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Abstract

Neurological disorders are challenging to study given the complexity and species-specific features 

of the organ system. Brain organoids are three dimensional structured aggregates of neural tissue 

that are generated by self-organization and differentiation from pluripotent stem cells under 

optimized culture conditions. These brain organoids exhibit similar features of structural 

organization and cell type diversity as the developing human brain, creating opportunities to 

recapitulate disease phenotypes that are not otherwise accessible. Here we review the initial 

attempt in the field to apply brain organoid models for the study of many different types of human 

disorders across a wide range of etiologies and pathophysiologies. Forthcoming advancements in 

both brain organoid technology as well as analytical methods have significant potential to advance 

the understanding of neurological disorders and to uncover opportunities for meaningful 

therapeutic intervention.

Introduction

The human nervous system is one of the most complex tissues in biology, particularly in 

terms of its cell type diversity, cellular architecture and organization, and functional 

connectivity. Diseases related to its development, degeneration, cancer, and exposure to 

environmental insults have been difficult to study due to the complexity of their unique 
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pathophysiologies and difficulties in accessing human specimens. Animal models and 

human post-mortem analyses have been absolutely invaluable; however, many aspects of 

brain development and diseases exhibit essential human-specific features, and prospective 

studies remain nonetheless indispensable for mechanistic investigation and targeted 

interventions based on mechanistic understandings [1-3].

Rapid progress in stem cell technologies over the past decades, including reprogramming of 

somatic cells into induced pluripotent stem cells (iPSCs) and differentiation of pluripotent 

stem cells, including both iPSCs and embryonic stem cells (ESCs), has widely enabled 

access to human neural cells within an in vitro system that permits extensive experimental 

manipulation for phenotypic and mechanistic studies [4, 5]. These efforts have recently 

culminated in the development of brain organoids, which are 3D structures that resemble the 

nervous system and can be used as experimental models for studying normal organogenesis 

and disease pathophysiology [6, 7]. With optimized culture conditions as well as a degree of 

intrinsic self-organization, brain organoids are able to capture certain aspects of the tissue 

architecture and cell type diversity of the human nervous system through various stages of 

development.

These features of brain organoids offer unique opportunities to model developmental 

processes and disease phenotypes not otherwise available with alternative approaches, such 

as 2D monolayer and neurosphere cultures [8], Certainly, brain organoids do not fully or 

perfectly recreate the developing human brain, and they also suffer from a number of 

technical limitations; however, existing methods have proven adequate to recapitulate 

important features of diseases and yield valuable insights, and forthcoming advancements, 

such as incorporation of other non-neural cell types and vasculature, are expected to greatly 

improve the fidelity and scope of this model system.

In this review, we focus on the use of brain organoids in modeling neurological diseases, 

highlighting the specific advantages of this model system as well as discussing areas for 

further development. Overall, brain organoids are a young and nascent field with 

demonstrated and substantial promise to deepen the understanding of basic neurobiology, to 

uncover specific and actionable insights into neurological diseases, and to advance the 

development of effective therapeutics.

Organoid models of early brain development

In less than a decade, brain organoids have emerged as novel and useful tools for modeling 

normal human neural development and neurological disorders in a 3D in vitro culture 

system. Brain organoids are generated from pluripotent stem cells (PSCs), and with recent 

advancements in stem cell technologies, species-specific – often human – as well as patient-

specific models of brain development and diseases are readily accessible. The study of 

species differences and evolution lies outside the scope of this review and we focus on 

research efforts that use brain organoids from patient-derived iPSCs or genome-edited 

human PSCs to study disease processes with the appropriate genetic backgrounds.
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Protocols to generate brain organoids can be broadly divided into unguided and guided 

methods [6]. Unguided methods forgo the use of targeted patterning factors and rely on 

intrinsic cues and self-organization capabilities of PSC aggregates under optimized growth 

conditions. Although this method generates an enormous diversity of cell types, 

encompassing many areas of the brain, as well as retina, choroid plexus, and mesoderm, the 

stochasticity and iPSC line-to-line and organoid-to-organoid variability remain major 

challenges with this approach [9, 10]. Guided methods target key signaling and morphogen 

pathways using small molecules and growth factors through at least the progenitor 

patterning stage to yield brain region-specific organoids. Protocols to model many brain 

regions, including the forebrain, midbrain, hypothalamus, hippocampus, and many others, 

have been reported [11-13]. As the brain organoid toolkit expands to encompass more 

individual and combinations of brain regions, selection of an appropriate model system will 

be important to best model the disorder or biological process of interest.

With both unguided and guided methods, brain organoids consist of a variety of cell types, 

including a number of different stem and progenitor cells, neurons, and glia, all of which 

arise in sequence, reflecting the temporal dynamics of the genesis of these cells in normal 

brain development [11, 14, 15]. Thus, the emergence and diversity of these cell types in 

brain organoids offer the opportunity to model phenotypes, such as proliferation and 

premature differentiation, as well as to examine the cell type-specific effects of various 

genetic mutations or environmental exposures.

