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Background
Protein–protein interactions (PPI) play an important role in understanding func-
tional properties of proteins and their potentials as biomarkers. Predicting interac-
tions between proteins is a crucial step in many bioinformatics applications such as 
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identifying drug–target interactions [1, 2], construction of PPI networks (PPIN) [3–5], 
and detection of functional modules [6, 7]. The task aiming at predicting interactions 
between proteins is often termed as PPI prediction [8, 9].

PPI prediction is a well investigated problem in bioinformatics; for example, Struct-
2Net was used to integrate the structural information for PPI prediction [10, 11], 
PSOPIA leveraged on sequence information for PPI prediction [12], and several other 
research [9, 13–18]. However, these methods implicitly assume that known interactions 
between proteins are perfect and focus mainly on prediction task using existing PPIN 
that are incomplete and contain missing and spurious PPI, affecting their applications. A 
few existing PPI prediction methods have considered missing and spurious (i.e., errone-
ous) interactions of PPIN.

To address issues of incompleteness and spuriousness, we define two specific tasks on 
PPIN: (i) missing PPI prediction and (ii) spurious PPI prediction. For the missing PPI 
prediction, we treat a real PPI dataset as the ground-truth PPI dataset, remove PPIs ran-
domly, and attempt to predict them as missing PPI. The goal of missing PPI prediction is 
to see whether we could correctly predict the missing PPI. For the spurious PPI predic-
tion, we add some PPIs to the ground-truth PPI dataset, treat them as spurious PPIs, and 
try to predict them. The goal of spurious PPI prediction is to see the extent of correctly 
predicting the spurious PPIs.

The majority of PPI prediction methods leverage on the information from Gene 
Ontology (GO) that provides a set of structured and controlled vocabularies (or terms) 
describing gene products and molecular properties [19]. Proteins are generally anno-
tated by a set of GO terms [20, 21]. For example, the protein “Q9NZJ4” is annotated 
by the following GO terms: “GO:0003674”, “GO:0005524”, “GO:0005575”, “GO:0006457”, 
“GO:0006464”, and “GO:0031072”. Based GO term-protein annotations, many research 
have employed information content (IC) of GO terms [22–25] to compute similar-
ity between two proteins in order to predict PPI. These methods have succeeded in the 
development of protein-related tasks, including PPI prediction [26–33]. Despite their 
success, IC-based methods have been unable to fully capture functional properties of 
proteins and structural properties of PPIN.

Recently, several researchers have proposed word embeddings (e.g., word2vec [34] and 
GloVe [35]), which have been developed in the area of natural language processing, to 
learn vector representations of GO terms and proteins and then used learned vectors for 
the PPI prediction [36–39]. These methods mainly use the word2vec model [34] to learn 
vectors for each word from the corpus derived from descriptive axioms of GO terms and 
proteins; the descriptive axiom of a GO term is its textual description, for example, the 
descriptive axiom of the GO term “GO:0036388” is “pre-replicative complex assembly.” 
Then, the learned word vectors are combined into vectors of GO terms and proteins, 
according to the words in the descriptive axioms of GO terms and proteins. Finally, the 
vectors of proteins are used to predict the protein interactions. We have earlier proposed 
GO2Vec [39] that convert the GO graph into a vector space to represent genes for pre-
dicting their similarity.

Extending our previous work [39, 40], in this paper, we propose to derive graph 
embeddings to transform GO annotation (GOA) graph into their vector represen-
tations in order to predict missing and spurious PPI. Specifically, using GOA, our 
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method first combines term–term relations between GO terms and term-protein 
annotations between GO terms and proteins, and then constructs an undirected and 
unweighted graph; this constructed graph is called the GOA graph. Thereafter, node-
2vec model [41], one of graph embedding models, is applied on the GOA graphs to 
transform the nodes (including GO terms and proteins) into their vector representa-
tions. By taking GOA for embeddings instead of GO, we take information on how 
gene functions are related in individual proteins. Finally, learned vectors of GO terms 
and proteins with the cosine distance and the modified Hausdorff distance [42] meas-
ures are used to predict missing and spurious PPI.

Our method can capture the structural information connecting the nodes in the 
entire GOA graph. On one hand, when compared with structure-based IC methods 
that mainly consider the nearest common ancestors of two nodes, graph embeddings 
take into account the information from every path between two nodes. Graph embed-
dings therefore can fully portray the relationship of two nodes in the entire graph. 
On the other hand, when compared with the corpus-based methods, including the 
traditional IC based methods and word embedding based methods, graph embed-
dings can employ the expert knowledge (e.g., term–term relations and term-protein 
annotations) stored in the graphical structure. In our experiments, we used the node-
2vec model [41] as the representative of graph embedding techniques. The node2vec 
model adopts a strategy of random walk over an undirected graph to sample neigh-
borhood nodes for a given node and preserves both neighborhood properties and 
structural features.

To evaluate the quality of our proposed methods in addressing the issues of missing 
and spurious PPIs, we conducted experiments on three PPI datasets (i.e., HUMAN, 
MOUSE, and YEAST) from the STRING database [43], considering three GO catego-
ries, i.e., Biological Process (BP), Cellular Component (CC), and Molecular Function 
(MF), with the GO annotations collected from the UniProt database [44]. We compared 
our methods with representative IC-based methods including Resnik [24], Lin [23], Jang 
and Conrath [22], simGIC [25], and simUI [45], and a recent corpus-based vector rep-
resentation method Onto2Vec [36]. Experimental results demonstrate the effectiveness 
of our methods over existing methods in both missing and spurious PPI predictions. 
We conclude that combining term–term relations between GO terms and term-protein 
annotations between GO terms and proteins by using GOA graph embeddings accu-
rately represents gene in the Euclidean space reflecting their functional properties.

