features included an empirically based classification
scheme to accommodate different chronic and acute
conditions, adequate coordination of patient time
with a nurse and physician, and strategies for intro-
ducing slack in the schedule to counter the effects of
variability in service times.

Morrice et al. (2014) developed a patient-centered
surgical home (PCSH) based on concepts proposed
by the American Society of Anesthesiologists to
streamline perioperative care. A key feature of a
PCSH is to have an anaesthesiology pre-operative
assessment clinic (APC) serve as the system coordi-
nator and information integrator prior to surgery.
Using statistical analysis and discrete-event simula-
tion the authors were able to demonstrate how this
can be accomplished by overcoming improper tria-
ging of patients and patient information deficiencies
by ensuring that the APC sees the right patients and
has the right information. In a related study con-
ducted at a family health clinic, Bard et al. (2016)
investigated changes to current scheduling rules and
operating procedures with the goal of reducing length
of stay, minimising overtime and queue lengths, and
maximising resource utilisation. Discrete-event simu-
lation was again used to establish a baseline and to
evaluate a variety of scenarios associated with
appointment scheduling and managing early and
late arrivals. In part, the results indicated that by
carefully adjusting appointment times, up to an 8%
reduction in patient length of stay is achievable with-
out noticeably affecting the other metrics.

Also using discrete-event simulation, Baril et al.
(2014) studied the performance of a traditional out-
patient orthopaedic clinic in which each orthopaedist
is scheduled to see 40–50 patients per day. Their
objective was to determine the relationships and
interactions between patient flows, resource capacity
(number of consulting rooms and number of nurses),
and appointment scheduling rules. The experimental

design evaluated the assignment of consulting rooms
and nurses to each orthopaedist under four appoint-
ment scheduling rules and three patient flows.
Testing showed that system performance, as mea-
sured by patient length of stay, provider utilisation,
and average overtime, was highly dependent on
adapting the scheduling rules to the different patient
trajectories. For more discussion on the use of simu-
lation to model and design healthcare systems, see
Brailsford, Harper, Patel, and Pitt (2009) and Günal
and Pidd (2010).

Research on job shop scheduling is mostly limited
to the use of heuristics. This is not surprising since all
but the simplest versions of the problem are strongly
NP-hard for n jobs and m machines, even without
sequence dependent setup times. The problem is a bit
easier when the sequence of jobs (patients) is given
but exact solutions are still out of reach. In our case,
we face an open shop scheduling problem in which
determining the sequence is part of the decision
(Pinedo, 2016). Anand and Panneerselvam (2015)
classify open shop problems by performance mea-
sure, such as makespan, weighted sum of completion
times, and weighted sum of tardy (or late) jobs, and
cite much of the relevant literature by category. In the
vast majority of cases, metaheuristics have been used
to find solutions. Simplifications of the general pro-
blem, though, have led to a few polynomial-time
exact algorithms. For example, Dror (1992) studied
an open shop problem with the objectives of mini-
mising the makespan and minimising the mean flow
time. For the former case with n ≥ m, he derived an
optimal algorithm with complexity O(mn); however,
for n < m but ≥3 he proved that the problem is NP-
hard. For the case when the objective is to minimise
the mean flow time, he developed an optimal algo-
rithm with complexity O(n).

2.2. Multi-disciplinary clinics

A multi-disciplinary approach to care refers to caring
for a patient through the work of multiple practi-
tioners, and creating a consolidated plan that consid-
ers the recommendations of all team members
(Horvath et al., 2010). Strasser et al. (2004) compare
the performance of a new, one-stop multi-disciplin-
ary palliative care clinic with a traditional pain and
symptom management clinic run by a physician and
a nurse. The former offers standardised multi-disci-
plinary assessment, specific care recommendations,
patient and family education, and on-site counselling.
The authors retrospectively showed that the multi-
disciplinary approach led to significantly greater
patient satisfaction and improved outcomes.
Romero et al. (2013) also developed a “one-stop
shop”, but for treating basal cell carcinoma. Using a
deterministic model and then simulation, they
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observed a significant improvement in the average
waiting time that a patient spends between diagnosis
and treatment. Their study focused on the identifica-
tion of factors that influence the average throughput
time of patients from a logistic perspective. One of
their goals was to provide schedules for all the clin-
icians for the day and to assure that each patient was
seen by all indicated providers during a single visit.

Also considering the logistics of patient visits, Mutlu,
Benneyan, Terrell, Jordan, and Turkcan (2015) intro-
duced a co-availability scheduling problem that arises in
various healthcare settings in which personnel from
different disciplines work together as care teams.
Synchronisation of their availability proved to be the
most important factor in improving system perfor-
mance. To coordinate treatment, they developed an
integer programming model to create schedules that
maximise the amount of co-available time across the
scheduling templates of the desired team members,
while still satisfying each of their clinic coverage
requirements, preferences, and outside responsibilities.
Applying the model to breast surgery at MD Anderson
Cancer Center indicated that team co-availability
increased by 94% over the study period without nega-
tively affecting operating room utilisation and surgery
start times.

Hyer, Wemmerlov, and Morris (2009) consider an
integrated trauma centre in which multiple resources
are brought to bare on the care of trauma patients.
Since the centre was within a hospital, the authors
refer to it as a focused hospital unit (FHU). They
empirically studied the performance of the FHU
using a pre- and post-analysis finding no change in
the mortality rate, a moderately decrease in length of
stay, and a substantial increase in the net operating
margins. Beyond the pre- and post-analysis, the paper
does not consider any other design or re-design
issues to improve system performance.

In work similar to ours, Leeftink, Vliegen, and
Hans (2017) designed blueprint schedules for multi-
disciplinary appointment planning that take into
account uncertainties in patient routing. The model-
ling and analysis centred on cancer diagnosis where
each patient gets two consultations during a visit. The
first is generally with a nurse practitioner who pro-
vides the diagnosis. The second is with a clinician
who explains more about the proposed treatment.
Stochastic integer programming was used to derive
the schedules with the goal of optimising a combina-
tion of patient waiting time, clinician idle time, and
clinician overtime. Solutions were found using sam-
ple average approximation. Although there is no uni-
versally accepted model of multi-disciplinary care a
number of cancer centres worldwide have established
multi-disciplinary clinics that aim to deliver a one-
stop experience. This has been the case in particular
for women with newly diagnosed breast cancer. Being

able to see the appropriate specialists at the same
location on the same day partially eases the anxiety
that comes with the diagnosis. Some cancer centres
hold treatment planning meetings that include all
relevant specialists as well as the woman herself (e.
g., see Horvath et al., 2010; Leeftink et al., 2018;
Zorbas, Barraclough, Rainbird, Luxford, & Redman,
2003). They may also provide medical information
and psychosocial support.

2.3. Capacity planning

Though a staple in manufacturing, capacity planning
in healthcare organisations has mainly focused on
matching supply with demand in hospital depart-
ments such as wards, critical care units, surgery
suites, and emergency centres. Utley and
Worthington (2012) have defined this process as
determining the amount of beds, staff, consulting
rooms, equipment, and other resources that is suffi-
cient to enable an organisation to meet demand for
one or more packages of care while achieving speci-
fied service standards. For a colonoscopy suite, Berg
et al. (2010) showed that there is a positive linear
relationship between the number of patients exam-
ined and the number of procedure rooms. Using
simulation, they tested ratios of one and two rooms
per physician and found that with the higher ratio,
more auxiliary personnel (nurses, secretaries) are
needed to improve performance. They also concluded
that a better appointment schedule could increase the
number of patients seen without adding resources.

Although there are few IPUs in existence and no
published studies on capacity planning and schedul-
ing, there are several hospital units that share com-
mon characteristics. For example, multiple providers
treat multiple patients in emergency centres each day.
Similarly, operating suites must juggle the schedules
of multiple surgeons, nurses, and staff when schedul-
ing patients and estimating capacity. Nevertheless,
the analysis described in the literature on emergency
centres (e.g., see Marmor, Golany, Israelit, &
Mandelbaum, 2012; Sinreich and Marmor (2005)
and operating suites (e.g., see; M’Hallah & Al-
Roomi, 2014; Samudra et al., 2016) does not extend
to configuring and scheduling IPUs.

2.4. Multiple patient types and scheduling rules

There have been numerous studies that demonstrate
improved clinic performance when patients are
divided into cohorts and their visits sequenced in a
manner that takes these cohorts into account.
Vanden Bosch and Dietz (2000), for example, con-
sidered three classes of patients based on the number
of chronic complaints, each with a distinctive service
time distribution. They showed in an outpatient
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setting that there is no easy rule that can be derived
from this stratification that determines an optimal
sequence; however, referring to their previous work,
they indicated that if service times are exponential,
the horizon is zero, and the goal is to minimise a
weighted combination of the physician idle time and
the sum of expected waiting times, then the optimal
sequence orders patients by their service means.
Because none of these conditions held in the clinic
that they investigated, they proposed a simple heur-
istic that found the optimal sequence more than 85%
of the time.