Brain organoid exhibit similar transcriptome, epitranscriptome and epigenome as the 

developing brain [11, 14-16]. Furthermore, some of the human-specific features of organoids 

can be captured in the presence and abundance of certain cell types, such as outer radial glia 

(oRGs) [11], which are relatively few in rodents [17]. Finally, brain organoids are uniquely 

defined by their three-dimensional architecture, often containing defined laminar zones of 

progenitor cells and neurons they give rise to [18]. A number of disorders involve defects in 

cellular organization and tissue architecture, and brain organoids are well suited to model the 

underlying biological processes of these disorders. In all, the innate complexity of brain 

organoids offers opportunities to study cellular processes and molecular pathways that are 

essential to human diseases and yet not readily available in alternative in vitro model 

systems.

Organoid models for congenital developmental disorders with genetic 

etiologies

Structural abnormalities

One of the major advantages of brain organoids over existing 2D culture models as well as 

neurospheres is the presence of cellular organization and cytoarchitecture that are formed 

through self-organization and the application of certain extracellular matrix factors. Cerebral 

and forebrain organoids consist of neural rosette-like structures with a fluid-filled ventricle 

at the center surrounded by sequential layers of neural progenitor cells (NPCs) and neurons. 

These NPCs consist of various radial glia subtypes, and they demonstrate apical-basal 

polarity, display typified mitotic translocation and cleavage angles, and act as a scaffold for 
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neural migration. Thus, cortical organoids are uniquely useful for modeling diseases where 

structural defects are prominent features of the clinical phenotype (Table 1). Future 

advancements may further elaborate the structural characteristics of cortical organoids 

especially those that emerge in later stages of development, such as the six neuronal layers 

of the neocortex and prominent gyri and sulci along the cortical surface.

Microcephaly: Microcephaly is clinically defined as an occipitofrontal head circumference 

of more than 2-3 standard deviations below the mean for age and gender. Although the 

etiologies are diverse, most cases of prenatal onset microcephaly are thought to involve 

impaired NPC function and diminished overall neurogenesis. Brain organoids are important 

in modeling this disease process as mice lack the primate-enriched and highly neurogenic 

outer subventricular zone (oSVZ) where oRGs largely reside. This is thought to play a role 

in the more modest phenotypes observed in mouse models that bear genetic alterations [19, 

20], whereas prominent phenotypes have been consistently observed in cerebral organoid 

models with causative pathogenic mutations in a number of different genes, such as a 

centrosomal protein, CDK5RAP2, and a mitotic spindle protein, ASPM [10, 21].

Studies in brain organoids have also identified a number of novel mechanisms and pointed 

towards potential therapeutic strategies. Centrosome dysfunction and cilium disassembly 

impairment were found in a cortical organoid model of Seckel syndrome, which is caused by 

mutations in a centromeric protein, CPAP, also known as CENPJ [22]. Cilium disassembly 

impairment and NPC depletion were also found in cerebral organoids with mutations in 

centrosomal protein WRD62 [20]. Mutations in CHMP1A can lead to microcephaly with 

pontocerebellar hypoplasia, and cerebral organoid models demonstrated that impaired Shh 

signaling can affect the maintenance of NPCs and pace of differentiation [23]. Aicardi-

Goutières syndrome (AGS) can arise from mutations in TREX1 and is an inflammatory 

disorder with severe neurologic deficits and microcephaly. Cerebral organoid models of 

AGS demonstrated smaller sizes and increased apoptosis in neuronal regions, which were 

rescued upon treatment with reverse transcriptase inhibitors, Lamivudine and Stavudine 

[24].

Lissencephaly.—Lissencephaly is characterized by the lack of gyri and sulci on the 

cerebral cortex and is thought to be due to impaired neuronal migration. Although animal 

studies with genetically manipulated mice have been informative, their intrinsic 

lissencephaly places clear limitations on the fidelity of these models, and iPSC-derived brain 

organoids may bridge the gap to the human disease. Neuronal migration defects were found 

in cerebral organoids with pathogenic mutations in microtubule proteins KATNB1 and 

TUBA1A as well as a cerebral organoid model of Miller-Dieker syndrome (MDS) [25-27]. 

This MDS model also revealed a reduced NPC pool due to increased apoptosis and reduced 

vertical divisions, oRG-specific mitotic defects, and imbalanced NPC proliferation and 

differentiation [28].

The gyri and sulci in the human brain are largely formed in the third trimester; however, it 

remains difficult to model this later period in prenatal development using brain organoids 

[29]. Most brain organoids do not bear prominent gyrification, which may be due to a 

number of different challenges, such as inadequate organoid maturation; however, novel 
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approaches have been pursued to capture aspects of this essential feature of the human brain. 

PTEN mutation leads to NPC expansion and surface folding in brain organoids, which was 

only observed with human, but not mouse, cell lines [30]. Although non-physiologic, this 

mutant background may be useful in certain circumstances to study gyrification and model 

lissencephalies. Alternatively, a brain-organoid-on-a-chip approach was used to study the 

biomechanics of folding and identified contraction at the organoid core and expansion at the 

perimeter as opposing forces leading to wrinkling [31]. Brain organoid models with 

alterations in LIS1, which is located within the chromosome 17 deletion locus in MDS and 

is strongly associated with lissencephaly, demonstrated fewer wrinkles than isogenic 

controls and altered biomechanical properties.