Results
Preliminary task definitions

In this paper, we consider two kinds of PPI prediction tasks, namely missing PPI pre-
diction and spurious PPI prediction. Figure 1 illustrates the constructions of missing 
PPIs and spurious PPIs. Graph (a) is given by a real-world PPI dataset and is treated 
as the ground-truth PPI graph. Graph (b) is derived from Graph (a) by removing some 
PPIs and these removed PPIs are treated as missing PPIs. Graph (c) is also derived 
from Graph (a), but instead of removing PPIs, some PPIs are added to Graph (a) and 
these added PPIs are treated as spurious PPIs.
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Missing PPI prediction

Given a ground-truth PPI graph with some PPI removed (e.g., Graph (b)), the goal of 
missing PPI prediction is to predict whether these removed PPIs are missing PPI.

Spurious PPI prediction

Given a ground-truth PPI graph with some PPIs added (e.g., Graph (c)), the goal of 
spurious PPI prediction is to predict whether these added PPIs are spurious PPI.

Experimental results

We conducted experiments on missing PPI prediction and spurious PPI prediction 
tasks and evaluated the performance in comparison with representative IC-based 
methods including Resnik [24], Lin [23], Jang and Conrath [22], simGIC [25], and 
simUI [45]), and recent corpus-based vector representation method Onto2Vec [36] 
on three PPI datasets (HUMAN, MOUSE, and YEAST) from the STRING database 
[43].

Table 1 reports overall performance of our proposed methods and existing methods 
for missing PPI prediction task. Table 2 reports overall performance of our models and 
existing methods for spurious PPI prediction. For each PPI dataset, different GO catego-
ries were used and best values are highlighted in italics.

Missing PPI prediction

As seen from Table 1, cosine distance (cos), modified Hausdorff distance (mhd), and 
Support Vector Machines (svm) achieved the best results on the missing PPI predic-
tion compared to IC-based methods and corpus-based vector representation method 
on all the three PPI datasets. This indicates that graph embeddings can capture 
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p3
p4

p5 p6

(a) Ground-truth (b) Removed interactions 
as missing PPIs

(c) Added interactions as 
spurious PPIs

Fig. 1  Illustration of missing and spurious PPI predictions. a The ground-truth PPI graph derived from a 
real-world PPI dataset where nodes are the proteins and edges represent PPI. b A derived PPI graph, with two 
PPIs (indicated by the blue dashed edges) removed from a, and is used for missing PPI prediction where the 
blue dashed edges are missing PPIs. c A derived PPI graph, with two PPIs (indicated by the red bold edges) 
added to a and is used for spurious PPI prediction where the red bold edges are spurious PPIs
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structural information from GOA graphs and functional properties of proteins effec-
tively, which is useful for many applications including predicting the missing PPI.

Particularly, our proposed methods significantly outperform the traditional IC-
based methods; the possible reason is that the IC-based methods consider only the 
information from the partial or local structure of a graph while GOA2Vec(cos), 
GOA2Vec(mhd), and GOA2Vec(svm) take into account the information from both the 
local and global structure of the GOA graphs, which incorporates the knowledge of 
both term–term relations between GO terms and term-protein annotations between 
GO terms and proteins. GOA2Vec(cos), GOA2Vec(mhd), and GOA2Vec(svm) on 
GOA embeddings also outperform the corpus-based vector representation method 
Onto2Vec. The may be due to the reason that GO and GOA represent more domain 
knowledge about genes, proteins, and their functionalities, than those represented by 
existing document composes.

Let us compare the performances of GOA2Vec(cos), GOA2Vec(mhd), and 
GOA2Vec(svm) classifications. GOA2Vec(svm) achieved better performance than 
GOA2Vec(cos) and GOA2Vec(mhd). The possible reason is that svm may have treated 
the problem as a binary classification, leveraging on the classification based on the 
largest margin between support vectors. Our experimental results also justify the use-
fulness of the functional annotation relationships between GO terms and proteins.

Table 1  AUC-ROC values for missing PPI prediction

GO refers to ontology type used

GO Model Human Mouse Yeast

BP Resnik 0.8257 0.8154 0.8224

Lin 0.8065 0.7831 0.7752

Jang and Conrath 0.7973 0.7694 0.7610

simGIC 0.8147 0.7775 0.7914

Onto2Vec 0.8458 0.8316 0.8416

GOA2Vec (cos) 0.8513 0.8419 0.8674

GOA2Vec (mhd) 0.8676 0.8527 0.8718

GOA2Vec (svm) 0.8814 0.8728 0.8889

CC Resnik 0.7776 0.7826 0.7916

Lin 0.7165 0.7251 0.7435

Jang and Conrath 0.7134 0.7295 0.7201

simGIC 0.7658 0.7761 0.7715

Onto2Vec 0.7984 0.8016 0.8068

GOA2Vec (cos) 0.8027 0.8196 0.8035

GOA2Vec (mhd) 0.8237 0.8349 0.8146

GOA2Vec (svm) 0.8396 0.8517 0.8358

MF Resnik 0.7934 0.7815 0.7916

Lin 0.7335 0.7428 0.7432

Jang and Conrath 0.7129 0.7349 0.7216

simGIC 0.7618 0.7796 0.7794

Onto2Vec 0.7953 0.7954 0.8059

GOA2Vec (cos) 0.8115 0.8145 0.8243

GOA2Vec (mhd) 0.8223 0.8316 0.8253

GOA2Vec (svm) 0.8397 0.8608 0.8411
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Spurious PPI prediction

As seen from Table  2, GOA2Vec(cos), GOA2Vec(mhd), and GOA2Vec(svm) outper-
formed both the IC-based methods and the corpus-based vector representation method 
on almost all the datasets except on the YEAST PPI dataset using the MF ontology. Simi-
lar to the performance on missing PPI prediction, this indicates again that graph embed-
dings can capture useful information from the structure of GOA graphs for the spurious 
PPI prediction, and that both the learned vectors of proteins and the ones of GO terms 
are effective for the spurious PPI prediction. In addition, GOA2Vec(svm) performed 
better than GOA2Vec(cos) and GOA2Vec(mhd) on spurious PPI prediction. This justi-
fies again importance of considering the relationships between GO terms and proteins 
(term-protein annotations) in representing the proteins.