Cayirli, Veral, and Rosen (2006) worked with an
ambulatory clinic in a New York metropolitan hospital
that sees about 300,000 patients a year. Using discrete-
event simulation, they investigated six different
appointment scheduling rules and six different appoint-
ment sequencing rules with the goal of minimising a
combination average waiting time, the physician’s aver-
age idle time per patient, and average overtime per
patient. Patients were classified as either new or return-
ing with a 40–60% fixed division, and with a service
time ratio of 2:1. Their results showed that patient
sequencing had a greater effect on system performance
than the choice of an appointment rule but there was no
definitively superior combination of the two. The most
they could say about sequencing was that first-come,
first served gave uniformly poor results, and that com-
bining the scheduling of short-consultation patients in
the beginning of the session with the 2BEG rule was one
of the best performing approaches.

What is common to the clinic environment that
Vanden Bosch and Dietz, Cayirli et al. and virtually
all their predecessors modelled is that only the pri-
mary consultation service is considered, and then
only as a single-server, single phase queueing system.
In practice, outpatient clinics are multi-stage pro-
cesses in which a variety of resources affect patient
flow and system performance. In work closely related
to ours, White, Froehle, and Klassen (2011) devel-
oped an empirically based discrete-event simulation
that incorporates various common resource compo-
nents and operational elements that go beyond the
single provider. They examine the interactions
between patient appointment policies and capacity
allocation policies (i.e., the number of available exam-
ination rooms) and how they jointly affect resource
utilisation, patient waiting time, and other perfor-
mance measures. Data were gathered from an out-
patient orthopaedic clinic with two different patient
types, five registrars, two radiology technicians, and a
single physician. Sixty per cent of the patients
required x-rays regardless of type, but otherwise the
flow was sequential through registration, chart prep,
and nurse prep, ending with the physician consulta-
tion. In the study environment, available rooms
proved to be the bottleneck but had no effect on

physician utilisation beyond a certain threshold. As
expected, when the number of rooms dropped too
low, patient throughput suffered severely. Their find-
ings also suggested that scheduling shorter, low var-
iance appointments, usually associated with follow-up
or returning patients, early in a session produced the
greatest reduction in patient waiting and clinic over-
time without affecting physician utilisation, given
adequate facility capacity. Such a policy provided
the lowest waiting time, the smallest mean clinic
duration, and the highest physician utilisation, and
is consistent with the single-server system studied by
Cayirli et al. (2006).

Using a stochastic optimisation model, Oh et al.
(2013), similarly investigated scheduling and sequen-
cing rules for ambulatory care with the objective of
minimising a weighted measure of provider idle time
and patient wait time. From their preliminary work
with a Massachusetts three-provider family medicine
clinic, they found that service times varied signifi-
cantly depending on the nature of the patient’s ail-
ment. This led them to propose the following easy-to-
apply patient classification scheme: high complexity
(HC), which has the longest average service time and
consists of routine physical exams, well-child check-
ups, diabetes and chronic condition management;
low complexity (LC), which has the shorted average
service time; and urgent, same-day appointments
(SD). During a visit, a patient first checks in and
then is seen by a nurse and physician in that order.
For testing purposes, Oh et al. examined a range of
scenarios with an even mix of patients per half-day
session per provider. The patient distribution was
HC = 3, LC = 3, and SD = 4, and appointment slots
were set at 15-minute intervals. With respect to
sequencing, they found it best to follow the shortest
processing time rule with respect to the provider’s
average processing time and to mix patient types with
the HC patients last, e.g., SD/LC/HC. This is opposed
to assigning strings of identical patient types. To
account for longer service times, they assigned an
empty slot after the HC patients, which is equivalent
to allowing 30 rather than 15 min for each of them.
For all sequences examined, they also observed that it
was best to double-book the first slot, which is essen-
tially a TwoBeg schedule. A final relevant observation
was that placing an HC appointment first reduced
system performance by almost 50%.

The IPU that we are investigating differs substan-
tially in resource requirements and patient flow when
compared to previous research on outpatient schedul-
ing. In particular, recall that an IPU is defined by multi-
ple provider types, multiple providers of the same type,
multiple supplementary services, and multiple path-
ways through the system. Additionally, previous litera-
ture considered a much higher proportion of shorter,
low variance appointments usually associated with
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follow-up patients. For example, White et al. (2011)
assume a ratio of 3:1 short-to-long appointments. Our
ratio is the opposite, i.e., 1:3 follow-up (short) to new
(long) appointments. Therefore, it was not at all clear
that the previously reported results on patient sequen-
cing would carry over to an IPU, so we felt obliged at
least to explore the possibilities in Section 5.3.

3. Designing a musculoskeletal IPU

The effectiveness of any system designed to provide
outpatient care depends heavily on how its resources
are managed. Murray and Berwick (2003) offer three
high-level recommendations for improving the align-
ment of demand and supply in a clinical setting;
namely, (1) enforce continuity of care by scheduling
patients only with their primary care providers, (2)
increase the effectiveness of each appointment, and
(3) reduce the demand for face-to-face patient-physi-
cian contact. IPUs have been conceived to achieve the
latter two objectives. In the remainder of this section,
we summarise the steps for designing a musculoske-
letal IPU but believe that they can be similarly applied
to designing IPUs for virtually all chronic conditions.
For the most part, the discussion here is taken from
Keswani, Koenig, and Bozic (2016).

The first step is to choose a condition or patient seg-
ment. This might sound simple but being too inclusive
will dilute the team’s ability to provide focused, high-
value care; in contrast, picking a condition that is too
rare or narrow makes it difficult to justify the upfront
investment in resources. To be successful, an IPU must
lend itself tomanagement by amulti-disciplinary team of
providers (e.g., mid-level provider, orthopaedic surgeon,
nutritionist, physical therapist, and social worker for a
joint pain IPU). An opportunity for value improvement
must also exist, which would be the case, for example,
with lower extremity pain because the condition can be
debilitating and the cost of care is high.

The second step is to define the team of providers
and staff who will be held jointly accountable for mana-
ging the condition. This requires distinguishing
between a physical IPU (i.e., co-located providers
under one roof) versus a “virtual” IPU, which includes
any and all services delivered throughout the cycle of
care. One must also apply principles of high-value care
in defining the various roles on the team. For a lower
extremity joint pain IPU – the basis of this paper – all
patients are evaluated and initially managed by well-
trained orthopaedic mid-level providers (generally,
nurse practitioners or physician’s assistants), while sur-
geons are available to provide clinical “backup” for
complex cases, and to offer surgery to those patients
who are appropriate candidates. This is an example of
“downstreaming care”. Additional examples include
patient-risk stratification, needs assessment prior to
the visit, and shared-decision making.

The final step concerns process improvement and
the identification of opportunities to add value to
both the patient experience and care delivery. This
includes ensuring appropriate use of diagnostic and
therapeutic interventions, addressing holistic patient
needs to improve overall health, reducing the use of
low-value health services, and maintaining greater
patient engagement through unhindered communica-
tion with the care team. For operative patients, addi-
tional benefits that are expected to accompany
realignment of incentives towards value include
greater opportunity to modify pre-operative risk fac-
tors, higher rates of patients discharged to their
homes, fewer unplanned readmissions, and fewer
reoperations (Iorio et al., 2016).

4. IPU process and model development

Patients entering an IPU will require a variety of
resources including exam rooms, physicians and
other providers, support staff, and equipment for
medical tests and procedures. From an operational
point of view, patient flow can be thought of as
movement between a series of activities, each requir-
ing a unique set of resources and consuming time. It
is common to portray the collective process as a net-
work in which nodes represent the healthcare com-
ponents and arcs indicate movement between them.
This is the view taken in developing our mathemati-
cal models. Figure 1 contains a process flow diagram
showing the interaction of patients, providers, and
information in the envisioned Joint Pain IPU.

4.1. Simulation model

Using the information and processes indicated in
Figure 1, combined with provider requirements and
corresponding service times, we have implemented a
discrete-event simulation model for both initial and
follow-up type visits. The model is shown in Figure 2
and was built in Simio, a commercial package with a
strong graphical user interface. Four different general
types of patients are included (mild, moderate, and
severe osteoarthritic, and surgical candidates), each
with unique clinical requirements and a different
pathway through a subset of providers.

