Skip to main content
. 2020 Dec 2;11:604478. doi: 10.3389/fpsyt.2020.604478

Table 3.

Performance of the resulting TPOT pipelines when using thickness, volume, and mean curvature information from each specific site separately.

Site # Pipeline MAE
0 3 Lasso + RVR + Ridge + RF 5.557
1 Lasso + KNR 4.101
2 ElasticNet + Extra Trees + Ridge 4.721
3 Linear SVR + RF 4.027
4 2 Extra Trees + Ridge 2.05
5 RF 6.667
6 2 GPR 5.940
7 2 ElasticNet 5.638
8 ElasticNet + RF 3.938
9 Lasso + RF + Extra Trees 6.685
10 KNR + DT + Ridge 9.210
11 RVR 4.213
12 DT + Ridge 4.375
13 2 RF + DT + Ridge 10.155
14 Extra Trees + 2 DT + LR + Ridge 10.849
15 LR 1.861
16 RF + ElasticNet + DT 2.220

The results are presented as the mean MAE for a 5-fold cross validation. Lasso, lasso model fit with least angle regression; RVR, relevance vector regressor; Ridge, linear least squares with l2 regularization; RF, random forest; KNR, K-neighbors regressor; DT, decision tree; GPR, gaussian process regressor; LR, linear regression.