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An urgent challenge facing biologists is predicting the regional-scale
population dynamics of species facing environmental change. Biologists
suggest that we must move beyond predictions based on phenomenological
models and instead base predictions on underlying processes. For example,
population biologists, evolutionary biologists, community ecologists and
ecophysiologists all argue that the respective processes they study are essen-
tial. Must our models include processes from all of these fields? We argue
that answering this critical question is ultimately an empirical exercise
requiring a substantial amount of data that have not been integrated for
any system to date. To motivate and facilitate the necessary data collection
and integration, we first review the potential importance of each mechanism
for skilful prediction. We then develop a conceptual framework based on
reaction norms, and propose a hierarchical Bayesian statistical framework
to integrate processes affecting reaction norms at different scales. The ambi-
tious research programme we advocate is rapidly becoming feasible due to
novel collaborations, datasets and analytical tools.

1. Overview

From systems biology [1] to ecosystem ecology [2], researchers claim that
(1) prediction is an acid test of our understanding of biology and (2) the best
predictions will come from models rooted in the processes that generate
system-wide patterns. This is a growing emphasis among organismal biologists,
who often argue that prediction of population- and species-level dynamics
should be grounded in genetics, physiology and community ecology [3-7].

A key challenge facing contemporary organismal biologists is predicting or
forecasting regional-scale population dynamics under environmental change.
We use the terms ‘prediction” and “forecast’ interchangeably, defined as expected
states of nature in the future. Reliable predictions could guide biodiversity
conservation under future environments [8-10]. For example, a model capable
of predicting the dynamics of a threatened or invasive species across a large
region could identify future critical habitat or help managers allocate resources
for eradication. These predictions have been traditionally based on site-specific
population models or large-scale, phenomenological distribution models [11].
However, these approaches are frequently criticized [9,12,13], whereas a
number of prominent recent reviews have made the case for models based on
lower-level mechanisms [3,5-7]. Phenomenological models are based on empiri-
cal correlations between environment and occurrence or abundance without
explicit functions representing lower-level biological processes. By contrast,
mechanistic approaches have explicit representations of how the environment
interacts with genotypes, phenotypes or demography.

But which processes are essential? Many population biologists believe that
useful forecasts are impossible without accounting for demographic mechanisms

© 2020 The Author(s) Published by the Royal Society. All rights reserved.
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[14]. Evolutionary biologists argue that models must consider
genetic variation and adaptation [3,15]. Community ecologists
focus on species interactions [4,5]. Organismal ecologists argue
that physiology [6,16-18] or behaviour [19,20] are essential.
Must our models include all of these processes?

We suggest that this is an empirical question that can
only be answered by making predictions with competing
models and validating them with independent observations.
However, testing the predictive value of so many processes
requires a programme of data collection and integration that,
to our knowledge, has never been completed for any system.
Our purpose is to motivate and facilitate such an effort. We
begin by reviewing the arguments for building multiple mech-
anisms into forecasts of regional-scale dynamics. We then
develop a conceptual framework for integrating diverse mech-
anisms, and propose a statistical framework to test their
impact on predictive skill while accommodating uncertainty.

2. Toward a process-oriented approach

(a) Shortcomings of a phenomenological approach
Population predictions based on a purely phenomenological
representation of biological systems may lack fidelity under
novel conditions or when the underlying drivers are high
dimensional. In the first case, the functional form of respon-
ses to environment may change as organisms encounter
conditions not previously experienced, or as individuals
develop trait values and trait combinations not previously
observed [21,22]. These novel conditions may arise in space
(e.g. for an invasive species) or in future times (e.g. under
climate change). Note that forecasts have specific temporal
scales: many ecological forecasts apply to the next few
years, or to the next few decades. A consideration of novel con-
ditions may be particularly problematic for long-term
forecasts as conditions with no contemporary analogue
become more common.

In a variety of fields, such as epidemiology of infectious
disease, fitting curves to past observations and extrapolating
to predict the future has yielded poor results as conditions
change [23,24]. In principle, mechanistic models avoid these
problems by capturing the processes that lead to novel
responses to environment. It is important to note that we
focus on approaches that both model underlying processes
and include lower-level data on these processes. Mechanistic
approaches that lack such data may suffer from problems
with identifiability, for example, when high-level abundance
data can be reproduced by models with very different mech-
anisms [25,26]. Therefore, a crucial feature of the approach we
present below is that mechanistic models are combined with
data on underlying mechanisms.