Following the process flow given in Figure 1 (as
modelled by Simio in Figure 2), when a patient enters
the clinic, he or she checks in at a kiosk and is given a
room assignment. If imaging is required, the patient
first goes to the lab where a radiology technician takes
x-rays, and then heads to the exam room. The patient
occupies a room (denoted by the red cross symbol
with the label “Rooms” in Figure 2) starting at the
“Rooming” stage until just before exiting the IPU at
the “CarePlan” stage. For those patients that need
help navigating the facility, a medical technician is
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available. The first provider that all patients see is a
nurse practitioner or physician assistant. In the IPUs
at DMS, these clinicians are referred to as associate
providers. The remaining providers visit each patient
in accordance with the probabilities given in Table 1.
These probabilities are based on estimates by the
third author and other providers from the DMS
Department of Surgery who had experience with the
patient population at other clinics prior to the for-
mation of the Joint Pain IPU. They represent popula-
tion level estimates based on care paths for different

types of patients. For example, an initial mild osteoar-
thritic (OA) patient has a 5% probability of requiring
x-rays during the initial visit, but in all cases is seen
by an associate provider at the first stage of care.
Additionally, this type of patient receives follow-ups
from a surgeon, physical therapist, and a nutritionist
in 25%, 50%, and 40% of the cases, respectively. It is
common to model patient inputs in this manner in
the literature (e.g., Dobson, Tezcan, & Tilson., 2013;
Lahiri & Seidmann, 2012; Saghafian, Hopp, Van
Oyen, Desmond, & Kronick, 2014; Zonderland,

Figure 1. Process flow diagram of the prospective Joint Pain IPU.
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Boer, Boucherie, de Roode, & van Kleef, 2009), even
when simulation is used (Swisher et al., 2001; White
et al., 2011).

The patient/provider interaction probabilities in
Table 1 are implemented in the Simio network model
in Figure 2 by the nodes (or stations) with labels that
start with “See” (e.g., “SeeSurgeon”). Following each of
these nodes, the path that leads to an exam represented
by a node with a label that ends in “Exam” (e.g.,
“SurgeonExam”) is selected with the probability corre-
sponding to the patient/provider types in Table 1. The
other path that bypasses the exam is selected with one
minus this probability. The order in which the patient
sees the physical therapist and nutritionist is arbitrary
but the simulation requires logic to direct the flow. We
use a smallest workload rule: if the patient is to see both
providers, then he or she is channelled first to the one
with the shorter queue plus number in service. In the
case of ties, the nutritionist, who has lower utilisation
than the physical therapist, is chosen first.
Implementing this endogenous decision rule leads to
some complex logic as shown Figure 2. More details are
provided in Section 4.2.

After each patient encounter, the associate provi-
der, surgeon, physical therapist, and nutritionist
spend an average of 3–5 min wrapping-up the visit

depending on the type of patient. This involves writ-
ing notes in the electronic medical records system on
the patient’s condition, on the course of recom-
mended treatment, and whether there is a need for
follow-up. Provider wrap-ups are common in medical
practice, but they require logic not found in standard
queueing models. More specifically, during a provider
wrap-up, the current patient can advance to the next
step in the process, but since the provider is still
occupied, the next patient cannot be examined until
the wrap-up is complete. As a result, modelling wrap-
ups in Simio required some extra logic that will be
discussed in Section 4.2.

At the end of the visit, all patients see the care
coordinator who develops a follow-up plan that may
call for virtual check-ups or visits, and schedules
supplementary services as needed. A small percentage
of patients then visit one (or more) specialists, such
as a psychologist, financial counsellor, pharmacist, or
social worker after they leave the IPU (see Figure 1).
These are grouped together under the heading “Sup
services” in Table 1, and are treated as a single
resource in the simulation model with unlimited
capacity. These services are modelled as one step
because they are “pooled” services for multiple IPUs
and do not need to be modelled in detail. We include

Figure 2. High-level simulation model of Joint Pain IP.

Table 1. Osteoarthritic patient probabilities for initial and follow-up visits.
Patient typea Patient mix Imaging Surgeon Physical therapist Nutritionist Sup servicesb

Initial Mild OA 0.198 0.05 0.25 0.5 0.4 0.2
Initial Moderate OA 0.1935 0.05 0.5 0.5 0.4 0.2
Initial Severe OA 0.03375 0.05 0.9 0.7 0.4 0.2
Initial Op Path 0.02475 0.05 1 0.9 0.4 0.2
Initial Mild OA (I) 0.132 0.05 0.25 0.5 0.4 0.2
Initial Moderate OA (I) 0.129 0.05 0.5 0.5 0.4 0.2
Initial Severe OA (I) 0.0225 0.05 0.9 0.7 0.4 0.2
Initial Op Path (I) 0.0165 0.05 1 0.9 0.4 0.2
Follow-up nonOp Path 0.1125 0 0.3925 0.4875 0.378 0.05
Follow-up Op Path 0.0375 0.5 1 0.5 0 0.05
Follow-up nonOp Path (I) 0.075 0 0.3925 0.4875 0.378 0.05
Follow-up Op Path (I) 0.025 0.5 1 0.5 0 0.05

aPatient types with “Initial” and “Follow-up” are initial and follow-up visits, respectively, “OA” are osteoarthritic, “Op Path” are surgical candidates on an
operative pathway, and “(I)” require an interpreter.

bSupplementary services including psychologist, social worker, financial advisor, pharmacist co-located with IPU.
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them to get a more accurate estimate of total patient
flow time from clinic entry to exit.

The second column in Table 1 lists the patient
mix. Based on past experience of the third author it
was estimated that 75% are new (or initial visit)
patients and 25% are follow-ups. This new to fol-
low-up patient ratio was derived from the demo-
graphics of the patient population and was not
expected to change in the foreseeable future. There
are 12 different types of patients. The first eight
correspond to the initial visit of the aforementioned
four general types, with and without the need for an
interpreter. The bottom four entries in Table 1 cor-
respond to the four classes of follow-up patients –
those on an operative pathway and those that aren’t,
as well as those that require an interpreter. All opera-
tive follow-up patients are seen by the surgeon, 50%
are seen by the physical therapist, and none are seen
by the nutritionist. The probabilities are different for
the non-surgical patients.

The third column in Table 1 indicates that many
new patients come to the IPU with imaging from
other sources. Prior to arrival, the IPU team spends
time gathering that imaging. This is why most
patients do not need additional imaging as part of
the visit, regardless of the severity of their condition.

Interpreters are required by roughly 40% of the
patients who are generally poor and living in immi-
grant communities. This is often the situation for
urban clinics served by medical school faculty and
residents. The Joint Pain IPU at the DMS falls in this
category. Its affiliated hospital provides a safety net
for the poor and vulnerable populations in Austin.
The most common way to handle interpreters in a
simulation model is to treat them as a resource and
assign them as needed. However, because they are not
physically present in the facility or limited in number,
we have taken an alternative approach. Recognising
that they are mostly available on demand from a tele-
service with perhaps a small delay, they are modelled
by increasing the provider service times, including
wrap-up, by 20%. This allows us to account for the
initial delay as well as the delay in provider–patient
communications. It is important to note that there is
an increase in wrap-up time because a document is
produced at the end of every exam during wrap-up
discussing the care plan for the patient. If this docu-
ment has to be translated, it requires extra time.

4.2. Modelling issues

As Figure 2 illustrates, IPUs are complex queueing
networks, making them impossible to study using
analytical techniques prevalent in queueing theory,
which is why we resort to simulation. In the Joint
Pain IPU, the patients can be divided into 12 different
types depending on the severity level of their

condition, whether the patient is on an initial or a
follow-up visit, and whether or not an interpreter is
needed. Further, patients of the same type may take
different pathways through the clinic seeing a differ-
ent mix of providers based on population percen-
tages. We modelled these pathways using
probabilistic routing.

Routing patients to the physical therapist and
nutritionist in any order based on an endogenous
decision rule (in our case, the decision is based on
the smallest workload) further complicates the mod-
elling and analysis. On the modelling side, once a
patient has been visited by one of these two provi-
ders, a flag must be set in the simulation logic so that
the patient will not visit the same provider again.
With a fixed routing sequence, no such flag is neces-
sary. Incidentally, to determine which rule gave the
best results, we compared the smallest workload rule
to two others: shortest average processing time and
completely random assignment (i.e., a 50–50 routing
probability). In our model, the shortest average pro-
cessing rule results in always having the nutritionist
visit a patient before the physical therapist. Based on
clinic closing time, total patient waiting time, and
resource utilisation, we found that the smallest work-
load rule performed slightly better than the other
rules. Additionally, it was the preferred rule by the
clinic director and other IPU providers.

Wrap-up times are another complicating factor
when modelling healthcare clinics. During the wrap-
up time, a provider is unavailable to see the next
patient, but the current patient may proceed to the
next step in the process. This has the potential to
shorten the flow time for a patient who needs to see
multiple providers and represents a distinct advan-
tage of the IPU over single provider clinics that a
patient must visit separately. For the latter, wrap-up
times are simply lost in the patient transit times
between the separate clinics.

