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Abstract

Background: RNA viruses mutate at extremely high rates, forming an intra-host viral population of closely related variants,
which allows them to evade the host’s immune system and makes them particularly dangerous. Viral outbreaks pose a
significant threat for public health, and, in order to deal with it, it is critical to infer transmission clusters, i.e., decide whether
two viral samples belong to the same outbreak. Next-generation sequencing (NGS) can significantly help in tackling
outbreak-related problems. While NGS data is first obtained as short reads, existing methods rely on assembled sequences.
This requires reconstruction of the entire viral population, which is complicated, error-prone and time-consuming.

Results: The experimental validation using sequencing data from HCV outbreaks shows that the proposed algorithm can
successfully identify genetic relatedness between viral populations, infer transmission direction, transmission clusters and
outbreak sources, as well as decide whether the source is present in the sequenced outbreak sample and identify it.

Conclusions: Introduced algorithm allows to cluster genetically related samples, infer transmission directions and predict
sources of outbreaks. Validation on experimental data demonstrated that algorithm is able to reconstruct various
transmission characteristics. Advantage of the method is the ability to bypass cumbersome read assembly, thus eliminating
the chance to introduce new errors, and saving processing time by allowing to use raw NGS reads.
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Background
RNA viruses mutate at extremely high rates, forming an
intra-host viral population of closely related variants (or
quasi-species). Their high variability [1] allows them to
evade the host’s immune system and makes them par-
ticularly dangerous. Viral outbreaks pose a significant
threat for public health, and, in order to deal with it, it is
critical to infer transmission clusters, i.e., decide whether
two viral samples belong to the same outbreak.
The progress of sequencing technologies made it pos-

sible to identify and sample intra-host viral populations
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at great depth [2–7]. Consequently, contribution of se-
quencing technologies to molecular surveillance of viral
outbreaks becomes more and more substantial. Genome
sequencing of viral populations reveals similarities be-
tween samples, allows to measure viral genetic distance,
and to facilitate outbreak identification and isolation.
Computational methods can be used to infer transmis-
sion characteristics from sequencing data. MiSeq [8] is a
popuar NGS technology, that is used to sequence viral
samples and detect rare viral mutations. Since MiSeq
reads are short, their alignment and assembly for rapidly
mutating RNA viruses is error-prone and complicated,
which makes it appealing to develop an approach, that
will allow to skip alignment and assembly steps.
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In this paper, we apply an alignment- and assembly-
free k-mer strategy to viral sequencing data. This strat-
egy was initially introduced for analyzing NGS data in
metagenomic studies, where reads come from multiple
related and unrelated genomes (see [9]), as well as for
RNA-seq quantification [10].
Indeed, it is relatively fast and easy to extract k-mers

from reads, so that the complexity of viral distance
measurement changes from read alignment and assem-
bly to comparison of k-mer sets or distributions. Follow-
ing [9], we build a De Bruijn graph for each sample, and
then calculate Earth Mover’s Distance (EMD) between
two k-mer distributions.
We applied the k-mer strategy to the following epi-

demiological tasks (T1-T5), where T1-T2 are applied to
2 hosts, and T3-T5 are applied to multiple hosts.
T1. Identification of relatedness:
Given: NGS reads from hosts A and B
Decide: Whether A and B are related (whether they

belong to the same outbreak)
T2. Identification of transmission direction:
Given: NGS reads from hosts A and B
Decide: Whether host A infected B or B infected A
T3. Identification of transmission clusters:
Given: NGS reads from a set of hosts
Find: The transmission clusters corresponding to indi-

vidual outbreaks
T4. Presence of outbreak source:
Given: NGS reads from a set of hosts
Decide: Whether outbreak source is present among

sequenced hosts
T5. Identification of outbreak source:
Given: NGS reads from a set of hosts
Find: Outbreak source
Identifying whether 2 hosts belong to the same out-

break (T1) and transmission direction between them
(T2) are tasks, that have to be solved in order to find
Fig. 1 Algorithm pipeline. k-mer distributions for hosts, that need to be co
mean is obtained using k-mer distributions
trans- mission chains. Another important task is to
discover boundaries of an outbreak (T3). Once hosts,
that belong to an outbreak are obtained, it is critical
to design whether the source is among them (T4). Fi-
nally, identifying the main spreader of an outbreak
(T5) is a crucial epidemiological task, by solving
which outbreak spreading can be prevented.
We experimentally validated our approach on a data-

set, that consists of a collec- tion of HCV intra-host
populations, sampled from 368 infected individuals [11].
Outbreak collection contains:

� 175 HCV samples from 34 epidemiologically
curated outbreaks, reported to Centers for Disease
Control and Prevention in 2008–2013. Outbreaks
contain from 2 to 33 samples. Epidemiological
histories, including sources of infection, are
known for 11 outbreaks.

� Collection of 193 epidemiologically unrelated HCV
samples.

Obtained results are comparable with existing ap-
proaches [11, 12], but proposed algorithm is much fas-
ter, since it doesn’t rely on read assembly.
Methods
Our algorithms are based on finding the distance be-
tween populations using Earth Movers’ Distance (EMD)
between distributions of k-mers in NGS data. The gen-
eral pipeline of the algorithm (see Fig. 1) includes
obtaining k-mer distributions from NGS reads for corre-
sponding hosts and computing EMD between them. As
a result, we obtain mean of hosts A and B Mean(A, B)
and EMD EMD(A, B) between them. We first describe
how we find distances between k-mers and then describe
how we find distance between samples.
m- pared, are obtained from NGS reads. Then, EMD is computed and
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Finding distances between k-mers in the De Bruijn graph
k-mer refers to a substring of length k. In our work, we
use De Bruijn graph to calculate distance between k-
mers. De Bruijn graph is the graph, that is constructed
so that vertices represent every string over a finite alpha-
bet of length l, and edges are added between vertices
that have overlap of l − 1.
Once De Bruijn graph is constructed, distance between

k-mers can be calculated as a length of shortest path be-
tween corresponding vertices using breadth-first search
algorithm. In our algorithms, obtained graph is con-
verted to undirected be- fore shortest path computation.

Finding EMD between viral samples
Viral populations can be compared by comparing the
corresponding k-mer distri- butions using EMD. First, k-
mer distributions are obtained for each sample, so that
they contain all k-mers and normalized frequencies.
EMD is a method, that allows to evaluate dissimilarity

between two multi- dimensional distributions in some
feature space where a distance measure between single
features (ground distance) is given [13]. Distributions
can be represented as signatures - sets of clusters, so that
each cluster is represented by its mean and by the frac-
tion of distribution that belongs to that cluster. Compu-
tation of EMD is based on solving the transportation
problem, which can be formulated as following: for sev-
eral suppliers, each with a given amount of goods, sev-
eral consumers, each with limited capacity, and a cost of
transporting a single unit of goods between each
supplier-consumer pair, find a least-expensive flow of
Fig. 2 De Bruijn graph for 3-mers, obtained from sequences CGATTCTAAGT
are re- moved and pairwise distances are computed for all k-mers (c)
goods from the suppliers to the consumers that satisfies
the consumers’ demand. EMD is calculated as the fol-
lowing: EMDðP;QÞ ¼ Σm

i¼1Σ
n
j¼1 f ijdij where fij is the

minimum-cost flow between supplier i and consumer j,
and dij is the distance between i and j.
It should also be noted that EMD is usually normal-

ized by the total flow, but we perform but we perform
normalization of frequencies in k-mer distributions be-
fore EMD computation, which results in total flow al-
ways being equal to 1.
Example of EMD computation
Constructing of the De Bruijn graph between two se-
quences CGATTCTAAGT and CGATTGTAAGT is
shown on Fig. 2. Once original graph is obtained, direc-
tions are removed and pairwise distances are computed
for all k-mers. Figure 3 describes an example of k-EMD
distance computation. After k-mer distributions are gen-
erated for input sequences, EMD is computed as the
work, where fij is the flow between histogram(k-mer dis-
tribution) elements i and j and dij is the corresponding
distance between k-mers, which is obtained from De
Bruijn graph (Fig. 2). This way, EMD = 0.88.
and CGATTGTAAGT . Once original graph is obtained (a), directions (b)
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Mean k-mer distribution
Representing samples as k-mer distributions allows to
estimate the center from a group of samples by introdu-
cing a mean host. We use the maximum mean k-mer
distribution, which is obtained by finding the maximum
observed frequency for each.