Periventricular heterotopia.—Periventricular heterotopia (PH) is a condition where 

impaired neuronal migration leads to heterotopic neurons residing adjacent to the ventricles. 

Examination of de novo coding variants identified in patients with PH revealed a loss-of-

function mutation in PLEKHG6, specifically transcript variant 4 (PLEKHG6_4), which is 

associated with oRGs and does not have an ortholog in mice [32]. Genetic manipulation of 

PLEKHG6_4 expression in cerebral organoids by electroporation led to altered neuronal 

migration, periventricular accumulation of neurons, and disruption of apical surface integrity 

that influenced the behavior of adjacent unmanipulated neurons in a non-cell-autonomous 

manner. Mutations in protocadherins DCHS1 and FAT4, often in one allele, are associated 

with PH, and cerebral organoids bearing these alterations demonstrate the stereotypical 

feature of ectopic neuronal clusters near the ventricle [33]. In contrast, mice, even with 

homozygous knockout of Dchs1 and Fat4, do not demonstrate abnormal cortical 

development [34]. This is similar in lissencephaly, a disease also with neuronal migration 

defects, where genetic mutations found in patients can yield modest or no relevant 

phenotypes in mouse models [35]. Thus, brain organoid models offer the opportunity for 

investigating underlying mechanisms of neuronal migration, especially those that may not be 

adequately recapitulated in other model systems.

Neuropsychiatric disorders

A number of neuropsychiatric disorders, including schizophrenia, autism spectrum disorder 

(ASD), and intellectual disability (ID) are thought to involve important pathophysiological 

processes during early brain development [36]. Although the clinical focus in these diseases 

is on the behavioral outcomes, brain organoids may serve as useful models to study the 

molecular and cellular alterations that occur in early developmental stages. These diseases 

have complex and poorly understood genetic and environmental etiologies, and cases with 

definitive and causative genetic alterations – though rare – have served as tractable starting 

points to build informative disease models.

Schizophrenia.—Schizophrenia is a severe mental disorder affecting numerous domains 

of psychological function, and although its onset is in early adulthood, a number of 

neurodevelopmental events remain closely linked with its pathogenesis. DISC1 is a 

scaffolding protein that interacts with many different pathways and its rare mutations have 

been genetically linked to a number of major psychiatric disorders, including schizophrenia 

[37]. Prior studies in mouse, zebrafish, and other cell culture models have demonstrated that 
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DISC1 mutations lead to dysregulated WNT signaling and neural progenitor activity [38, 

39]. Brain organoids modeling a chromosomal translocation disrupting the DISC1 locus 

demonstrated morphological changes and reduced proliferation, which could be rescued 

with WNT pathway antagonism and phenocopied by WNT pathway agonism [40]. Another 

DISC1 brain organoid model with a rare 4 base-pair frameshift mutation found in major 

psychiatric disorder patients [41] revealed that disruption of the DISC1/NDEL1 complex 

leads to delayed cell-cycle progression and reduced proliferation, consistent with studies in 

mouse models and 2D cell culture models [42]. A sliced forebrain cortical organoid model 

was recently developed, which exhibits distinct upper and deep cortical layers with 

segregation of neuronal subtype markers [18]. In this model, the frameshift DISC1 mutation 

leads to deficits in cortical neuron subtype differentiation and failure of segregation of upper 

and deep cortical neuronal layers [18]. Notably, dysregulation of the laminar expression of 

neuronal subtype marker genes has been observed in brains from children with ASD [43]. 

Cerebral organoids with chromosome 16p13.11 microduplication demonstrated reduced 

proliferation as well as dysregulation of the NFκB p65 pathway, which could be restored 

using pharmacologic agents and genetic manipulations to rescue the proliferation phenotype 

[44]. Cerebral organoids from patients with schizophrenia but without any canonical 

alterations demonstrated aberrant cortical organization, which could be linked to nuclear 

FGFR1 signaling and phenocopied with pharmacologic inhibition of this pathway [45]. 

Overall, these models of schizophrenia have yielded insights into the cellular processes 

associated with disease-associated variants, especially into defects in cellular organization 

and morphogenesis that would not be well captured in other cell culture models. However, 

large domains of analyses, such as alterations in neuronal network connectivity, remain 

largely unexplored.

Autism Spectrum Disorder.—ASD is a neurodevelopmental disorder characterized by 

defects in social communication and social behaviors. Multiple lines of evidence in mouse 

models and human patients have implicated intemeurons in the pathogenesis of this disease 

[46], and brain organoid models from different genetic backgrounds have been consistent 

with this prior knowledge and expanded upon them. For example, brain organoid models of 

idiopathic ASD exhibited increased production of GABAergic neurons, which was in part 

attributable to increased expression of FOXG1 [47]. This study highlights an advantage of 

brain organoids as mouse and other cell culture models would not be suited to examine 

phenotypes involving a number of different cell types within an undetermined causal genetic 

background. Cerebral organoids with mutations in CHD8, a chromatin remodeler and a ASD 

risk gene, showed dysregulated expression of genes important in GABAergic neuron 

differentiation, consistent with results from the study of idiopathic cases [48]. A novel model 

of Timothy syndrome, a disease that shares socialization and communication phenotypes 

with ASD, bearing mutations in CACNA1C was developed by fusing cortical and 

subpallium spheroids into an assembloid, which then demonstrated impaired intemeuron 

saltation and mobility that could be rescued upon treatment with L-type calcium channel 

inhibitors [49]. Future studies examining the network integration of these intemeurons and 

resulting excitation-inhibition balance may build on this body of work.
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Intellectual disability.—Intellectual disability is a neurodevelopmental disorder with 

deficits across a broad spectrum of intellectual function. Down Syndrome (DS) is caused by 

amplification of chromosome 21 leading to developmental and intellectual disabilities. 