To demonstrate, consider the simple clinic struc-
ture given in Figure 3 with two providers in tandem.
We are interested in the flow time for a patient to be
seen by both providers. The parameters used in this
illustration are representative of the Joint Pain IPU
analysed in Section 5. Patients enter the clinic accord-
ing to an exponential distribution with a mean inter-
arrival time of 15 (i.e., Exponential(15)). Patients are
served by Provider 1, followed by Provider 2 and then
exit the clinic. We assume the service times at
Provider 2 are Exponential(S), where 0 ≤ S < 15.
For Provider 1, we consider two service scenarios.
Scenario 1 is intended to represent an IPU in which
the providers are co-located at the same clinic.
Provider 1 has Exponential(S) service times and
wrap-up times of Exponential(f × S), where
0 ≤ f < 1. During the wrap-up, the current patient
can proceed to Provider 2 when Provider 1 is
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wrapping-up. In Scenario 2, we assume that Provider
1 takes Exponential(S) + Exponential(f × S) time with
each patient. Since Provider 1 is busy for the same
amount of time for each patient in both scenarios, the
two are comparable. However, in the second scenario,
the patient loses the benefit of being able to move on
to Provider 2 during the wrap-up stage. Hence, the
comparison of these two scenarios on the basis of
flow time is intended to provide a conservative illus-
tration of the benefit of co-locating two complemen-
tary providers in IPU clinic structure. It is
conservative because if the two providers were not
co-located in the same clinic, the transit times
between the two would likely be much greater than
lost wrap-up time.

To quantify the differences in patient flow time, we
simulated 24 design points in our illustration. For the
average total service time for Provider 1 (including
wrap-up), we used 12 and 14, representing moder-
ately high (0.8) and high (0.933) traffic intensities.
Average wrap-up times for Provider 1 considered
include 2 (low), 4 (moderate), and 6 (high). Finally,
we used average service times of 6, 9, 12, and 14 for
Provider 2 to represent low to high congestion at the
second stage. The factor levels were chosen to reflect
the clinic setting in which time spent at the first stage
where an initial evaluation occurs tends to be longer
than most of the subsequent stages. However, since
subsequent stages can involve relative short to rela-
tively long service times, we considered a broader
range of times for the second stage. To imitate the
clinic setting further, each simulation replication
represented a day in which 30 patients are served.
To get high precision, we simulated 5000 days at each
design point. The sample size of 5000 was chosen to
get the coefficient of variation of all average flow
times to be less than 1%.

Figure 4 shows the results for the design point
triplets (average total time for Provider 1, average
wrap-up times for Provider 1, average service times
for Provider 2). The bars are 95% t-confidence inter-
vals for the difference between the mean flow times of
Scenario 2 and Scenario 1 (Law & Kelton, 1991,
Section 10.2.2). The results clearly show that there is
tangible benefit in terms of reduced average flow time
when the patient is able to proceed to the next stage
during wrap-up. This follows because the confidence
interval either covers or exceeds the average wrap-up
time for each design point. The results appear to be

robust even for the high traffic intensity cases. Since
the clinic in Figure 3 represents the simplest IPU
imaginable with only one provider engaged in wrap-
up, benefits in an IPU where patients can visit three
to five providers with wrap-ups are multiplied.
Shorter flow time not only leads to increased patient
satisfaction (Huang, 1994), it also allows the clinic to
service more patients each day.

It is important to note that in this illustration we
chose to use exponential interarrival and service
times because the exponential distribution is fairly
noisy (the coefficient of variation is equal to 1).
Hence, results obtained for less noisy distributions
will likely be robust as well. Additionally, we chose
to simulate both scenarios even though steady state
analytic results exist for Scenario 2 (Gross & Harris,
1985, Section 4.5). However, every day each clinic
starts empty, serves 30 patients, and completes service
of all patients before it closes. Therefore, these clinics
never achieve steady state and must be modelled as
transient systems (Law & Kelton, 1991, Chapter 9),
for which there are no analytic results.

Based on these benefits, wrap-up times must be
modelled distinctly and carefully in the IPU setting.
We modelled them by creating a “phantom” job (or
entity) at the end of each patient exam. The phantom
job, representing the patient wrap-up time, is
assigned a higher priority than the next patient
exam and is instantaneously inserted at the beginning
of the provider queue. Thus, the provider always
performs a wrap-up for the current patient before
examining the next patient. While there may be
other ways to model wrap-ups times in Simio, we
found this to be the way that best facilitates designed
experiments in which we consider different numbers
of providers (e.g., associate providers) at a given sta-
tion in the model.

A patient handoff involving multiple providers
represents another complication often found in
IPUs. Handoffs result from a consultation between
the provider who is finishing with a patient and the
provider whom the patient will see next. This
involves having the patient “seize” or occupy the
time of more than one provider at a time, which is
a relatively straightforward thing to do in a simula-
tion language like Simio. However, coordination of
multiple resources over numerous stages in the clinic
process and must be modelled with great care to
accurately reflect protocols used in practice. For

Figure 3. Simple clinic structure with two providers in tandem.
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example, it is best to avoid having a very expensive
resource (e.g., surgeon) waiting on a less valuable
resource (e.g., associate provider) to consult over a
specific patient. While the Joint Pain IPU in Figure 2
does not involve a handoff, two other clinics that we
are modelling, Back Pain and Upper Extremity
Pain, do.

5. Experiment design and computational
results

The primary aim of our analysis was to determine
the number of patients that can be seen each day in
the Joint Pain IPU as a function of resource avail-
ability. A secondary aim was to determine the
number of VM patients that could be treated with-
out noticeably disrupting the in-clinic schedule.
Table 2 lists all 12 patient types and the corre-
sponding processing time distributions for each
IPU resource. It also lists resources for each activity
in the base case. Check-in and imaging follow
normal distributions while all encounters with pro-
viders follow triangular distributions with various
parameter values. For example, the processing time
for an initial visit by a mild osteoarthritic patient at
check-in is modelled as a normal distribution with
mean 5 and standard deviation 1. The rooming
time is modelled as a triangular distribution with
a lower bound of 1 min, a mode of 3 min, and an
upper bound of 5 min (abbreviated as Tri(1,3,5)),
giving a mean of 3 min. Most activities have a
single resource. Although self-check-in is planned,
two medical assistants will be available to help
those who are having difficulty with the kiosk
screens. They will also escort patients to the various
examination rooms if necessary. For the base case,
there are six rooms and two associate providers
available.

There are two other important stochastic ele-
ments in the simulation not listed in Table 2:
wrap-up time and early/late patient arrivals from
their scheduled appointment times. For the three
providers that require a wrap-up time, we use a
Tri(2,5,8) distribution for initial visit patients and a
Tri(2,3,4) for follow-up patients. Since follow-up
patients have already visited the clinic, they tend to
take less clinic time and require less wrap-up time.
Empirical evidence suggests that patients tend to
arrive early (Blanco White & Pike, 1964; White et
al., 2011). Thus, we use a Tri(−30,0,20) to represent
arrival time deviations for patients off of their
scheduled appointment times. Note that we do not
consider no-shows because our aim is to discern the
maximum number of patients that can be accom-
modated in the design of the clinic.

The parameter values for the distributions used in
the simulation were estimated from the experience of
the third author in conjunction with other providers
in the DMS Department of Surgery who staff the
IPUs. In the absence of historical data, anecdotal
evidence suggests that the time to undergo medical
procedures in an outpatient setting can be modelled
using minimum, maximum and modal times (e.g.,
see Swisher et al., 2001). These three parameters
lead directly to a triangular distribution, which we
use for most processes. As an aside, when the Joint
Pain IPU opened in the fall of 2017, subsequent
analysis over a 3-month period showed that the esti-
mated distributions in Tables 1 and 2 were highly
accurate.

The performance of the system is measured by
average values for (i) closing time of the clinic, (ii)
total patient waiting time, and (iii) resource utilisa-
tion. Minimum average requirements were specified
by the third author, the IPU director, and are as
follows:

Figure 4. Ninety-five per cent t-confidence intervals for the difference between the mean flow times of Scenario 2 and Scenario
1. The design point triplets are (average total time for Provider 1, average wrap-up times for Provider 1, average service times
for Provider 2).
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● Patient waiting time for a room of no more than
5 min

● No less than 25 patients per day
● Patient time in a room of no more than 90 min
● Patient time in the clinic of no more than
150 min.

5.1. Base case and variations

The base case configuration consisted of the resources
and distributions identified in Table 2, coupled with
25 patients, 15-minute time slots in the schedule, and
random sequencing (each patient type is scheduled in
a slot with a probability equal to the patient mix
fractions in Table 1). The 15-minute time slot corre-
sponds to a bit more than half the average processing
plus wrap-up time for an associate provider. Even
with two resources, the associate provider tends to
limit the flow since all patients must see the associate
provider and it has the longest service times.
Assuming an 8-h day starting at 8:00 am, this
means that the last patient arrives at 2:15 pm, or
1 h and 45 min before the tentative closing time. To
determine the number of replications for each sce-
nario, we ran the base case for 100, 200, and 500 trials
and concluded that there was no significant statistical
difference in the results for 200 and 500 replications,
so we settled on 200. Note that each replication is an
independent trial, implying that there is no autocor-
relation in the output data. We then compared the
base case, known as IBFI (individual block/fixed
interval), with several scheduling rules commonly
found in the literature (Bard et al., 2016; Cayirli et
al., 2006; Cayirli, Yang, & Quek, 2012; Milhiser et al.
2012). These included TwoBeg (two patients are
scheduled at time zero and one patient every
15 min thereafter), multiple block/fixed interval,
where two patients are scheduled every 30 min, and
DOME, where patients scheduled early and late in the
day are spaced closer together than those scheduled
in the middle of the day. We also tried a number of
variations on these rules. In summary, no single rule
was dominant so we decided to use IBFI, which
generally performed well for the first set of experi-
ments with respect to patient waiting time and clinic
closing time.