Discussion
We find that using undirected graphs achieves better performance than using directed 
graphs does in this task. Tables  3 and  4 report comparisons between our proposed 
methods using undirected graphs and the ones using directed graphs for the missing 
and spurious PPI predictions. We can see that the methods that use undirected graphs 
perform much better than the corresponding methods that use directed graphs. The 

Table 2  AUC-ROC values for spurious PPI prediction

GO refers to the ontology used

Onto Model Human Mouse Yeast

BP Resnik 0.8243 0.7935 0.7917

Lin 0.7758 0.7514 0.7572

Jang and Conrath 0.7494 0.7427 0.7348

simGIC 0.7965 0.7638 0.7823

Onto2Vec 0.8426 0.8167 0.8051

GOA2Vec (cos) 0.8613 0.8207 0.8324

GOA2Vec (mhd) 0.8725 0.8439 0.8467

GOA2Vec (svm) 0.8809 0.8613 0.8654

CC Resnik 0.7827 0.7758 0.8016

Lin 0.7334 0.7364 0.7452

Jang and Conrath 0.7157 0.7296 0.7291

simGIC 0.7608 0.7710 0.7776

Onto2Vec 0.8016 0.7913 0.7935

GOA2Vec (cos) 0.8191 0.8142 0.8117

GOA2Vec (mhd) 0.8360 0.8207 0.8254

GOA2Vec (svm) 0.8415 0.8427 0.8394

MF Resnik 0.7903 0.7817 0.7834

Lin 0.7317 0.7298 0.7265

Jang and Conrath 0.7186 0.7215 0.7184

simGIC 0.7636 0.7716 0.7716

Onto2Vec 0.8137 0.7903 0.8216

GOA2Vec (cos) 0.8116 0.8134 0.8177

GOA2Vec (mhd) 0.8209 0.8275 0.8194

GOA2Vec (svm) 0.8367 0.8416 0.8385
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possible reason is that the node2vec model we use in this paper adopts a strategy of 
random walk over an undirected graph to sample neighborhood nodes for a given 
node and this strategy works better on undirected graphs than on directed graphs.

Table 3  AUC-ROC values between  our method between  using undirected graphs 
and using directed graphs for missing PPI prediction

“d” stands for directed graph

GO Model Human Mouse Yeast

BP svm 0.8814 0.8728 0.8889

mhd 0.8676 0.8527 0.8718

cos 0.8513 0.8419 0.8674

d_svm 0.8354 0.8167 0.8279

d_mhd 0.8134 0.8038 0.8295

d_cos 0.8027 0.7924 0.8246

CC svm 0.8396 0.8517 0.8358

mhd 0.8237 0.8349 0.8146

cos 0.8027 0.8196 0.8035

d_svm 0.7968 0.8102 0.7991

d_mhd 0.7837 0.8001 0.7766

d_cos 0.7712 0.7931 0.7613

MF svm 0.8397 0.8608 0.8411

mhd 0.8223 0.8316 0.8253

cos 0.8115 0.8145 0.8243

d_svm 0.7954 0.8196 0.8007

d_mhd 0.7884 0.7765 0.7835

d_cos 0.7716 0.7664 0.7769

Table 4  AUC-ROC values between  different methods between  using undirected graphs 
and using directed graphs for spurious PPI prediction

“d” stands for directed graph

GO Model Human Mouse Yeast

BP svm 0.8809 0.8613 0.8654

mhd 0.8725 0.8439 0.8467

cos 0.8613 0.8207 0.8324

d_svm 0.8369 0.8194 0.8207

d_mhd 0.8203 0.8034 0.8101

d_cos 0.8167 0.7908 0.7964

CC svm 0.8415 0.8427 0.8394

mhd 0.8360 0.8207 0.8254

cos 0.8191 0.8142 0.8117

d_svm 0.8127 0.7961 0.7985

d_mhd 0.8002 0.7834 0.7749

d_cos 0.7763 0.7771 0.7746

MF svm 0.8367 0.8416 0.8385

mhd 0.8209 0.8275 0.8194

cos 0.8116 0.8134 0.8177

d_svm 0.7912 0.8027 0.7823

d_mhd 0.7768 0.7824 0.7658

d_cos 0.7834 0.7739 0.7549
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Conclusions
In this paper, we employ graph embeddings to project Gene Ontology annotation 
graphs into vectors so as to predict the protein–protein interactions. We evaluate our 
method against traditional IC-based methods and a recent corpus-based word embed-
ding method in the tasks of missing and spurious PPI predictions. Experimental results 
justify the effectiveness of our method to learn vectors from GOA graphs and the useful-
ness of the information of GO annotations for PPI predictions.

Methods
Figure 2 illustrates our method of missing and spurious PPI predictions, which consists 
of three components: (1) GOA graph construction, (2) transformation of GOA graph to 
vector representations, and (3) prediction of missing and spurious PPI.

GOA graph construction

A GOA graph (or GO annotation graph) is an undirected and unweighted (or binary) 
graph, constructed from the GO and GOA. Specifically, we combine term–term rela-
tions between GO terms and term-protein annotations between GO terms and proteins 
together to form an undirected and unweighted graph where the nodes include both the 
GO terms and proteins, and the edges include both term–term relations and term-pro-
tein annotations.