OLIG1 and OLIG2 are located on chromosome 21 and have been previously implicated in 

DS [50-52]; however, the expression patterns of these two transcription factors differ 

between mouse and human, where in humans OLIG2, but not OLIG1, is abundantly 

expressed in populations of neural progenitors and is thought to play a more important role 

in DS [53-56]. Brain organoid models of DS showed overproduction of OLIG2-expressing 

ventral forebrain progenitors and GABAergic interneurons [57]. Injection of dissociated 

organoid cells into neonatal mice led to increased GABAergic neurons and behavioral 

deficits, both of which could be reversed with knockdown of OLIG2, thus better defining the 

link between OLIG1/2, interneuron development, and DS related phenotypes. Organoid 

models of Rett syndrome demonstrated impaired neuronal differentiation, which could be 

recapitulated with MECP2 knockdown and were linked to increased levels of miR-199 and 

miR-214, two miRNAs that impair neuronal differentiation by altering ERK and AKT 

signaling [58].

Other diseases

Gangliosidosis.—Gangliosidosis is a type of lysosomal storage disorder where 

gangliosides accumulate aberrantly due to inborn errors of metabolism. Organoid models of 

GM1 and GM2 gangliosidosis demonstrate accumulation of these lipids, which can lead to 

cerebral organoid degeneration and be rescued with targeted gene therapy [59, 60].

Pelizaeus-Merzbacher disease.—Pelizaeus-Merzbacher disease (PMD) is an X-liked 

monogenic leukodystrophy caused by a mutation in PLP1, leading to defects in myelin 

production. Oligocortical spheroids were developed by supplementation with 

oligodendrocyte lineage promoting factors, and models of PMD showed phenotypes of 

perinuclear accumulation of PLP1 and reduced oligodendrocytes, which could be rescued 

with PERK inhibitors [61].

Organoid models for congenital diseases with environmental exposures

Viral infection

A number of infectious diseases have prominent neural and neurodevelopment sequelae that 

can lead to lasting deficits, and brain organoids have played an important role in studying 

these diseases, particularly in Zika virus infection (Table 2). One area of particular 

advantage is the cellular diversity within brain organoids, which offers unique opportunities 

to examine viral tropism as well as to study cell type-specific responses to these exposures. 

As brain organoids lack immune cells, and therefore are not suitable for understanding 

pathogen-host immune responses. Mouse models of viral infections are advantageous in this 

aspect, but lacking species specificity of essential viral functions [62, 63].

Zika virus.—Zika virus is a flavivirus that is primarily transmitted by mosquitos, and 

although the symptoms of infection in adults are mild, prenatal exposure and infection have 

been linked to severe neurodevelopmental defects, including microcephaly. Since the 2015 
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outbreak of Zika Virus in Central and South America, brain organoids have been used by 

numerous research groups as a leading model system to identify cellular tropism, 

mechanisms of infection, and potential therapeutic options [64]. This body of research 

highlights how leveraging the unique features of brain organoids, such as its cell type 

diversity and structural organization, can lead to important insights in domains ranging from 

basic disease biology to drug discovery [65, 66].

Early studies using brain organoid models of Zika virus infection were the first to reveal 

viral tropism for NPCs, leading to reduced overall size and numbers of NPCs and neurons 

[11, 67, 68]. AXL was proposed as a candidate viral entry receptor given its enriched 

expression in radial glia cells, however, subsequent studies in AXL knockout brain 

organoids showed largely unchanged susceptibility to Zika virus infection, suggesting that 

AXL is not essential for viral entry [69, 70]. Co-culture models of iPSC-derived microglia-

like cells with neural spheroids and human primary monocytes with brain organoids 

demonstrated that these non-neural cells may be suitable viral carriers and mediate 

dissemination into the developing brain [71, 72]. Zika virus infection of NPCs leads to 

reduced proliferation and premature differentiation, and is also characterized by altered 

division planes, impaired centrosome function, disrupted apical adherens junctions, 

disorganized radial glia morphology, and activation of TLR3 signaling pathways [73-75]. 

NS2A protein encoded by the Zika virus genome was found to disrupt adhereins junctions of 

radial glia in forebrain organoids, resulting in reduced proliferation and premature 

differentiation [76]. Furthermore, Zika virus infected brain organoids showed differential 

DNA methylation at loci associated with neurodevelopmental and psychiatric disorders, 

suggesting the possibility of long-term consequences [77]. Finally, a number of drug screens 

followed with validation in brain organoids have identified compounds such as emricasan, 

hippeastrine, 25-hydroxycholesterol and certain antibiotics and antivirals as promising 

candidates for treating Zika virus infection [78-83].