In designing the IPU, we were able to alter five
factors: number of rooms, number of patients sched-
uled, the length of patient schedule time slots, the num-
ber of associate providers, and the sequencing of
patients by appointment status (initial versus follow-
up visit). We looked at perturbations of the base case
that included scenarios defined by combinations of the
following parameter values: rooms {6, 7, 8}; patients {25,
30, 35, 40}, schedule time slots {10 min, 12 min,
15 min}, associate providers {2, 3} and patientTa
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sequencing {random, follow-ups at beginning of the
day, follow-ups at end of day, follow-ups at the begin-
ning of each session}. Scenarios that did not meet the
minimum performance requirements were omitted.
The results allowed us to narrow down the values of
the parameters to a reasonable number for the purposes
of conducting a second set of experiments.

In the second phase of the analysis, we extended the
day to 9 hours and approximated a 1-hour lunch break
starting at 11:30 am. This was achieved by scheduling
the last patient in the morning session at around 11:15
am, depending on the number of patients and the
schedule time slots used. The first patient in the after-
noon session was scheduled at 12:30 pm. Clinic opera-
tions exceeding 540 min or 9 h triggered overtime.

Allowing for the lunch break, the results for the base
case and several variations are given in Table 3. For each
statistic, we report the mean and 95% confidence inter-
val halfwidth.While most statistics are self-explanatory,
a few require additional discussion. “Clinic closing
time” refers to how many minutes the clinic stayed
open on any given day to service all the patients.
“Patient time in clinic” is the total time in the clinic
across all patient types. “Patient total wait time” is the
total time a patient spent waiting for service in the
clinic. Additional statistics for total time in the clinic
by patient type and waiting times for specific resources
are contained in Table A1 in Appendix A. Note that
patient total wait time is not merely the sum of the other
wait times listed in Table A1 because patients take
different paths through the clinic. Additionally, some
waiting time statistics are omitted because they were not
statistically different form zero, i.e., for Check-in,
Imaging, and Sup Services.

The first observation from the results in Table 3 is
that adding a 7th room has no noticeable effect on
performance. Although some statistics improve with
the extra room, their values overlap the 95% half-
widths and so we cannot conclude that they are
different. A second observation is that all minimum
requirements are met for both the 25- and 30-patient
scenarios; however, the clinic closing time for the 30-
patient case extends to approximately 598 min on
average, implying 58 min of overtime with either six
or seven rooms. Also notice that the total patient time
in the room is between 74 and 77 min across all
scenarios and that the longest a patient spends in
the clinic is roughly 124 min, on average (operative
path patient needing an interpreter, 7 rooms, 25
patients – see Table A1).

Looking at the remaining statistics, we see that
total patient waiting time, a critical determinant in
patient satisfaction, remains in the range of 15–
17.5 min, on average. Utilisation for rooms and
associate providers top out at 62.9% and 64.6%,
respectively. Statistically, the associate provider has
the highest utilisation of all resources indicating thatTa
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it is a potential bottleneck. Although this resource
utilisation is not especially high compared to other
studies (e.g., see Bard et al., 2016; Morrice et al., 2014;
White et al. 2011), it can be explained by the fact that
associate providers are often idle towards the end of
the day after they have seen all their patients and the
system empties out.

To reduce patient waiting time it would be neces-
sary to either increase the number of associate provi-
ders thereby reducing their utilisation, or increase the
patient schedule time slots. The former option is
explored in the next section; the latter was seen to
produce excessive overtime in initial testing and
hence abandoned as a scheduling option. The rela-
tively lower utilisation of the other providers is not a
critical concern at this point because each will have
other responsibilities within the clinic and within the
medical school that will occupy most of their unfilled
patient-facing time. Moreover, in the current fee-for-
service model it is understood that placing the patient
at the centre of the IPU will inevitably incur addi-
tional costs, at least in the short term. Another option
being considered to increase the utilisation of the
surgeon, the physical therapist, and the nutritionist
is to schedule virtual visits at the beginning of the day
before the clinic fills up and at the end of the day
when the clinic is emptying out. These visits are done
virtually by telemedicine with follow-up patients who
do not need a physical exam in the clinic. Results for
this option are included in Section 5.4.

The simulation results for 25 and 30 patients, 6
and 7 rooms, 2 associate providers, but now with 12-
minute schedule time slots are presented in Table 4
(Table A2 in Appendix A contains additional statis-
tics). Not surprisingly, clinic closing times decrease to
less than 9 h in all cases, while the waiting time
statistics increase due to more congestion in the clinic
with the tighter patient time slots in the schedule. For
the base case (25 patients, 6 rooms), for example, the
closing time drops from an average of 523.41–
455.91 min while the patient time in room increases
from 74.24 to 81.95 min on average. Furthermore,
patient total waiting time, almost doubles. Similar
results for all metrics were observed for the other
scenarios and seen to be statistically significant
based on the non-overlapping 95% confident inter-
vals as implied by the halfwidths.

Similar to the results in Table 3, when the schedule
time slot drops from 15 to 12 min, adding a 7th room
does not seem to have much impact on clinic closing
time, patient time in clinic, and patient total wait time
(see Table 4). However, it does have significant impact
on patient wait time for room and patient time in room.
More specifically, increasing the number of rooms from
6 to 7 shifts the patient wait time for the room to the
room. This is an important point because a minimum
service requirement is to have the patient roomed inTa
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5 min or less, which is violated for both 25 and 30
patients when only 6 rooms are available.

5.2. Factorial design experiment

To gain a better understanding of the effects of the
various factors on the main performance measures of
interest, we conducted a more detailed statistical
analysis using StatTools (www.palisade.com) in the
form of least squares regression. In particular, we ran
a two-level factorial design experiment on the follow-
ing four factors:

(1) Number of associate providers (2, 3). We refer
to this factor as “Num_AP”.

(2) Number of rooms (6, 7). We refer to this
factor as “Num_Room”.

(3) Number of patients (25, 30). We refer to this
factor as “Num_Pat”.

(4) Patient schedule time slot (12 min, 15 min).
We refer to this factor as Time_Int”.

Table 5 contains the 16 design points and their cor-
responding factor levels.

Each of these factors and their levels was chosen
based on our initial analysis and observed system
performance, which is partially reported in Tables 3
and 4 (the corresponding tables for three associate
providers are available from the authors as are all the
statistical results). In the experiments, we replicated
each design point 200 times to get good estimates of
the averages for each performance measure and to
satisfy the standard regression assumptions. In the
regression results to follow, all models satisfied the
assumption of normality based on a Chi-Square test.
We verified linearity and homoscedasticity by inspec-
tion of residual versus fitted plots. Independently
seeded simulation runs guaranteed the independence
assumption.

Table 6 contains regression models for the main
performance measures: clinic closing time, patient

total wait time, patient waiting time for room, patient
time in room, and patient time in clinic. All models
were generated using backward regression. Since all
factors are qualitative, we converted them to dummy
variables and included their high levels as explanatory
variables in the regression analysis. Following the
“sparsity of effects principle” (Myers, Montgomery,
& Anderson-Cook, 2009, page 96), we only consider
main effects and first order interaction effects, leaving
the remaining degrees of freedom to estimate error.
According to the Adjusted-R2 shown in the last row
of the table, all models provided good fit to these
data.

All main effects impact the responses in the way
expected. Increasing the number of associate provi-
ders reduces clinic closing time and all patient times.
However, it tends to have more impact on patient
waiting times. Increasing the number of rooms has
no significant impact on clinic closing time confirm-
ing our initial observation in Section 5.1, but it does
significantly affect all other responses, especially
patient wait time for a room. While the positive
influence on patient time in room seems counter-
intuitive, adding a room shifts the patient time wait-
ing for a room to patient time in the room. Increasing
the number of patients increases the workload on the
clinic. Hence, almost all times in Table 6 increase,
especially clinic closing time. It is important to note
that we retained the Num_Patient term in the patient
wait time for room model because its coefficient had
a suggestive p-value (0.076) and it improved the
Adjusted R2 by about half a percentage point. Lastly,
making the patient schedule time slots larger spaces
patients out more in the schedule. Consequently,
clinic closing time sees a significant increase and
congestion decreases significantly reducing all the
patient times.