k −mer ki f
max
i ¼ max1≤ i≤n f i and normalization f

0
j

¼ f max
iX

1≤ i≤n

f max
i

:

Identification of relatedness
We train out algorithm on all given outbreaks and ob-
tain minimal EMD between 2 unrelated hosts, which we
use as a threshold t. To identify whether 2 hosts A and
B are related, we compute EMD between them EMD(A,
B) and predict that they are related if EMD(A, B) < t,
and unrelated otherwise.

.Identification of transmission direction between hosts
To infer transmission direction between a pair of sam-
ples X and Y, we first compute a mean host Mean(A, B).
Fig. 3 Finding EMD distance between k-mers of sequences CGATTCTAAG a
sides. Dashed lines represent transportation flow between k-mers; correspo
represent distance between corresponding k-mers in the De Bruijn graph
Once Mean(A, B) is obtained, we calculate EMD be-
tween mean host and hosts A and B EMD(Mean(A, B),
A) and EMD(Mean(A, B), B). Host, that is closer to the
maximum mean is assumed to be the transmission
source, so that if EMD(Mean(A, B), A) < EMD(Mean(A,
B), B), we predict that the transmis- sion happened from
A to B (Fig. 4).
Identification of transmission clusters
To test hierarchical clustering, single-linkage algo-
rithm was used. This method eval- uates the similar-
ity of two clusters based on their most similar
members [14] and groups clusters in bottom-up order
until certain termination condition is satisfied. In our
algorithm, we use a distance criteria, so clusters are
merged until distance between them exceeds a pre-
defined distance threshold, which represents EMD be-
tween two closest unrelated samples in the dataset.
This way, we obtain a partition, where some of the
related hosts remain in different clusters. At this
point, we pro- ceed to the second stage of the algo-
rithm, that allows to improve the clustering quality by
merging the clusters, that contain related hosts by
performing the fol- lowing steps:
nd CGATTGTAAGT . The k-mer distributions are on the left and right
nding flow val- ues are shown in green. Red values on top of the lines



Fig. 4 Inference of transmission between hosts A and B. First, mean host Mean(A, B) is introduced. Then EMD is computed between Mean(A, B)
and hosts A and B. Finally, EMD(Mean(A, B), A) is compared with EMD(Mean(A, B), B). If EMD(Mean(A, B), A) < EMD(Mean(A, B), B), then transmission
direction is predicted as the one that happened from A to B
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1. For each cluster, obtained from hierarchical
clustering, compute center as the mean of all hosts
within the cluster;

2. For each center, obtained at the previous step:

– Find distances to the furthest in-cluster host and
closest host, that be- longs to the different cluster;

– If for cluster A there exists an ‘overlap’ (there is a
host from cluster B, that is closer to the center than
the furthest host, belonging to the same cluster (A)),
merge A and B

Example of the algorithm is demonstrated in Fig. 5. a)
shows output of threshold- based hierarchical clustering,
where circles represent hosts, that are connected with an
edge if distance between them doesn’t exceed a
Fig. 5 Example of overlap-based cluster merging. a Output of threshold-based hi
are connected with an edge if distance (EMD) between them doesn’t exceed a th
belong to the same outbreak, which means that some related hosts are treated a
the center of the circle, and radius is defined as the distance between mean host
since host X is closer to Mean 1 than furthest host in cluster 1. Therefore, clusters 1
threshold. There are 2 clusters that belong to the same
outbreak. b) shows how clusters are merged based on
circle overlap. For each cluster, mean host of all hosts
within the cluster is calculated (shown in the center).
Circles with dashed borders have centers in respective
mean hosts; their radiuses are calculated as distances be-
tween mean hosts and furthest in-cluster hosts. In the
example, Mean 1 is closer to host A that to the furthest
host from the same (left) cluster. This way, according to
our algorithm, intersecting clusters collapse.