Although GO is a directed acyclic graph (DAG) and transforming directed edges 
to undirected edges might result in a loss of some information, we found that graph 
embeddings working on undirected graphs achieved better performance than utilizing 
them on directed graphs. That is probably because the node2vec model we used adopts a 
strategy of random walks to sample neighborhood nodes, and such strategy works better 
on undirected graphs than on directed graphs. Therefore, in this paper, we constructed 
the GOA graph as an undirected graph by simply setting directed edges as undirected 
edges.

GOA graph to vector representations

There are several graph embedding models that can be used to transform a graph to a 
vector space such as DeepWalk [46], LINE [47], and node2vec [41]. In our experiments, 

v1= [v11, v12, …, v1k]
v2= [v21, v22, …, v2k]
v3= [v31, v32, …, v3k]

...
v7= [v71, v72, …, v7k]

w1= [w11, w12, …, w1k]
w2= [w21, w22, …, w2k]
w3= [w31, w32, …, w3k]
w4= [w41, w42, …, w4k]

t1

t2 t3

t4
t5 t6 t7

node2vec

mhd(Vi, Vj)

cos(wi, wj)

Missing PPI Prediction

Spurious PPI Prediction

p1

p2 p3

p4

Gene Ontology

GO Annotations

svm(wi, wj)

Fig. 2  Steps involved in our method of PPI prediction. Firstly, GO and GOA are combined together to 
construct an undirected and unweighted GOA graph. The node2vec model is then applied on the GOA 
graph to transform the nodes to their vector representations. Finally, the learned vectors are used for the tasks 
of missing and spurious PPI predictions. ti denotes a GO term and vi = (vij) denotes its k-dimensional vector, 
pm denotes a protein m and wm = (wmn) denotes its k-dimensional vector representing protein. Vm denote a 
set of vectors of GO terms that annotate the protein
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we found that the node2vec model works better in our datasets than other models and 
therefore node2vec was used to convert GOA graph into the Euclidean space. To make 
our paper self-contained, in what follows, we briefly introduce the node2vec model.

The node2vec model

Let (N, E) denote a graph, in which N indicates the set of nodes and E ⊆ (N × N ) indi-
cates the set of edges. The primary goal of node2vec is to learn a projecting function 
f : N → R

k and transform these nodes to a set of vector representations in the space 
R
k , where k indicates the dimensions of that space. f can be denoted by a matrix with the 

size |N | × k . For a node n ∈ N  , Nb(n) ⊂ N  indicates the set of n’s neighbourhood nodes, 
which are generated via a sampling method.

The node2vec model tries to optimize the log-probability of a set of observed neigh-
borhood Nb(n) for the node n, conditioned on its vector representation; this optimiza-
tion problem is defined by Eq. (1).

To resolve this optimization problem, node2vec assumes conditional independence and 
symmetry in the feature space.

The conditional independence assumes that given the vector representation of a node 
n, the likelihood of observing a neighborhood node n′ does not depend on any other 
observed neighborhood node. This assumption is denoted by Eq. (2).

The symmetry in feature space assumes that the source node n and its neighborhood 
node n′ share a symmetric impact on each other in the feature space. This assumption is 
denoted by Eq. (3).

Given these two assumptions, Eq. (1) is transformed to Eq. (4):

For a source node n, node2vec simulates a random walk of the length l. Let ci represent 
the i-th node in the walk and start with c0 = t . The node ci is simulated by the following 
strategy:

where πnx denotes the transition probability between the nodes n and x; Z denotes a 
normalizing constant. For more details about the node2vec model, please refer to its 
original paper [41].

(1)max
f

∑

n∈N

log P(Nb(n)|f (n))

(2)P(Nb(n)|f (n)) =
∏

n′∈Nb(n)

P(n′|f (n))

(3)P(n′|f (n)) =
exp(f (n′) · f (n))

∑

n′′∈N exp(f (n′′) · f (n))

(4)maxf
∑

n∈N

(

∑

n′∈Nb(n)
f (n′) · f (n)−

∑

n′′∈N
exp(f (n′′) · f (n))

)

(5)P(ci = x|ci−1 = n) =

{

πnx
Z if (n, x) ∈ E
0 otherwise
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Missing and spurious PPI predictions

After applying the node2vec model on the GOA graph for transformation, we get the 
vector representations for the GO terms and proteins. Specifically, each of GO terms 
and proteins is denoted by a k-dimensional vector. There are two ways to use these 
learned vectors to predict missing and spurious PPIs. One is to directly use these learned 
vectors of proteins; the other way is to use these learned vectors of GO terms.

Using learned vectors of proteins

Let ws and wt represent the learned vectors of protein ps and pt . The similarity between 
two proteins sim(ps, pt) can be calculated by the cosine distance cos(ws,wt) of their vec-
tor representations ws and wt , defined by Eq. (6).

Besides the cosine distance, we also apply a support vector machine (SVM) on the 
learned vectors of proteins to train a classifier and treat the protein–protein interac-
tion prediction as a binary classification problem. The two vectors ws and wt are used 
as input for the SVM classifier to classify the input to either 0 or 1 class, indicating pres-
ence or absence of an interaction. This method is denoted by svm(ws,wt) or simply svm.

Using learned vectors of GO terms

Since a protein is annotated by one or more GO terms, the protein p can be viewed as a 
set of its annotated GO terms. Let Ns and Nt represent the set of GO terms that annotate 
protein ps and pt , respectively. To calculate the similarity between proteins ps and pt , we 
can compute the similarity between their sets of GO terms, i.e., Ns and Nt . Because a set 
of GO terms can be denoted by a set of its corresponding vectors, the similarity between 
two proteins can be calculated by the distance of these two sets of vectors. Let Vs repre-
sent the set of vectors corresponding to Ns , and let Vs represent the set of vectors that 
correspond to Nt . The similarity between two proteins sim(ps, pt) can be derived from 
the similarity between two sets of vectors sim(Ns,Nt) , given by the distance between 
their corresponding sets of vectors dist(Vs,Vt):

There exists several ways to calculate the distance or similarity between two sets of vec-
tors [28, 48]. In our experiments, we found that the modified Hausdorff distance [42] 
performed better than the simple linear combination of vectors. In this paper, therefore, 
we used the modified Hausdorff distance to calculate the distance between two sets of 
vectors for the similarity between two proteins.