The interaction effects provide some interesting
insights. There is a reinforcing interaction effect on
clinic closing time when more patients are added to
the schedule and the patient schedule time slots are
lengthened. All the other interaction terms that include
Time_Int in the rest of the models mitigate the main
effects. In fact, the impact of increasing the number of
rooms is largely diminished for all four patient time
responses when Time_Int = 15 min, which coincides
with our observations from Table 3. Similar alleviation
happens to Num_AP, but to a lesser extent. The
observed mitigations follow because there is less con-
gestion and hence less waiting time when patients are
spaced farther apart in the schedule. Therefore, adding
rooms or associate providers has less impact. The inter-
action term that includes Num_AP and Num_Room in
the model for patient wait time for room is also a
mitigating effect reflecting that wait times are bounded
below by zero and adding both resources at the same
time cannot achieve proportionate improvement due to

Table 5. Design points and corresponding factor level.
Factors and their levels

Design point Num_AP Num_Room Num_Pat Time_Int

1 2 6 25 12
2 2 7 25 12
3 2 6 30 12
4 2 7 30 12
5 2 6 25 15
6 2 7 25 15
7 2 6 30 15
8 2 7 30 15
9 3 6 25 12
10 3 7 25 12
11 3 6 30 12
12 3 7 30 12
13 3 6 25 15
14 3 7 25 15
15 3 6 30 15
16 3 7 30 15
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this constraint. The interaction term for Num_AP and
Num_Room in the patient time in room model is in
effect reinforcing because adding associate providers
and rooms together reduces patient time in roommore.

We gained one more important insight from the
regression analysis. As the regression results indicate,
increasing the number of associate providers has sig-
nificant benefit on all the main performance mea-
sures. Table 7 contains the fitted values from the
regression models for the design points at which
there are 2 associate providers and 30 patients. All
but design point 3 on patient wait time for room
satisfies the minimum requirements set by the clinic
director indicating that 3 associate providers may not
be necessary. Thus, for the rest of the analysis, we will
focus on strategies to improve configurations with 2
associate providers and 30 patients.

5.3. Patient sequencing

The Joint Pain IPU has 12 patient types (see Table 2)
but all that is known about them prior to their visit is
that they can be classified as either new or follow-up
(the need for an interpreter is not known). The experi-
ments we performed involved shortening the schedule
time slot of the follow-up patients to more closely
match their service time with the associate provider,
the bottleneck. In general, the average service time for
follow-ups for each provider type is less than for new
patients (Table 2), and except for imaging, the prob-
ability of seeing each type of provider is also smaller
(Table 1). In the testing, we fixed the schedule time slot
for the follow-ups patients at 10 min and all seven (25%

of 30 patients) were scheduled at the beginning of the
day. New patients were scheduled after the follow-ups
on 12- or 15-minute time slots.

The results for the “12-minute time slot for new
patients” given in Table 8 are best compared with the
last two columns in Table 4 where all patients receive
12-minute time slots and are randomly sequenced.
For these scenarios, there was no statistical difference
for the closing time of the clinic although the values
ranged from 524 to 529 min. For the 6-room case, the
patient total waiting time dropped from 33.29 to
28.51 min, or 14.4%. The drop for the 7-room case
was 9.1%. The reductions in the average time follow-
up patients spend in the clinic were statistically sig-
nificant as expected, but to some surprise, not the
corresponding times for the new patients or the uti-
lisation metrics (see also Appendix A for a compar-
ison of the first two columns of Table A3 with the last
two columns of Table A2). Notice that while sequen-
cing patients in this manner does improve patient
wait time for the room, 7 rooms are still necessary
to achieve the minimum requirement of no more
than 5 min waiting.

We can compare the results for the “15-minute
time slot for new patients” given in Table 8 with the
last two columns in Table 3 where patients are ran-
domly sequenced and all received 15-minute time
slots. For the 6 and 7 room cases, clinic closing
times dropped significantly by 2.2% and 3.2%, respec-
tively. Patient total waiting time, though, remained
statistically similar at about 17 or 18 min.

This analysis suggests the following for 10-minute
schedule time slots for follow-ups at the front of the

Table 6. Regression model results for the two-level factorial design: *, ** and *** indicate model term coefficients are significant
at the 5%, 1%, and 0.1% levels, respectively; empty cells indicate that term was excluded from the model by the backward
regression procedure.

Model response (time in minutes)

Model term
Clinic closing

time
Patient total wait

time
Patient wait time for

room
Patient time in

room
Patient time in

clinic

Constant 453.75*** 31.28*** 9.09*** 81.43*** 103.10***
Num_AP = 3 −3.75* −6.77*** −2.33*** −3.67*** −6.18***
Num_Room = 7 −2.30*** −5.81*** 3.59*** −2.22***
Num_Patient = 30 72.46*** 1.61*** 0.40 1.26*** 1.67***
Time_Int = 15 68.75*** −15.55*** −8.24*** −7.17*** −15.40***
(Num_AP = 3) × (Num_Room = 7) 0.96* −0.96*
(Num_AP = 3) × (Num_Patient = 30)
(Num_AP = 3) × (Time_Int = 15) 3.68*** 1.78** 1.11* 2.77**
(Num_Room = 7) × (Num_Patient = 30)
(Num_Room = 7) × (Time_Int = 15) 2.13*** 4.67*** −2.53*** 2.25*
(Num_Patient = 30) × (Time_Int = 15) 5.08*
Adjusted-R2 0.999 0.997 0.986 0.994 0.994

Table 7. Fitted values from the five regression models for design points with 2 associate providers and 30 patients.

Design point

Fitted values (time in minutes)

Clinic closing time Patient total wait time Patient wait time for room Patient time in room Patient time in clinic

3 526.21 32.89 9.49 82.69 104.77
4 526.21 30.59 3.68 86.28 102.55
7 600.04 17.34 1.25 75.53 89.37
8 600.04 17.17 0.10 76.59 89.40
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sequence. When patients are scheduled with looser
time slots (i.e., 15 min), segmenting and sequencing
follow-up patients on shorter time slots first serves to
reduce clinic closing time without helping or hinder-
ing total patient wait time because the clinic did not
have much congestion to begin with. On the other
hand, when the schedule time slots are relatively tight
(i.e., 12 min) and the clinic experiences significantly
higher congestion, segmenting and sequence follow-
up patients on shorter time slots first results in a
tremendous waiting time reduction for these patients
that more than offsets any increase in patient waiting
time experienced by the new patients. However, since
patients are already slotted tightly in time, the closing
time reduction is at best marginal. These results are
in line with what others have found; that is, schedul-
ing patients with smaller processing time means or
variances first can lead to improved system perfor-
mance (see Cayirli et al., 2006; Oh et al., 2013; White
et al. 2011). However, compared to previous litera-
ture, we show that the improvements are time-slot
dependent. Additionally, we establish that they hold
even under a more complex clinic structure and when
the percentage of follow-up patients is relatively
small.

Incidentally, we also tried sequencing the follow-
up patients after the new patients using scenarios
comparable to those found in Table 8. While the
analysis yielded reductions in clinic closing time of
up to 10% when compared with the results in Table 8,
it also showed increases of patient time in clinic
ranging from 13% to 27%. So while sequencing
patients with smaller processing times at the begin-
ning of the schedule can yield benefits on some
performance measures without hindering others, the
same does not appear to be true when those patients
are placed at the end of the schedule.

5.4. Adding VM patients to the schedule

The simulation model allowed us to assess the poten-
tial for adding VM appointments to the clinic

schedule. Some patients do not need to physically
come to the clinic, but can interact directly with a
single provider in the IPU using some form of tele-
medicine. Thus, VM patients can be inserted into a
providers schedule during off-peak periods. This con-
cept gives tremendous freedom to improve patient-
level value through convenience and decrease costs of
the typical care cycle by reducing unnecessary in-
person visits. In the Joint Pain IPU, we considered
VM patients for the surgeon, nutritionist, and physi-
cal therapist (see Figure B1 in Appendix B for the
updated Simio model). Given a clinic in which these
providers sit in the middle of the process steps, off-
peak periods are likely to occur at the beginning and
end of the day as the clinic is filling up and emptying
out, respectively.

To illustrate, we consider the scenario in Table 8
when there are 2 associate providers, 7 rooms, 10-
minute schedule time slots for 7 follow-up patients at
beginning of day, and 12-minute schedule time slots
for 23 new patients. The simulation results are given
in Table 9 for the average starting and finishing times
for the surgeon, nutritionist, and physical therapist.
For example, the surgeon starts his first in-clinic
patient and finishes his last in-clinic patient, 30.85
and 452.08 min after the clinic opens, respectively.

Table 10 contains the processing time probability
distributions by for VM follow-up patients. Once
again, the parameter values for the distributions
used in the simulation were estimated from the

Table 8. Average statistics (all times in minutes; all utilisations in percentages) for 2 associate providers, 6 and 7 rooms, 10-
minute schedule time slots for 7 follow-up patients at beginning of day, and 12- and 15-minute schedule time slots for 23 new
patients.

