Skip to main content
. Author manuscript; available in PMC: 2022 Jan 15.
Published in final edited form as: J Affect Disord. 2020 Sep 30;279:1–8. doi: 10.1016/j.jad.2020.09.113

Table 3.

The model performance.

Time Classifier AUROC Sensitivity Specificity Brier Score PPV NPV
WCM (development site)
12wk Logistics regression 0.921(0.893,0.949) 0.79 0.97 0.074 0.61 0.99
Random Forest 0.897(0.866,0.928) 0.80 0.97 0.054 0.60 0.99
Decision Tree 0.903(0.873,0.933) 0.83 0.96 0.045 0.59 0.99
XGboost 0.908(0.878,0.938) 0.82 0.97 0.068 0.60 0.99
MLP 0.921(0.893,0.949) 0.63 0.98 0.028 0.71 0.98
18wk Logistics regression 0.919(0.891,0.947) 0.79 0.97 0.074 0.61 0.99
Random Forest 0.897(0.866,0.928) 0.80 0.97 0.056 0.60 0.99
Decision Tree 0.890(0.858,0.922) 0.82 0.96 0.048 0.59 0.99
XGboost 0.902(0.872,0.932) 0.82 0.97 0.097 0.60 0.99
MLP 0.919(0.891,0.947) 0.63 0.98 0.028 0.71 0.98
24wk Logistics regression 0.922(0.895,0.949) 0.79 0.97 0.074 0.61 0.99
Random Forest 0.903(0.873,0.933) 0.80 0.97 0.057 0.60 0.99
Decision Tree 0.895(0.864,0.926) 0.83 0.96 0.048 0.59 0.99
XGboost 0.919(0.891,0.947) 0.83 0.96 0.082 0.57 0.99
MLP 0.920(0.892,0.948) 0.63 0.98 0.028 0.72 0.98
30wk Logistics regression 0.921(0.893,0.949) 0.79 0.97 0.074 0.61 0.99
Random Forest 0.914(0.885,0.943) 0.83 0.97 0.056 0.65 0.99
Decision Tree 0.887(0.855,0.919) 0.82 0.96 0.048 0.59 0.99
XGboost 0.912(0.883,0.941) 0.82 0.96 0.085 0.57 0.99
MLP 0.917(0.889,0.945) 0.64 0.98 0.028 0.72 0.98
Childbirth Logistics regression 0.937(0.912,0.962) 0.83 0.96 0.082 0.59 0.99
Random Forest 0.935(0.910,0.960) 0.84 0.96 0.067 0.57 0.99
Decision Tree 0.911(0.882,0.940) 0.87 0.96 0.052 0.55 0.99
XGboost 0.935(0.910,0.960) 0.87 0.94 0.101 0.46 0.99
MLP 0.933(0.907,0.959) 0.64 0.99 0.026 0.75 0.98
CDRN (validation site)
12wk Logistics regression 0.810(0.801,0.819) 0.70 0.85 0.150 0.24 0.98
Random Forest 0.788(0.779,0.797) 0.71 0.85 0.144 0.24 0.98
Decision Tree 0.790(0.781,0.799) 0.71 0.85 0.152 0.24 0.71
XGboost 0.789(0.780,0.798) 0.71 0.85 0.180 0.24 0.98
MLP 0.812(0.803,0.821) 0.65 0.87 0.111 0.26 0.97
18wk Logistics regression 0.817(0.808,0.826) 0.70 0.85 0.151 0.24 0.98
Random Forest 0.794(0.785,0.803) 0.72 0.84 0.145 0.24 0.98
Decision Tree 0.794(0.785,0.803) 0.72 0.84 0.152 0.24 0.98
XGboost 0.793(0.784,0.802) 0.72 0.85 0.180 0.25 0.98
MLP 0.817(0.808,0.826) 0.65 0.87 0.111 0.26 0.97
24wk Logistics regression 0.821(0.812,0.830) 0.71 0.85 0.152 0.25 0.98
Random Forest 0.800(0.791,0.809) 0.73 0.84 0.146 0.24 0.98
Decision Tree 0.799(0.790,0.808) 0.73 0.84 0.152 0.24 0.98
XGboost 0.798(0.789,0.807) 0.73 0.85 0.180 0.25 0.98
MLP 0.824(0.815,0.833) 0.64 0.88 0.110 0.27 0.97
30wk Logistics regression 0.824(0.815,0.833) 0.72 0.85 0.153 0.24 0.98
Random Forest 0.807(0.798,0.816) 0.74 0.84 0.148 0.24 0.98
Decision Tree 0.802(0.793,0.811) 0.73 0.84 0.152 0.24 0.98
XGboost 0.801(0.792,0.810) 0.73 0.84 0.181 0.25 0.98
MLP 0.827(0.818,0.836) 0.65 0.88 0.110 0.27 0.97
Childbirth Logistics regression 0.886(0.879,0.893) 0.80 0.84 0.158 0.26 0.98
Random Forest 0.860(0.852,0.868) 0.82 0.87 0.154 0.26 0.99
Decision Tree 0.856(0.848,0.864) 0.86 0.84 0.149 0.27 0.99
XGboost 0.864(0.856,0.872) 0.84 0.84 0.178 0.27 0.99
MLP 0.887(0.880,0.894) 0.66 0.88 0.105 0.28 0.97