For two data points in the Euclidean space, suppose that dist denotes the distance of 
the two data points in that space. A small dist indicates that the two data points are close. 
After GO terms are transformed into vectors, the dist(vi, vj) score indicates the spa-
tial relationship between their corresponding GO terms ni and nj . In our experiments, 
dist(vi, vj) is simply defined by the cosine distance. We used a variant of the modified 

(6)sim(ps, pt) = cos(ws,wt) =
ws · wt

�ws��wt�

(7)sim(ps, pt) = sim(Ns,Nt) = dist(Vs,Vt)
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Hausdorff distance [42] to calculate the distance between two sets of vectors for the sim-
ilarity between two GO terms. Specifically, the modified Hausdorff distance is defined 
by Eq. (8) and it is denoted by mhd(Vs,Vt) in our research.

where |Vs| represents the number of vectors in Vs.

Datasets

In this paper, we use three types of datasets: Gene Ontology, Gene Ontology Annota-
tions, and Protein–Protein Interaction Network.

Gene Ontology: The Gene Ontology [19] contains three categories of ontologies that 
are independent of each other: BP, CC, and MF. The BP ontology contains those GO 
terms that depict a variety of events in biological processes. The CC ontology contains 
those GO terms that depict molecular events in cell components. The MF ontology 
contains those GO terms that depict chemical reactions, such as catalytic activity and 
receptor binding. These GO terms have been employed to interpret biomedical experi-
ments (e.g., genetic interactions and biological pathways) and annotate biomedical enti-
ties (e.g., genes and proteins). Table 5 summarizes the statistics of the three categories of 
ontologies.

Gene Ontology Annotations: GO annotations are statements about the functions of 
particular genes or proteins, and capture how a gene or protein functions at the molecu-
lar level, and what biological processes it is associated with. Generally, a protein is anno-
tated by one or more GO terms. For example, the protein “Q9NZJ4” is annotated by the 
GO terms “GO:0003674”, “GO:0005524”, “GO:0005575”, “GO:0006457”, “GO:0006464”, 
and “GO:0031072”. We mapped the proteins to the UniProt1 database [44] to obtain the 
GO annotations, and we used the version of none Inferred from Electronic Annotation 
(no-IEA).

Protein–Protein Interaction Network: From the STRING database [43], we down-
loaded three kinds of PPI datasets (v11.0 version): HUMAN (Homo sapiens), MOUSE 
(Mus musculus), and YEAST (Saccharomyces cerevisiae). The HUMAN dataset con-
tains 9677 proteins and 11,759,455 interactions, the MOUSE dataset contains 20,269 
proteins and 8,780,518 interactions, and the YEAST dataset contains 3287 proteins and 
1,845,966 interactions. We mapped the proteins to the UniProt database and filter out 

(8)min

{

1

|Vs|

∑

vs∈Vs
maxvt∈Vt cos(vs, vt),

1

|Vt |

∑

vt∈Vt
maxvs∈Vs cos(vs, vt)

}

Table 5  Statistics of the three categories of ontologies

“#GO Terms” indicates the number of GO terms and “#Edges” indicates the number of edges

Ontology #GO terms #Edges

BP 30,705 71,530

CC 4380 7523

MF 12,127 13,658

1  https​://www.unipr​ot.org/.

https://www.uniprot.org/
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those proteins that could not be found in the UniProt database; we also discarded those 
interactions involving the filtered proteins. After filtering, the HUMAN dataset remains 
6966 proteins and 1,784,108 interactions, the MOUSE dataset remains 16,105 proteins 
and 7,515,864 interactions, and the YEAST dataset remains 2851 proteins and 456,936 
interactions. The remaining proteins and interactions in the three datasets were treated 
as their ground-truth PPI graphs.

We randomly sampled 500,000 HUMAN interactions, 500,000 MOUSE interactions, 
and 100,000 YEAST interactions from the ground-truth PPI graphs, and removed these 
sampled interactions from the ground-truth PPI graphs and treated them as missing 
PPIs. This kind of derived datasets is used for the missing PPI prediction.

From the ground-truth PPI datasets, we randomly sampled the same number of pairs 
of proteins (i.e., 500,000 interactions for HUMAN proteins, 500,000 interactions for 
MOUSE proteins, and 100,000 interactions for YEAST proteins), between which there 
are no interactions, and added them to the ground-truth PPI datasets. These added 
interactions were treated as spurious PPIs, and this kind of derived datasets is used for 
the spurious PPI prediction.

Table 6 summarizes the statistics of the proteins and interactions of the ground-truth 
PPI graphs, as well as the number of the removed PPIs and the added PPIs.

Implementation details

We implemented several versions of our method in both ways that are described in 
Eqs.  (6) and (8). The version that uses the learned vectors of proteins with cosine dis-
tance [Eq. (6)] is denoted by “cos”. The version that uses the learned vectors of GO terms 
with modified Hausdorff distance [Eq. (8)] is denoted by “mhd”. The version that uses the 
support vector machine to train a classifier is denoted by “svm”, and we use the version 
implemented in scikit-learn.