12-minute time slot for new patients 15-minute time slot for new patients

6 Rooms 7 Rooms 6 Rooms 7 Rooms

Statistics Mean Halfwidth Mean Halfwidth Mean Halfwidth Mean Halfwidth

Clinic closing time 526.73 3.82 526.03 3.61 584.37 3.81 581.32 3.60
Patient time in room 81.29 0.78 85.19 0.92 76.47 0.83 77.29 0.94
Patient time in clinic 101.29 1.40 100.18 1.32 90.32 1.08 90.07 1.07
Patient wait time for room 6.75 0.65 2.09 0.32 1.40 0.24 0.22 0.08
Patient total wait time 28.51 1.04 27.64 0.94 18.28 0.70 17.95 0.66
Associate provider utilisation 73.91 0.54 73.69 0.51 66.60 0.49 66.79 0.45
Surgeon utilisation 42.31 1.12 43.81 1.25 38.41 1.21 39.10 1.10
Nutritionist utilisation 46.01 1.50 46.08 1.66 42.16 1.44 42.36 1.38
Physical therapist utilisation 66.57 1.52 66.54 1.43 60.16 1.44 59.49 1.39
Care planner utilisation 71.81 0.70 71.49 0.62 64.49 0.57 65.03 0.56
Room utilisation 77.25 0.71 69.43 0.64 65.48 0.67 57.01 0.66

Table 9. Average starting and finishing times for surgeon,
nutritionist and physical therapist when there are 2 associate
providers, 7 rooms, 10-minute time slots for 7 follow-up
patients at beginning of day, and 12-minute time slots for
23 new patients.
Statistics (all in minutes) Mean Halfwidth

Surgeon starting time 30.85 1.83
Surgeon finishing time 452.08 3.61
Nutritionist starting time 50.27 4.13
Nutritionist finishing time 466.43 5.21
Physical therapist starting time 38.35 2.36
Physical therapist finishing time 493.59 4.50
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experience of the third author in conjunction with
other providers in the DMS Department of Surgery.
Similar to other patients, the distributional para-
meters are increased by 20% for the 40% of patients
requiring an interpreter. Since these are follow-up
patients, a Tri(2,3,4) is used for wrap-up time for all
providers. Finally, given the ease with which VM
patients can connect with a provider, we assume
they are prompt and show up.

Based on the results in Table 9 and the processing
and wrap-up times for VM follow-up patients, we con-
sider two schedules. In Schedule 1, the surgeon sees
three VM follow-up patients at 0, 15, and 30 min, and
the nutritionist, and physical therapist see three VM
follow-up patients each at 0, 20, and 40 min. Schedule
2 extends Schedule 1 to also include two patients for the
surgeon at the end of the day at times 485 and 500 min,
and one patient each for the nutritionist and the physi-
cal therapist at 500 min. As such, these schedules
respectively accommodate an additional 9 and 13
patients daily with no additional resources.

Table 11 provides the results for Schedules 1 and
2 (see Table A4 in Appendix A for more statistics),
and may be compared with the results in the third
column of Table 8. As expected, adding VM follow-
ups to the surgeon, nutritionist, and physical thera-
pist does increase their utilisations, but they are all
still within acceptable ranges. Furthermore, while
patient waiting times do increase, the minimum
requirements are still satisfied for both scenarios.
Clinic closing time for Schedule 1 does not increase
significantly over the scenario in Table 8, likely
because the VM follow-ups are processed at the
beginning of the day and have little impact on the
end of the day activities. Not surprisingly, Schedule
2 does have a statistically significant later closing

time. However, it is the only statistic with a sig-
nificant difference between Schedules 1 and 2.
Hence, the impact of adding VM patients at the
end of the day is quite limited. In summary, both
schedules should be given serious consideration
since they can accommodate an increase of about
one third to almost one half more patients without
any additional resources while meeting all the
minimum requirements.

6. Discussion

Healthcare organisations worldwide find themselves
under mounting pressure to improve the quality of
care they offer while decreasing the cost of delivering
it. These challenges are compounded by competition,
declining reimbursement schedules, and an ageing,
often chronically ill population. In this paper, we have
tried to tackle one aspect of the healthcare delivery
problem as it relates to outpatient services. Our goal
has been to develop the tools needed to design and
analyse a condition-based ambulatory clinic, known as
an IPU, in which critical patient services are provided in
a single location during a single visit.

Using discrete-event simulation, we built a para-
metric model of the DMS’s Joint Pain IPU to deter-
mine the relationships and trade-offs among the
number of providers, the number of exam rooms,
the number of patients, and appointment time slots.
Performance was measured by the clinic closing time,
the patient waiting time and resource utilisation. The
analysis showed that up to 30 patients can be seen
within an 8-hour working day with two associate
providers (the bottleneck), 7 rooms and 12-min
appointment slots, plus a single surgeon, nutritionist,
physical therapist, and care planner. This

Table 10. Processing time probability distributions and patient mix for VM follow-up patients.
Patient type Patient mix (%) Surgeon (min) Physical therapist (min) Nutritionist (min)

VM follow-up 60 Tri(6,10,15) Tri(12,15,20) Tri(12,15,20)
VM follow-up (I) 40 Tri(7.2,12,18) Tri(14.4,18,24) Tri(14.4,18,24)

Table 11. Average statistics (all times in minutes; all utilisations in percentages) for 2 associate providers, 7 rooms, 10-minute
time slots for 7 follow-up patients at beginning of day, 12-minute time slots for 23 new patients, 9 VM patients at the beginning
of the day for Schedules 1 & 2 plus 4 VM patients at the end of the day for Schedule 2.

Schedule 1 Schedule 2

Statistics Mean Halfwidth Mean Halfwidth

Clinic closing time 528.89 4.13 539.17 3.27
Patient time in room 89.69 1.08 89.68 1.09
Patient time in clinic 106.89 1.69 106.86 1.69
Patient wait time for room 4.24 0.64 4.24 0.64
Patient total wait time 33.71 1.36 33.71 1.36
Associate provider utilisation 73.61 0.59 72.12 0.47
Surgeon utilisation 49.59 1.14 53.90 1.12
Nutritionist utilisation 56.85 1.53 59.50 1.49
Physical therapist utilisation 78.43 1.60 80.69 1.59
Care planner utilisation 72.07 0.67 70.45 0.60
Room utilisation 72.72 0.74 71.29 0.75
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configuration is well within the IPU budget and
meets all its performance requirements.

To provide the clinic director with a simple means of
evaluating the impact of changing any of the inputs or
trying to schedule more patients, we performed a multi-
ple regression analysis to establish the relationship
between these factors and our five primary output mea-
sures. The derived relationships for the averages of
clinic closing time, patient total waiting time, patient
waiting time for a room, patient time in a room, and
patient time in the clinic as a function of the number of
associate providers, number of patients, number of
rooms, and arrival time intervals are provided in
Table 6. The regression analysis also provided valuable
insights into how the main and interaction factor effects
impacted each of the regression responses.

Additional analyses were conducted to determine
whether improved performance could be achieved by
sequencing the follow-up and new patients in various
ways, and in assigning shorter appointment slots to
follow-up patients who generally require less provider
time. Analysis of two templates with follow-ups first,
each with 10-minute appointment slots, and then the
new patients, each with either 12 or 15-minute
appointments slots showed improvements in either
patient waiting times or clinic closing times. Similar
results have been found in the literature and suggest
that ordering patients by their processing time var-
iance from smallest to largest reducing waiting times
without affecting clinic closing time or vice versa.

Our final analysis addressed the idle time in the
schedules of the surgeon, nutritionist, and physical
therapist before the first patient arrives and after the
last patient leaves. Using 10-minute and 12-minute
time slots for follow-up and new patients, respec-
tively, (30 in-clinic patients; see Table 8), we found
it possible to schedule virtual visits for three addi-
tional follow-up patients for each of these providers
at the beginning of the day, two additional follow-up
patients for the surgeon at the end of the day, and
one each for the other two providers at the end of the
day. Thus, up to an additional 13 (or 43% more)
patients can be seen daily without noticeably affecting
the statistics of the 30 patients who visit the clinic.

The Lower Extremity Joint Pain IPU at DMS offi-
cially opened in November of 2017. During the first
two months, the clinic operated at about 70%
planned capacity in order for staff to gain more
familiarity with the physical facilities and the IT sys-
tems, and to hone the workflows. After two months,
the clinic began using a full 30-patient schedule
recommended by the findings of this work. The clinic
director found that the majority of the time estimates
were accurate and that the schedule was running
smoothly. In particular, the primary requirements
that, on average, patients spend less than 5 min to
be roomed, no more than 90 min in a room, and no

more than 150 min in the clinic are being achieved.
We are currently collecting additional data from time
studies to use the simulation model for clinic opera-
tions decision support and to plan for future devel-
opments in the growing practice.

As future research, we plan to develop a two-stage
stochastic programming model to determine the opti-
mal appointment time slots as a function of resource
limits and performance requirements. The templates
derived from the optimisation model will be used to
fix appointment times within the simulation model.
Knowing the optimal schedule in advance will allow
us to forgo the time-consuming process of trying to
determine them through enumeration as we develop
simulation models for five more orthopaedic IPUs at
the DMS.
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Appendix A

Table A1. Additional average statistics to Table 3 (all times in minutes; all utilisations in percentages) for 2 associate providers,
15-minute schedule time slot, random sequencing, 25 and 30 patients, and 6 and 7 rooms.