Deciding whether source is present in a set of hosts
To decide whether source is present in a set of se-
quenced hosts S, the following algorithm is applied:

1. Calculate mean Mean(S) for all hosts within an
outbreak;
erarchical clustering, where circles represent hosts (k-mer distributions), that
reshold (so that no unrelated hosts are connected). There are 2 clusters that
s unrelated. b For each cluster, circles were build, so that mean hosts reside in
and furthest host in an outbreak. Circle of cluster 1 intersects with cluster 2
and 2 are merged



Fig. 6 Deciding whether source is present in a given set of hosts. Here, every circle represents a host, belonging to an outbreak, and green circle
represents mean. Edges represent distances between mean hosts and hosts in an outbreak. If there is a host, that is close to mean (so that the
distance is smaller than a threshold, case (a)), we conclude, that source is present in an outbreak. Otherwise, analyzed set of hosts doesn’t include
the outbreak source (case (b))
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2. For every host H, calculate EMD between H and
mean Mean EMD(Mean(S), H);

3. If there exists a host, for which EMD(Mean(S),
H) < t, source is present. To obtain threshold t, we
train the algorithm on all outbreaks with known
sources. For every such outbreak, we first calculate
the mean host Mean(S) and distances between
mean and every host H in the outbreak
EMD(Mean(S), H), find the smallest distance and
normalize it by the median distance from mean to
host in an outbreak. After this, we repeat the
procedure for the same outbreak, but discard the
source. We define t as the minimal EMD(Mean(S),
H) for an outbreak without source, which
maximizes accuracy, so that outbreaks, where
source is present, have EMD(Mean(S), H) < t.
Source identification
To identify sources, we find a maximum mean host for
an outbreak Mean and cal- culate EMD between every
host and Mean. Host with minimum EMD(H, Mean) is
assumed to be the source.
Runtime complexity
The algorithm uses Pele and Werman’s [15, 16] algo-
rithm for fast EMD computation, which has a runtime
complexity of O(N 2UlogN), where N is the number of
nodes (k-mers), and U is an upper bound on the largest
supply (flow) of any node (since frequencies are normal-
ized, this is equal to 1). This way, k – mer EMD has a
worst time complexity of O(N 2logN).
Table 1 Outbreaks with known sources

Outbreak AA AC AI AJ AQ AW BA BB BC BJ NH

# samples 3 4 15 3 9 19 6 7 2 4 33
Results
We validated our new algorithm on a publicly available
dataset obtained from an epidemiological study of HCV
outbreaks [11] Fig. 6.
Data sets
The data consists of 368 sequenced hosts where 175 of
them belong to 34 annotated outbreaks. Among these
annotated outbreaks, 11 have a known main spreader
(Table 1). All outbreaks contain from 2 to 33 hosts.
Every host is represented as an HCV intra-host popula-
tion, obtained with end-point limiting-dilution (EPLD).
All viral sequences represent a fragment of E1/E2 gen-
omic region of length 264 bp. Data samples annotation
consists of host and outbreak id along with abundance
for every sequence. This way, we were able to interpret
obtained experimental results.
We simulated MiSeq reads from known haplotypes by

SimSeq [17] and created mixtures using abundances
from original data.

Validation
Identification of relatedness
Viral populations from two samples are genetically re-
lated if they belong to the same outbreak and unrelated,
otherwise. The genetic relatedness is validated on the
union of both collections containing all outbreaks and
unrelated samples. There are 67,528 host pairs (obtained
from all 368 hosts). Among these pairs, 1007 represent
related cases (so that both hosts in pair belong to the
same annotated outbreak). We used EMD as predictor
for relatedness. We measured the sensitivity of our
method as following. First we determining the EMD
value for all unrelated pairs, the mini- mum value we
have chosen as a threshold which prohibits false-positive
relatedness detection, the pairs which have EMD below
the threshold are considered as related. Precision of our
algorithm is 100%. We calculated the recall as a propor-
tion of cor- rectly predicted related pairs among all