Japanese encephalitis virus (JEV).—Japanese encephalitis virus (JEV) is a mosquito-

borne flavivirus that is the leading cause of viral encephalitis in Asia, and although 

symptomatic infection is uncommon, neurologic sequelae can be severe and long lasting. 

Cortical organoids models of JEV revealed viral tropism for astrocytes and NPCs, especially 

oRGs, leading to reduced organoid size and increased cell death [84]. Interestingly, older 

organoids exhibited less susceptibility to JEV infection as well as greater activation of 

interferon signaling pathways.

Cytomegalovirus (CMV).—CMV is a ubiquitous pathogen, and prenatal infection can 

lead to neurodevelopmental defects, including microcephaly; however a major challenge of 

studying CMV is its strict species specificity [85]. Brain organoid models of CMV infection 

demonstrated microcephaly, disrupted cellular organization, and abnormal calcium 

signaling, which could be prevented with neutralizing antibodies or partially rescued with 

maribavir, an experimental antiviral agent [86, 87].

Brain organoid modeling has led to significant novel insights into viral infection of the 

developing nervous system, especially with respect to cell type tropism, morphological 

defects, and potential novel therapies. Future incorporation of additional cell types, such as 
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microglia and lymphoid cells, into the brain organoid model in a biologically faithful 

manner will help to better understand complex host-pathogen interactions and their 

consequences.

Chemical agents and radiation

The developing brain is often susceptible and sensitive to the exposure or depletion of many 

different non-biological agents, including oxygen, drugs of abuse, pharmacological agents, 

frank toxins, and radiation. As with infectious diseases, modeling these non-biological 

exposures in brain organoids presents an important advantage of studying differential 

susceptibly and responses in a system where all these different cell types are integrated in a 

biologically meaningful manner. These published research studies lay the groundwork for 

future opportunities to screen for developmental neuro-teratogenicity across broad drug 

development and environmental applications (Table 2).

Hypoxia.—Prenatal hypoxic injury is a common cause of neurodevelopmental deficits as 

even transient episodes can cause cellular damage that lead to long term neuropsychiatric 

sequelae. Prior studies in mouse models identified SOX2-expressing cells at the basal SVZ 

that form a proposed oSVZ-like cell layer and are sensitive to oxygen levels during 

development [88]. However, given the lack of a true oSVZ in mice and species-related 

differences in cortical progenitor pools, the implications of these findings to human 

pathophysiology remain unclear. Brain organoid models of hypoxia show reduced numbers 

of progenitor cells, including oRGs and intermediate progenitors, as well as substantial 

transcriptomic alterations, which can be rescued upon reoxygenation, treatment with an 

integrated stress response inhibitor, ISRIB, or treatment with minocycline [89-91]. 

Endothelial cells and other elements of cerebrovascular biology play an essential role in 

hypoxic injury, and brain organoids that incorporate these components may offer a more 

complete model system in studying this disease process in the future.

Drugs of abuse: alcohol, cocaine, nicotine, and 5-MeO-DMT.—Prenatal exposure 

to drugs of abuse is widely prevalent and can lead to long lasting changes in brain 

development. Exposure of brain organoids to ethanol, cocaine, and nicotine yielded common 

phenotypes of premature neuronal differentiation and abnormal neurite outgrowth [92-94]. 

Notably, exposure to cocaine, a stimulant that inhibits the reuptake of monoamine 

neurotransmitters, also led to CYP3A5 induced production of reactive oxygen species. 5-

MeO-DMT is a serotonin-like molecule with psychoactive and hallucinogenic properties, 

and exposure in brain organoids lead to dysregulation of proteins associated with 

inflammation, long term potentiation, and cytoskeletal dynamics [95]. Many of these drugs 

of abuse have neuromodulatory activity, and studying these effects on the different neuronal 

populations at different degrees of maturation may yield insights to how early exposure lead 

to the observed clinical behavioral phenotypes.

Pharmacologic agents.—The large majority of pharmaceutical drugs have an unknown 

risk in pregnancy despite their necessity and widespread use in pregnant women [96]. Mouse 

models are enormously useful but also complicated by host metabolism, maternal-fetal 

biology, and species differences in key developmental programs [97, 98]. The impact of 
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these challenges is exemplified by the antiemetic, thalidomide, which yields almost no 

teratogenicity in mice but severe deformities in humans [99, 100]. In cerebral organoid 

models, vincristine, a microtubule destabilizing anti-cancer agent, and tranylcypromine, a 

monoamine oxidase inhibitor, both yielded reduced neural and glial cell numbers [101, 102]. 

Further genomic analyses found that vincristine exposure dysregulates extracellular matrix 

associated genes, whereas tranylcypromine exposure increases H3K4 dimethylation. In 

contrast, exposure to imidazole antifungals leads to the generation of oligodendrocytes and 

remyelination through the inhibition of CYP51 and the subsequent accumulation of 

lanosterol [103]. Although these case studies of individual drugs demonstrate the potential 

of brain organoids, scaling to mid- or high-throughput screens for teratogenicity will require 

high volume sample processing pipelines as well as suitable phenotypic standards for 

identifying toxicity.