25 Patients 30 Patients

6 Rooms 7 Rooms 6 Rooms 7 Rooms

Statistics Mean Halfwidth Mean Halfwidth Mean Halfwidth Mean Halfwidth

Patient wait time for associate provider 3.56 0.21 3.82 0.23 3.64 0.20 4.08 0.23
Patient wait time for surgeon 2.76 0.26 2.69 0.27 2.86 0.25 2.81 0.27
Patient wait time for nutritionist 3.55 0.42 3.61 0.43 3.76 0.40 3.87 0.42
Patient wait time for physical therapist 8.89 0.81 9.47 0.95 9.81 0.80 10.37 0.88
Patient wait time for care planner 4.80 0.30 4.94 0.34 5.25 0.28 5.69 0.34
MildOAPatients time in clinic 84.11 2.19 84.23 2.09 84.75 1.83 85.14 1.95
ModOAPatients time in clinic 89.06 2.22 88.41 2.12 89.08 2.01 90.44 1.93
SevOAPatients time in clinic 93.07 4.18 95.72 4.74 98.72 4.30 98.90 4.65
OpPathPatients time in clinic 102.92 4.38 105.20 5.32 103.73 4.11 106.06 4.62
MildOAPatients (I) time in clinic 96.89 2.72 97.77 2.80 97.59 2.43 99.68 2.64
ModOAPatients (I) time in clinic 100.75 2.65 102.71 3.00 102.57 2.37 103.76 2.71
SevOAPatients (I) time in clinic 116.43 5.45 119.72 6.01 118.29 5.46 119.53 5.30
OpPathPatients (I) time in clinic 119.33 6.31 124.45 7.41 120.62 6.14 123.39 7.38
FollowupNonOpPath time in clinic 66.24 2.50 66.94 2.51 67.49 2.37 68.72 2.50
FollowupOpPath time in clinic 69.32 3.96 68.97 4.15 72.68 3.91 71.24 3.85
FollowupNonOpPath (I) time in clinic 74.06 3.20 75.06 3.41 76.22 3.12 77.17 3.07
FollowupOpPath (I) time in clinic 80.38 4.85 80.25 4.53 81.22 4.03 81.84 4.11

Table A2. Average statistics to Table 4 (all times in minutes; all utilisations in percentages) for 2 associate providers, 12-minute
schedule time slot, random sequencing, 25 and 30 patients, and 6 and 7 rooms.

25 Patients 30 Patients

6 Rooms 7 Rooms 6 Rooms 7 Rooms

Statistics Mean Halfwidth Mean Halfwidth Mean Halfwidth Mean Halfwidth

Patient wait time for associate provider 6.34 0.30 9.02 0.46 6.39 0.29 9.42 0.42
Patient wait time for surgeon 3.23 0.36 3.38 0.37 3.29 0.34 3.52 0.35
Patient wait time for nutritionist 4.36 0.49 4.35 0.51 4.84 0.47 5.04 0.61
Patient wait time for physical therapist 11.95 1.04 11.76 1.16 12.15 1.04 12.66 1.18
Patient wait time for care planner 7.54 0.47 8.15 0.54 8.09 0.43 8.43 0.52
MildOAPatients time in clinic 100.11 3.14 96.80 2.67 101.70 2.77 99.05 2.18
ModOAPatients time in clinic 102.15 3.03 101.61 2.79 104.59 2.74 102.66 2.54
SevOAPatients time in clinic 116.18 6.21 106.96 5.42 118.33 6.32 108.29 5.12
OpPathPatients time in clinic 118.55 6.59 120.40 6.18 121.70 6.69 122.61 6.48
MildOAPatients (I) time in clinic 113.26 3.49 108.75 2.95 114.82 3.26 111.04 2.88
ModOAPatients (I) time in clinic 115.63 3.45 111.99 3.12 117.21 3.29 114.59 2.92
SevOAPatients (I) time in clinic 126.32 7.90 120.52 6.93 129.44 6.48 124.27 7.01
OpPathPatients (I) time in clinic 134.03 7.67 134.57 7.43 136.56 6.38 133.58 7.01
FollowupNonOpPath time in clinic 81.59 3.42 80.21 3.17 83.62 3.17 82.66 2.80
FollowupOpPath time in clinic 84.90 5.07 90.18 5.84 90.80 5.27 92.85 5.49
FollowupNonOpPath (I) time in clinic 94.09 4.04 91.70 3.79 96.68 3.76 92.47 3.32
FollowupOpPath (I) time in clinic 94.77 6.52 94.26 5.95 96.56 5.67 93.62 5.47

Table A3. Additional average statistics to Table 8 (all times in minutes; all utilisations in percentages) for 2 associate providers, 6
and 7 rooms, 10-minute schedule time slots for 7 follow-up patients at beginning of day, and 12- and 15-minute schedule time
slots for 23 new patients.

12-minute time slot for new patients 15-minute time slot for new patients

6 Rooms 7 Rooms 6 Rooms 7 Rooms

Statistics Mean Halfwidth Mean Halfwidth Mean Halfwidth Mean Halfwidth

Patient wait time for associate provider 7.16 0.30 9.85 0.37 4.56 0.24 5.07 0.25
Patient wait time for surgeon 2.85 0.26 2.93 0.28 2.66 0.24 2.76 0.27
Patient wait time for nutritionist 4.88 0.56 4.93 0.57 4.15 0.47 4.35 0.49
Patient wait time for physical therapist 10.48 0.86 12.03 1.09 8.82 0.72 8.85 0.75
Patient wait time for care planner 6.78 0.33 6.86 0.35 5.66 0.30 6.03 0.34
MildOAPatients time in clinic 104.09 2.22 102.65 2.43 89.82 2.04 90.31 2.05
ModOAPatients time in clinic 106.39 2.56 105.36 2.46 91.00 2.17 91.36 2.05
SevOAPatients time in clinic 121.19 5.79 118.45 5.38 105.35 4.67 105.80 5.21
OpPathPatients time in clinic 113.43 5.25 121.91 5.50 109.55 5.10 107.18 4.71
MildOAPatients (I) time in clinic 118.29 2.89 112.43 2.66 100.26 2.84 99.48 2.68
ModOAPatients (I) time in clinic 116.43 2.84 116.72 2.73 106.30 2.71 105.14 2.66
SevOAPatients (I) time in clinic 131.00 6.24 131.30 6.78 114.94 5.95 113.99 5.97
OpPathPatients (I) time in clinic 139.24 6.79 134.42 7.75 123.85 6.37 125.24 5.66
FollowupNonOpPath time in clinic 61.73 1.83 61.73 1.76 60.50 1.87 60.00 1.74
FollowupOpPath time in clinic 67.47 2.95 67.18 2.89 70.17 3.50 68.54 3.24
FollowupNonOpPath (I) time in clinic 61.73 1.83 61.73 1.76 68.87 2.27 69.13 2.27
FollowupOpPath (I) time in clinic 67.47 2.95 67.18 2.89 76.68 4.20 75.91 3.79
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Table A4. Additional average statistics to Table 11 (all times in minutes; all utilisations in percentages) for 2 associate providers,
7 rooms, 10-minute time slots for 7 follow-up patients at beginning of day, 12-minute time slots for 23 new patients, 9 VM
patients at the beginning of the day for schedules 1 & 2 plus 4 VM patients at the end of the day for schedule 2.

Schedule 1 Schedule 2

Statistics Mean Halfwidth Mean Halfwidth

Patient wait time for associate provider 8.93 0.39 8.93 0.39
Patient wait time for surgeon 3.88 0.33 3.56 0.30
Patient wait time for nutritionist 5.61 0.49 5.36 0.48
Patient wait time for physical therapist 15.44 1.28 15.20 1.29
Patient wait time for care planner 8.04 0.51 8.01 0.51
MildOAPatients time in clinic 106.01 2.52 106.12 2.51
ModOAPatients time in clinic 111.94 2.86 111.40 2.72
SevOAPatients time in clinic 119.13 5.66 119.60 6.04
OpPathPatients time in clinic 131.96 6.22 131.78 6.16
MildOAPatients (I) time in clinic 117.16 3.01 117.11 3.03
ModOAPatients (I) time in clinic 121.92 3.55 122.07 3.50
SevOAPatients (I) time in clinic 137.80 7.36 136.77 7.10
OpPathPatients (I) time in clinic 150.82 7.98 150.50 8.22
FollowupNonOpPath time in clinic 72.20 2.68 72.20 2.68
FollowupOpPath time in clinic 80.19 4.36 80.19 4.36
FollowupNonOpPath (I) time in clinic 82.38 3.60 82.38 3.60
FollowupOpPath (I) time in clinic 89.22 5.22 89.22 5.22

Figure B1. High-level simulation model of Joint Pain IPU with VM patients.
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