To investigate the effect of using undirected graphs, we also implemented three ver-
sions of GOA2Vec working on directed graphs. Their corresponding versions are 
denoted by “d_cos”, “d_mhd”, and “d_svm”, where “d” indicates using directed graphs. 
Except using directed graphs, “d_cos” is the same as “cos”, “d_mhd” is the same as “mhd”, 
and “d_svm” is the same as “svm”.

For the node2vec model, we used its code2 on our datasets with trying different 
parameters and mainly reported the best results. The parameters that help us get the 
best results include: 150 dimensions, 10 walks per node, 80-length per walk and 20 walks 
per node, unweighted and undirected edges.

Table 6  Statistics of  the  ground-truth PPI datasets as  well as  removed PPIs (“Re-PPI”) 
and added PPIs (“Ad-PPI”)

Dataset #Protein #PPI #Re-PPI #Ad-PPI

HUMAN 6966 1,784,108 500,000 500,000

MOUSE 16,105 7,515,864 500,000 500,000

YEAST 2851 456,936 100,000 100,000

2  https​://githu​b.com/adity​a-grove​r/node2​vec.

https://github.com/aditya-grover/node2vec


Page 13 of 17Zhong and Rajapakse ﻿BMC Bioinformatics 2020, 21(Suppl 16):560

Existing methods

Our method was compared with existing methods including the representative information 
content-based methods, namely Resnik [24], Lin [23], Jang and Conrath [22], simGIC [25], 
and simUI [45], and the corpus-based vector representation method Onto2Vec [36].

Resnik’s similarity is mainly based on the IC of a given node in an ontology. The IC of a 
node n is calculated by the negative log-likelihood, given by Eq. (9).

where p(n) represents the probability of the node n over the whole nodes. Given this IC 
information, Resnik similarity is calculated by

where nm denotes the most informative common ancestor of n1 and n2 in that ontology.
Lin’s similarity [23] is calculated by

Jang and Conrath’s similarity [22] is calculated by

simGIC similarity [25] and simUI similarity [45] calculate the similarity among pro-
teins. Let N1 and N2 represent the set of GO terms that annotate the proteins p1 and p2 , 
respectively. simGIC similarity is calculated by the Jaccard index, given by Eq. (13), while 
simUI similarity is calculated by the universal index, given by Eq. (14).

There are three main kinds of methods that combine for Resnik’s, Lin’s, and Jang 
and Conrath’s similarities: average (AVG), maximum (MAX), and best-match aver-
age (BMA). These three combination methods are defined by Eqs.  (15), (16), and (17), 
respectively.

(9)IC(n) = − log p(n)

(10)simResnik(n1, n2) = − log p(nm)

(11)simLin(n1, n2) =
2 ∗ log p(nm)

log p(n1)+ log p(n2)

(12)simJ&C(n1, n2) = 2 ∗ log p(nm)− log p(n1)− log p(n2)

(13)funGIC(p1, p2) =

∑

n∈N1∩N2
IC(n)

∑

n∈N1∪N2
IC(n)

(14)funUI (p1, p2) =

∑

n∈N1∩N2
IC(n)

max{
∑

n∈N1
IC(n),

∑

n∈N2
IC(n)}

(15)funAVG(p1, p2) =
1

|N1||N2|

∑

n1∈N1,n2∈N2

IC({n1, n2})

(16)funMAX (p1, p2) = max{IC({n1, n2})|n1 ∈ N1, n2 ∈ N2}

(17)funBMA(p1, p2) =
1

2
(

1

|N1|

∑

n1∈N1

IC({n1, n2})+
1

|N2|

∑

n2∈N2

IC({n1, n2}))
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Onto2Vec [36] mainly employed the word2vec model [34] together with the skip-gram 
method to learn from the corpus derived from descriptive axioms of GO terms and pro-
teins. For a word sequence W that is composed of w1 , w2, . . . ,wS , the skip-gram algo-
rithm maximizes the average log-likelihood of the loss function, given by Eq. (18),

where |W| represents the size of training text while S represents the size of the vocabu-
lary. After learning the word vectors through the word2vec model, Onto2Vec linearly 
combines these learned word vectors for proteins based on these words that appear in 
the descriptive axioms of proteins

where v(p) represents the vector of protein p, v(wi) represents the vector of word wi , and 
W represents the set of words that appear in the descriptive axiom of protein p.

Evaluation metrics

The performances of missing and spurious PPI predictions are evaluated according to 
the metric of area under the ROC (Receiver Operating Characteristic) curve (AUC). 
AUC-ROC has been widely used to evaluate the tasks of classification and prediction. 
ROC is calculated according to the relationship between the rate of true positives (RTP) 
and the rate of false positives (RFP). RTP is calculated by RTP = TP

TP+FN  and RFP is cal-
culated by RFP = FP

FP+TN  , where TP represents the number of true positives, while FP 
represent the number of false positives; TN represents the number of true negatives, 
while FN represents the number of false negatives. Tables 7 and 8 illustrate the setting of 

(18)loss =
1

S

S
∑

s=1

∑

−|W |≤i≤|W |,i �=0

log p(wt+i|wt)

(19)v(p) =
∑

wi∈W

v(wi)

Table 7  Setting of  true-positive, false-positive, true-negative, and  false negative cases 
for missing PPIs

Actual

Missing PPI Non-miss PPI

Predicted

 Missing PPI True positive False positive

 Non-Miss PPI False negative True negative

Table 8  Setting of  true-positive, false-positive, true-negative, and  false negative cases 
for spurious PPIs

Actual

Spurious PPI Non-spur PPI

Predicted

 Spurious PPI True positive False positive

 Non-Spur PPI False negative True negative
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true-positive, false-positive, true-negative, and false-negative cases for the tasks of miss-
ing and spurious PPI predictions.