Toxins and radiation.—Toxin and radiation exposures are ubiquitous in the environment, 

and brain organoids can be useful in understanding their toxicity, mechanisms, and 

neurologic sequelae. Gamma irradiation of cerebral organoids leads to a thinned 

neuroepithelium and reduced metabolic output that could be rescued by pretreatment with 

rapamycin or subsequent treatment with minocycline [104]. Bisphenol A is a component in 

many plastics and its exposure in forebrain organoids at very high doses leads to reduced 

neural progenitor cell proliferation and thinned ventricular zone thickness [11]. Expanding 

this to larger scale, a screen of compounds known to be toxic and non-toxic in brain 

organoids was analyzed by RNA sequencing and used to generate a linear support vector 

classifier that had a >90% classification accuracy [105].

Organoid models for neurodegenerative diseases

Although brain organoids are more often designed and thought of as models of brain 

development, their application towards studying neurodegeneration have yielded models that 

recapitulate certain essential phenotypes, such as the presence of misfolded protein 

aggregates (Table 3). Notably, secreted proteins and extracellular deposits may accumulate 

to higher levels in the interstitial spaces in this model system simply due to the 3D 

aggregation of these cells even without the typified structure of brain organoids [106]. With 

the growing appreciation of the prion-like behavior observed in these diseases, studying 

neuronal diversity and connectivity may contribute to understanding how these pathologies 

may spread and disseminate. Neuronal and glial maturation as well as the potential 

interference of progenitor cells are concerns for the validity of brain organoids as models of 

neurodegenerative diseases, and they represent areas for further investigation and 

development.

Alzheimer’s disease.

Alzheimer’s disease (AD) is an age-related neurodegenerative disease characterized by 

neuronal cell loss, amyloid aggregation, and hyperphosphorylated tau. Transgenic mouse 

models exist for AD that mimic a range of pathologies [107, 108], however, a number of 

species-specific differences, such as the expression of tau isoforms [109, 110], and failed 

clinical trials for drugs that showed promising results in mice have prompted the 
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development of human brain organoid models that also have the added benefit of 

adaptability to high throughput drug screening [111-113]. Brain organoid models of familial 

AD with mutations in APP or PSN1 yield amyloid aggregates, hyperphosphorylated tau, 

endosome abnormalities, and increased inflammatory markers, which could in part be 

rescued with β- and γ-secretase inhibitors [114-116]. Models of sporadic AD showed that 

APOE4 brain organoids exhibit increased Aβ puncta and phosphorylated tau, as well as 

upregulation of neurogenic genes [117, 118]. Beyond genetic models of AD, treatment of 

wild-type brain organoids with amyloidogenic Aftin-5 led to increased levels of Aβ42 and 

Aβ oligomers [119]. These brain organoid models of AD capture essential biochemical 

features of the disease, however, the lack of cellular components such as microglia and 

vasculature, as well as the relatively low synaptic activity and cellular immaturity are 

important challenges that will require ongoing evaluation and innovation [120].

Frontotemporal dementia.

Frontotemporal dementia is a common type of early-onset neurodegenerative disease with 

behavioral, language, and motor impairments. Mechanistic studies in brain organoids 

validated an important mechanistic association between p25, a disease-related fragment of 

p35 that enhances CDK5 activity, and tau phosphorylation in a human system that had been 

previously observed in mouse models [121-123].

Huntington’s disease.

Huntington’s disease (HD) is an inherited neurodegenerative disease caused by excessive 

CAG repeats in the huntingtin gene. Brain organoid models demonstrated poorer 

neuroecoderm patterning with increasing CAG expansion, disrupted cortical differentiation 

and organoid cytoarchitecture, which could be partially rescued with knockdown of HTT 

and pharmacologic inhibition of ADAM10 [124].

Creutzfeldt-Jakob disease.

Creutzfeldt-Jakob disease (CJD) is a rare, fatal, and fast-progressing neurodegenerative 

disease that is caused by abnormal forms of prion protein. Wild-type cerebral organoids 

were exposed to brain homogenates from two patients with sporadic CJD, leading to prion 

protein uptake and propagation [125].

Hereditary Spastic Paraplegia.

Hereditary spastic paraplegia is characterized by progressive degeneration of the 

corticospinal tracts. Cerebral organoid models with SPG11 mutations demonstrated 

premature differentiation, reduced overall proliferation, and larger ventricles, which could be 

partially rescued with GSKβ inhibitors [126].

Organoid models for cancer

Organoid models of cancer have emerged across a number of different tumor types and 

organ systems to better preserve the cellular heterogeneity and microenvironment in an in 
vitro system (Table 4). Some brain tumor organoid models are similar to brain organoids in 

that they are generated from PSCs with defined genetic alterations, however, other models 
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are derived from primary surgical tissue and contain patient-specific genetic features. 

Notably, the patient-derived organoids contain many different types of non-neoplastic cells, 

including immune cells, creating opportunities to study these intercellular interactions and 

how they might influence tumor growth or response to treatment. These emerging models 

offer unique opportunities to study tumorigenesis, cellular heterogeneity, tumor cell 

migration, and response to therapies.