Table 2 Validation results. k-EMD was tested on a dataset, that includes 34 out- breaks; MinDist, ReD and VOICE were validated
earlier on a smaller dataset, that didn’t include one of the outbreaks. For convenience, results for k-EMD contain 2 values - one for
the smaller dataset, and one for the entire (34 outbreaks) set of hosts (values in parentheses)

Method k-EMD MinDist MinDistB ReD VOICE-D VOICE-S

Relatedness sensitivity, % 80.4 (90) 90 92.9 55.3 85.2 86.8

Clustering sensitivity, % 100 (100) 100 100 96.3 98.2 98.2

Direction accuracy, % 88.7 (90.4) N/A N/A 87.1 83.9 87.1

Source accuracy, % 80 (81.8) 50 40 90 80 90
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known related pairs. Results are described in Table 2.
Relatedness ROC is shown on Fig. 7.

Identification of transmission direction between hosts
Performance of algorithm when identifying transmission
direction was calculated as a ratio of pairs of hosts with
correctly predicted directions to all host pairs, where dir-
ection is known. Results are shown in Table 2.

Identification of transmission clusters
Precision for our algorithm is equal to 100%, since we
don’t merge hosts from different outbreaks. Similarities
between true and estimated partitions were evalu- ated
using an editing metric [18]. Given metric is defined as
the minimum number of elementary operations, re-
quired to transform one partition into another, such as
joining or partition of clusters [18]. Clustering recall was
calculated similarly to [12], so that editing distance E
was normalized by dividing it by the number of elemen-
tary operations N, required to transform trivial partition
into singleton sets into true partition, which is equal to
n − k, where n is the number of samples and k is the
number of true clusters [12]:
Fig. 7 ROC curve for prediction of source presence. AUROC = 0.8
Recall ¼ E
n − k

� 100%

Deciding whether outbreak source is present
Source presence recall was calculated as the proportion
of outbreaks with present source, that were correctly
identified as such; precision - as the proportion of cor-
rectly identified outbreaks, where source is not present.
Finally, specificity was cal- culated as the total number
of outbreaks with present source, divided by the sum of
total number of outbreaks with present source and the
number of outbreaks, that were incorrectly identified to
have a source present. For our algorithm, precision =
90%, specificity = 80%, and recall = 85%. ROC curve for
source presence detection is shown on Fig. 8.

Identification of outbreak sources
Source identification accuracy is calculated as the per-
centage of outbreaks with correctly predicted sources for
outbreaks with known sources. ROC curve for source
presence detection is shown on Fig. 9.

Conclusions
Extracting haplotypes by EPLD is laborious and costly
procedure and that pro- hibits previously developed
Fig. 8 Relatedness prediction ROC curve for analyzed methods



Fig. 9 k-EMD ROC curve for source prediction. AUROC = 0.72
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methods [12] from wide spread. On the other hand, viral
samples can be easily sequenced by NGS, and that
makes our novel method attractive. Furthermore, we can
see that results in this article are comparable with those
which were obtained using EPLD technology [12]. More-
over, our method al- lowed to decide whether the
spreader get sequenced.
Application of molecular viral analysis to investiga-

tion of outbreaks and infer- ence of transmission net-
works is a promising technique, that is available
nowadays. However, it generates novel computational
challenges. Given work introduced an algorithm for
investigation of viral transmissions, that is based on
analysis of the intra-host viral populations through k-
mer decomposition. Proposed approach al- lows to
cluster genetically related samples, infer transmission
directions and predict sources of outbreaks. Valid-
ation on experimental data demonstrated that algo-
rithm is able to reconstruct various transmission
characteristics. It should be noted that even though
there is still room for improvement when it comes to
algorithm perfor- mance, advantage of the method is
the ability to bypass cumbersome read assembly, thus
eliminating the chance to introduce new errors, and
saving processing time by allowing to use raw NGS
reads.
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NGS: Next-generation sequencing; EMD: Earth mover’s distance;
HCV: Hepatitis C virus; RNA: Ribonucleic acid; EPLD: End-point limiting-
dilution; ROC: Receiver operating characteristic
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