Abbreviations
GO: Gene ontology; GOA: Gene ontology annotations; BP: Biological process; CC: Cellular component; MF: Molecular 
function; IC: Information content; PPI: Protein–protein interaction; PPIN: Protein–protein interaction network; MHD: 
Modified Hausdorff distance; SVM: Support vector machine; ROC: Receiver operating characteristic; AUC​: Area under the 
curve.

Acknowledgements
The authors thank the two anonymous reviewers and the editor for their suggestive comments.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 21 Supplement 16, 2020: Selected articles from the 
Biological Ontologies and Knowledge bases workshop 2019. The full contents of the supplement are available online at 
https​://bmcbi​oinfo​rmati​cs.biome​dcent​ral.com/artic​les/suppl​ement​s/volum​e21-suppl​ement​-16.

Authors’ contributions
XZ came up with the idea, designed and implemented the experiments, wrote and revised the manuscript. JCR guided 
the project and revised the manuscript. All authors read and approved the final manuscript.

Funding
Publication of this article was funded by the Tier-2 Grant MOE2016-T2-1-029 and the Tier-1 Grant MOE2019-T1-002-057 
from the Ministry of Education, Singapore. The funding bodies had no role in the design of the study and collection, 
analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
The datasets that are used in this paper can be found from their links. Gene Ontology (date of visit: 23 June 2018): http://
geneo​ntolo​gy.org/docs/downl​oad-ontol​ogy/. Gene Ontology annotations (date of visit: 23 June 2018): https​://www.
unipr​ot.org/. Protein–protein interaction datasets (date of visit: 30 October 2018): https​://strin​g-db.org/cgi/input​.pl.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China. 2 School of Computer Sci-
ence and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore. 

Received: 5 October 2020   Accepted: 13 October 2020
Published: 16 December 2020

References
	1.	 Wang Y, Zeng J. Predicting drug–target interactions using restricted Boltzmann machines. Bioinformatics. 

2013;29(13):126–34.
	2.	 Lu Y, Guo Y, Korhonen A. Link prediction in drug–target interactions network using similarity indices. BMC Bioinform. 

2017;18(1):39.
	3.	 Wang J, Peng X, Peng W, Wu F-X. Dynamic protein interaction network construction and applications. Proteomics. 

2014;14(4–5):338–52.
	4.	 Wang J, Peng X, Li M, Pan Y. Construction and application of dynamic protein interaction network based on time course 

gene expression data. Proteomics. 2013;13(2):301–12.
	5.	 De Las Rivas J, Fontanillo C. Protein–protein interactions essentials: key concepts to building and analyzing interactome 

networks. PLoS Comput Biol. 2010;6(6):1000807.
	6.	 Pawson T. Protein modules and signalling networks. Nature. 1995;373(6515):573.
	7.	 Chen J, Yuan B. Detecting functional modules in the yeast protein–protein interaction network. Bioinformatics. 

2006;22(18):2283–90.
	8.	 Marcotte EM, Pellegrini M, Ng H-L, Rice DW, Yeates TO, Eisenberg D. Detecting protein function and protein–protein 

interactions from genome sequences. Science. 1999;285(5428):751–3.
	9.	 Rao VS, Srinivas K, Sujini G, Kumar G. Protein–protein interaction detection: methods and analysis. Int J Proteomics. 

2014;2014:147648.
	10.	 Singh R, Xu J, Berger B. Struct2net: integrating structure into protein–protein interaction prediction. Biocomputing. 

2006;2006:403–14.
	11.	 Singh R, Park D, Xu J, Hosur R, Berger B. Struct2net: a web service to predict protein–protein interactions using a 

structure-based approach. Nucl Acids Res. 2010;38(Suppl-2):508–15.
	12.	 Murakami Y, Mizuguchi K. Psopia: Toward more reliable protein–protein interaction prediction from sequence informa-

tion. In: 2017 international conference on intelligent informatics and biomedical sciences (ICIIBMS); 2017. New York: IEEE. 
p. 255–61.

https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume21-supplement-16
http://geneontology.org/docs/download-ontology/
http://geneontology.org/docs/download-ontology/
https://www.uniprot.org/
https://www.uniprot.org/
https://string-db.org/cgi/input.pl


Page 16 of 17Zhong and Rajapakse ﻿BMC Bioinformatics 2020, 21(Suppl 16):560

	13.	 Phizicky EM, Fields S. Protein–protein interactions: methods for detection and analysis. Microbiol Mol Biol Rev. 
1995;59(1):94–123.

	14.	 Chen X-W, Liu M. Prediction of protein–protein interactions using random decision forest framework. Bioinformatics. 
2005;21(24):4394–400.

	15.	 Hosur R, Xu J, Bienkowska J, Berger B. iwrap: an interface threading approach with application to prediction of cancer-
related protein–protein interactions. J Mol Biol. 2011;405(5):1295–310.

	16.	 Kotlyar M, Pastrello C, Pivetta F, Sardo AL, Cumbaa C, Li H, Naranian T, Niu Y, Ding Z, Vafaee F, et al. In silico prediction of 
physical protein interactions and characterization of interactome orphans. Nat Methods. 2015;12(1):79.

	17.	 Tastan O, Qi Y, Carbonell JG, Klein-Seetharaman J. Prediction of interactions between HIV-1 and human proteins by 
information integration. Biocomputing. 2009;2009:516–27.

	18.	 Sun T, Zhou B, Lai L, Pei J. Sequence-based prediction of protein–protein interaction using a deep-learning algorithm. 
BMC Bioinform. 2017;18(1):277.

	19.	 Consortium, GO. The gene ontology (go) database and informatics resource. Nucl Acids Res. 2004;32:258–61.
	20.	 Hill DP, Smith B, McAndrews-Hill MS, Blake JA. Gene ontology annotations: what they mean and where they come from. 