Genetically modified models

Benign tumors.—Tuberous sclerosis complex (TSC) is a genetic neurocutaneous disorder 

characterized by multiple benign hamartomas in various organ systems as well as severe 

neurological symptoms including seizures. Mouse models of TSC have offered substantial 

insight into a number of disease phenotypes, such as epilepsy and altered neuronal 

differentiation [127-129]; however, almost all lack the hallmark cortical tubers [130-132], 

and those with focal lesions lack histopathologic findings, such as true giant cells and 

astrogliosis [133, 134]. Cortical organoid models with mutations in TSC1 or TSC2 have 

dysregulated mTORC1 signaling during neurogenesis, forming cortical tuber-like structures 

with large numbers of astrocytes, which can be attenuated with mTORC1 inhibition [135].

Malignant tumors.—Tumorigenesis is thought to be initiated by a series of genetic events 

leading to the gain of cancer hallmarks, such as uncontrolled proliferation and ability to 

invade normal tissues. Genetically defined models of cancer offer the opportunity to 

interrogate the relationship between specific mutations and tumorigenesis, as well as a tumor 

model with a defined and controlled genetic background. Introduction of a mutant HRas 

G12V by homologous recombination into the gene body of TP53 in cerebral organoids leads 

to generation of rapidly proliferative cells that invade and take over the entire organoid 

[136]. These cells demonstrate a mesenchymal gene expression signature and are 

tumorigenic and invasive upon orthotopic xenograft into immunodeficient mice. Another 

model features MYC overexpression and CDKN2A−/−/CDKN2B−/−/EGFROE/EGFRvIIIOE 

to yield rapidly proliferative cells that could expand and invade upon xenograft into 

immunodeficient animals [137]. These organoids responded to targeted therapies in a 

mutation-dependent manner, validating that these mutations were indeed driving tumor-like 

behavior and that these organoids could be used to study drug effects in the context of 

specific genomic variants.

Patient-derived models

Organoids generated from patient-derived cells and tissue may better recapitulate the genetic 

and cellular features of the originating parent tumor as compared with genetically 

engineered models. In one glioblastoma (GBM) organoid model, patient tissue is dissociated 

or minced and then embedded into Matrigel in the presence of EGF/bFGF to yield organoids 

that can be readily expanded and xenografted into immunodeficient mice [138]. These 

organoids responded to treatment with the MSI1 inhibitor, Luteolin, and Zika virus infection 

[139, 140]. In this same model, quiescent H2B-GFP cells were identified after doxycycline 

induction and long term chase periods and found to exhibit a mesenchymal-like gene 

expression pattern that was characterized by metabolic adaptions and extracellular matrix 

interactions as well as signatures of hypoxia and TGFP signaling [141]. A new GBM 

Zhang et al. Page 12

Semin Cell Dev Biol. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



organoid model was recently developed by cutting tumor tissue into small pieces that were 

cultured in a chemically defined medium without addition of EGF/bFGF or extracellular 

matrix [142, 143]. These organoids maintain cellular heterogeneity and exhibit many 

features similar to the original tumor, including histology, transcriptome, and genetic 

mutation landscapes. These organoids also show rapid and aggressive infiltration once 

transplanted into the brain of immunodeficient mice, and they have been used to test 

personalized treatment responses to targeted drug therapies and immunotherapy. Additional 

GBM organoid models have been developed by introducing GBM cells into 3-D printed 

neural organoids or iPSC-derived brain organoids [144-146]. By placing tumor cells within a 

neuroanatomically appropriate human microenvironment, these hybrid organoids may better 

recapitulate the intrinsic cellular states found in GBM [147]. The biology of GBM is heavily 

influenced by its microenvironment, and inclusion of these cellular components, either by 

preserving these cells from patient-derived tissue or by introducing them exogenously, will 

help to generate a more complete model of this disease.

Prospective

Brain organoids are a model system still in early phases of development, establishment, and 

application. Many methodology-oriented studies advocate for the inherent validity of brain 

organoids with a combination of imaging, transcriptomic, and electrophysiological analyses. 

This multifaceted approach is largely convincing; however, organoid data are rarely, if ever, 

a perfect match with existing datasets of the developing human brain. This is hardly 

surprising for numerous reasons, such as that organoids are generated in vitro without many 

essential components, including a blood supply and endothelial cell capillary network as 

well as functional immune system and microglia.

Complementing this first-principles approach, numerous studies have shown evidence of 

brain organoid empirical validity across a wide range of diseases. For example, brain 

organoids of congenital and infectious microcephaly show phenotypes of reduced organoid 

size and reduced progenitor proliferation, which are consistent with clinical observations and 

known disease processes [11]. As another example, patient-derived brain tumor organoids 

show in vitro drug sensitivity that is consistent with their genetic features and in vivo 
responses [142]. These kinds of empirical observations and clinical correlates contribute 

strongly to the evidence that these organoid models can recapitulate certain important 

aspects of the disorder with reasonable fidelity, and thus they lend confidence to the 

application of brain organoids in modeling neurological disorders.

Brain organoids offer some unique opportunities over other existing model systems, such as 

control over the genetic background, structural architecture, and intrinsic cell-type diversity. 

Stem cell technologies have allowed for access to human- and patient-specific samples, and 

ongoing studies, especially those of mental disorders without a known genetic etiology, 

would benefit from models derived from idiopathic cases. Organoid structure is well 

characterized by imaging methods as there are established immunohistochemical markers 

delineating key cytoarchitectural landmarks, and advancements in 3D volumetric imaging, 

such as those involving tissue clearing methods, may offer additional insights. The cellular 

diversity in brain organoids represents another unique advantage of this model system, and 

Zhang et al. Page 13

Semin Cell Dev Biol. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



advances in multi-modal and massively multiplexed single-cell technologies will allow for 

better characterization of the cell type-specific effects of different disease processes. 

Electrophysiology and network connectivity are less commonly examined in brain 

organoids, and future studies may benefit from specialized tools and instrumentation suitable 

for these relatively small 3D structures. Overall, advancements in analytical methods across 

a broad range of modalities will allow for better leveraging of the unique advantages and 

attributes of brain organoids. Correspondingly, the broadening repertoire of brain organoids 

across different developmental stages and specific brain regions will also help in the study of 

different neurological disorders within the best possible biological context.

In addition to these technical challenges that are currently being addressed by this rapidly 

growing field, brain organoids face some intrinsic limitations in modeling neurological 

disorders. Organoid models of neuropsychiatric disorders have so far been focused on the 

mechanistic connections between the underlying genetic alterations and the observed 

cellular and molecular changes. However, some of the major challenges are that these 

disorders can manifest in behavioral phenotypes that are likely impossible to assess in any in 
vitro system, and the broad clinical relevance of observed organoid phenotypes are unclear. 

Nonetheless, brain organoids already represent a major leap forward in modeling 

neurological diseases, and forthcoming innovations as well as growing application of this 

model system to a broad range of disease contexts will undoubtedly yield exciting new 

findings.
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Table 1.

Organoid models for congenital diseases with genetic etiologies

Disease
class Disease Mutation Patient derived/

genetically engineered References

Structural phenotypes

Microcephaly

ASPM (MCPH1) Patient-derived [21]

WRD62 (MCPH2) Genetically engineered [20]

CDK5RAP2 (MCPH3) Patient-derived [10]

CPAP (Seckel syndrome) Patient-derived [22]

CHMP1A (Microcephaly with 
pontocerebellar hypoplasia) Genetically engineered [23]

TREX1 (Aicardi-Goutières 
syndrome)

Patient-derived & 
Genetically engineered [24]

Lissencephaly

17p13.3 deletion (Miller-Dieker 
syndrome) Patient-derived [27, 28]

LIS1 Genetically engineered [31]

KATNB1 Genetically engineered [25]

TUBA1A Genetically engineered [26]

Periventricular 
heterotopia

PLEKHG6 Genetically engineered [32]

DCHS1 FAT4 Patient-derived & 
Genetically engineered [33]

Neuropsychiatric disorders

Schizophrenia

DISC1
Genetically engineered [40]

Patient-derived [18, 42]

16p13.11 microduplication Patient-derived [44]

FGFR1 Patient-derived [45]

Autism spectrum disorder

Idiopathic Patient-derived [47]

CHD8 Genetically engineered [48]

CACNA1C (Timothy syndrome) Patient-derived [49]

Intellectual disability
Trisomy 21 (Down syndrome) Patient-derived [57]

MECP2 (Rett syndrome) Patient-derived [58]

Other

Gangliosidosis

GLB1 (GM1 gangliosidosis) Genetically engineered [59]

HEXB (Sandhoff disease / GM2 
gangliosidosis) Patient-derived [60]

Pelizaeus-Merzbacher 
disease PLP1 Patient-derived [61]
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Table 2.

Organoid models for congenital diseases with environmental exposures

Disease
class Exposure References

Infection

Zika virus [11, 67, 68, 70-83, 148]

Japanese encephalitis virus [84]

Cytomegalovirus [86, 87]

Chemical agents & radiation

Hypoxia [89-91]

Alcohol [92]

Cocaine [93]

Nicotine [94]

5-MeO-DMT [95]

Tranylcypromine [102]

Imadazole antifungals [103]

Bisphenol A [11]

Gamma irradiation [104]
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Table 3.

Organoid models for neurodegenerative diseases

Disease Mutation
Patient derived/
genetically
engineered

References

Alzheimer's disease

APP duplication Patient derived

Patient derived [114]

PSN1 Patient derived [116]

Patient derived

Trisomy 21 Patient derived [115]

APOE4 Genetically engineered [117]

Genetically engineered [118]

Wild type with Aftin-5 treatment Patient derived [119]

Frontotemporal dementia MAPT Patient derived [121]

Huntington's disease HTT Patient derived [124]

Creutzfeldt-Jakob disease Wild type with
CJD brain homogenate exposure Patient derived [125]

Hereditary spastic paraplegia SPG11 Patient-derived [126]
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Table 4.

Organoid models for cancer

Disease Mutation Patient derived/
genetically engineered References

Tuberous Sclerosis TSC1 & TSC2 Genetically engineered [135]

Glioma

HRAS & TP53 Genetically engineered [136]

MYC, CDKN2A, CDKN2B, EGFR, EGFRvIII Genetically engineered [137]

Various Patient derived [138-142,
144-146]
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