BMC Bioinform. 2008;9:2.
	21.	 Barrell D, Dimmer E, Huntley RP, Binns D, O’donovan C, Apweiler R. The GOA database in 2009—an integrated gene 

ontology annotation resource. Nucl Acids Res. 2008;37(Suppl–1):396–403.
	22.	 Jiang JJ, Conrath DW. Semantic similarity based on corpus statistics and lexical taxonomy. In: Proceedings of the 10th 

international conference on computational linguistics; 1997. p. 19–33.
	23.	 Lin D. An information-theoretic definition of similarity. In: Proceedings of the 15th international conference on machine 

learning; 1998. p. 296–304.
	24.	 Resnik P. Using information content to evaluate semantic similarity in a taxonomy. In: Proceedings of the 14th interna-

tional joint conference on artificial intelligence; 1999. p. 448–53.
	25.	 Pesquita C, Faria D, Bastos H, Falcao AO, Couto FM. Evaluating go-based semantic similarity measures. In: Proceedings of 

the 10th annual bio-ontologies meeting; 2007. p. 37–38.
	26.	 Schlicker A, Domingues FS, Rahnenfuhrer J, Lengauer T. A new measure for functional similarity of gene products based 

on gene ontology. BMC Bioinform. 2006;7:302.
	27.	 Xu T, Du L, Zhou Y. Evaluation of go-based functional similarity measures using S. cerevisiae protein interaction and 

expression profile data. BMC Bioinform. 2008;9(472):1–10.
	28.	 Pesquita C, Faria D, Falcao AO, Lord P, Couto FM. Semantic similarity in biomedical ontologies. PLoS Comput Biol. 

2009;5(7):1–12.
	29.	 Li M, Wu X, Pan Y, Wang J. HF-measure: a new measurement for evaluating clusters in protein–protein interaction net-

works. Proteomics. 2012;13(2):291–300.
	30.	 Teng Z, Guo M, Liu X, Dai Q, Wang C, Xuan P. Measuring gene functional similarity based on group-wise comparison of 

go terms. Bioinformatics. 2013;29(11):1424–32.
	31.	 Liu W, Liu J, Rajapakse JC. Gene ontology enrichment improves performances of functional similarity of genes. Sci Rep. 

2018;8:1–12.
	32.	 Kaalia R, Rajapakse JC. Functional homogeneity and specificity of topological modules in human proteome. BMC Bioin-

form. 2019;19(S13):615.
	33.	 Kaalia R, Rajapakse JC. Refining modules to determine functionally significant clusters in molecular networks. BMC 

Genomics. 2019;20:1–14.
	34.	 Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed representations of words and phrases and their composi-

tionality. In: Proceedings of advances in neural information processing systems; 2013. p. 3111–9.
	35.	 Pennington J, Socher R, Manning CD. Glove: Global vectors for word representation. In: Proceedings of the 2014 confer-

ence on empirical methods in natural language processing; 2014. p. 1532–43.
	36.	 Smaili FZ, Gao X, Hoehndorf R. Onto2vec: joint vector-based representation of biological entities and their ontology-

based annotations. Bioinformatics. 2018;34(13):52–60.
	37.	 Smaili FZ, Gao X, Hoehndorf R. Opa2vec: combining formal and informal content of biomedical ontologies to improve 

similarity-based prediction. Bioinformatics. 2019;35:2133–40.
	38.	 Duong D, Ahmad WU, Eskin E, Chang K-W, Li JJ. Word and sentence embedding tools to measure semantic similarity of 

gene ontology terms by their definitions. J Comput Biol. 2018;26(1):38–52.
	39.	 Zhong X, Kaalia R, Rajapakse JC. Go2vec: transforming go terms and proteins to vector representations via graph 

embeddings. BMC Genomics. 2019;20:918.
	40.	 Zhong X, Rajapakse JC. Predicting missing and spurious protein–protein interactions using graph embeddings on go 

annotation graph. In: Proceedings of the 2019 IEEE international conference on bioinformatics and biomedicine, San 
Diego, CA, USA; 2019. p. 1828–35.

	41.	 Grover A, Leskovec J. node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD inter-
national conference on knowledge discovery and data mining; 2016. p. 855–64.

	42.	 Dubuisson M-P, Jain AK. A modified Hausdorff distance for object matching. In: Proceedings of the 12th international 
conference on pattern recognition; 1994. p. 566–8.

	43.	 Mering Cv, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. String: a database of predicted functional associations 
between proteins. Nucl Acids Res. 2003;31(1):258–61.

	44.	 Consortium U. Uniprot: a hub for protein information. Nucl Acids Res. 2014;43(D1):204–12.
	45.	 Gentleman: Manual for r; 2005.
	46.	 Perozzi B, AL-Rfou R, Skiena S. Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM 

SIGKDD international conference on knowledge discovery and data mining; 2014. p. 701–10.
	47.	 Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q. Line: large-scale information network embedding. In: Proceedings of the 

24th international conference on world wide web; 2015. p. 1067–77.
	48.	 Mazandu GK, Mulder NJ. Information content-based gene ontology functional similarity measures: Which one to 

use for a given biological data type? PLoS ONE. 2014;9:12.



Page 17 of 17Zhong and Rajapakse ﻿BMC Bioinformatics 2020, 21(Suppl 16):560

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Graph embeddings on gene ontology annotations for protein–protein interaction prediction
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Background
	Results
	Preliminary task definitions
	Missing PPI prediction
	Spurious PPI prediction

	Experimental results
	Missing PPI prediction
	Spurious PPI prediction


	Discussion
	Conclusions
	Methods
	GOA graph construction
	GOA graph to vector representations
	The node2vec model

	Missing and spurious PPI predictions
	Using learned vectors of proteins
	Using learned vectors of GO terms

	Datasets
	Implementation details
	Existing methods
	Evaluation metrics

	Acknowledgements
	References