High-dimensionality limits the feasibility of data-driven
phenomenological approaches to prediction. When true func-
tional forms are unknown and there are many potentially
important and interacting independent variables, it is difficult
to collect sufficient high-quality data to describe the true, com-
plex relationships driving regional population dynamics.
When multiple population drivers have opposing effects or
opposing patterns of variation in nature, observational studies
can easily miss these signals. This dimensionality is especially
problematic when observations are made at a scale where
aggregation obscures the effects of important processes
[27-29]. A mechanistic understanding can identify the most
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Figure 1. Examples of how underlying biological complexity may confound
regional population forecasting, due to high dimensionality of the systems or
the systems entering novel conditions. For each example, ignoring the com-
plexity shown here could lead to major inaccuracies in forecasts. In the ‘high
dimensionality” examples, relationships between environment and fitness are
highly dimensional due to the four different categories of processes. In the
‘novel conditions’ examples, the relationship between environment and fit-
ness observed in contemporary populations change under novel conditions
related to the same four categories of processes.

important aspects of organisms, environments and scales of
observation. In the following sections, we describe examples
of the potential benefits of process-oriented approaches,
focusing on four categories of biological complexity that can
confound regional population forecasts (figure 1): genetic
variation, complex environment—performance relationships,
biotic interactions and demography.

(b) Genetic variation
Genetic variation within species is often overlooked in popula-
tion, community and macro-ecology. Models and predictions of
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species range dynamics or regional population forecasts
typically assume a single set of parameters for a species [30].

In reality, species often exhibit intraspecific genetic vari-
ation in response to their environment. Evolutionary biology
offers numerous examples of genetic variation in trait and
demographic responses to environmental variation, such as
for abiotic stress response [31-33], host—pathogen interactions
[34] and predator—prey interactions [35,36]. Spatially varying
environments can favour different traits in different places
and, as a result, much of the genetic variation in environmental
responses is geographically structured. Thus, individual fitness
and population growth rates often respond to the environment
in different ways in different locations. Large-scale forecasts
typically ignore these differences.

If populations differ genetically
responses, then accurate regional population forecasts may

in environmental

require accounting for genetic variation, as well as genetic
change over time (i.e. evolution; figure 1). For example, forecasts
of regional population dynamics might assume individuals
have as broad an environmental tolerance as the species in
aggregate, while in reality locally adapted populations have
narrower tolerances [30]. In this case, even though populations
suited to future environments might exist within a species’
range, specific alleles may not occur in the location where
they would be adaptive. As a result, forecasts under environ-
mental change might be overly optimistic and underestimate
the threat of extinction [37].

Researchers have begun to incorporate genetic variation
into regional population prediction. Some researchers have
fit models that identify genotypes associated with specific
current environments, assuming local adaptation, and then
used predicted future environments to assess mismatch
between local genotypes and their future environments
[38-41] (reviewed by Capblancq et al. [15]). Additionally,
researchers have fitted environmental response models
using geographically restricted subsets of populations, pre-
sumably accounting for geographic genetic variation, to
project distributions under future conditions [42-44].

Without rigorous validation, predictions have unknown
value. Important hurdles for predictions are success at out-of-
sample prediction, and prediction into parameter space where
data are sparse. After all, these models are being developed for
prediction in a future of novel conditions. Recently, genetic
models of environmental response and adaptation have been
used in out-of-sample predictions of individual or population per-
formance in response to environmental stressors in both wild and
agricultural species [38,41,45-48]. These have generally had
modest success, for example, in predicting relative genetic vari-
ation in change in performance [46,47] or population change
[38] with accuracy (predicted versus observed correlation) ~ 0.3.
Messina et al. [48] were able to predict relative genetic variation
in performance in novel (non-test) environments, using a
combined genomic—physiological model, to r ~ 0.6.

Incorporating genetic variation in regional population fore-
casts presents several challenges. First, statistical interactions
among genetic loci can be important, but may be unknown a
priori and too high-dimensional to discover with data-driven
approaches. In crop systems, where there have been major
advances in using genetics to predict environmental responses,
models incorporating genetic variation have largely treated
genetics as phenomenological [49]. Opportunities may exist
to improve forecasts with largely phenomenological treatment
of genetic effects, but focused on capturing some important

aspects of the underlying genetic mechanism. For example,
predictions may be based on subsets of genetic loci (e.g. gene
regulatory loci) most likely to affect ecologically important
traits and environmental responses [50-52].

Second, novel population genetic compositions will evolve
through new mutations, gene flow, selection and drift. Some of
these processes are particularly challenging to model [30]. For
example, gene flow is often poorly observed, and can result in
major shifts in genetic composition of populations, potentially
alleviating maladaptation to future environments [53]. Predic-
tive modelling of drift may require demographic data (see
below). Given the rate of global environmental change and
the high standing variation often observed in traits related to
abiotic stress response [54], new mutations are likely to be of
lesser importance for regional dynamics (although this may
not be true at expanding range margins, due to drift) [55].
Selection can be modelled using experimental data relating fit-
ness to genotype [33], although indirect approaches may be
required for species not amenable to experimentation [56,57].

() Complex environment—performance relationships
Biologists often study how individuals, populations or species
respond to a single environmental gradient, or perhaps a small
set of environmental factors, along with their pairwise inter-
actions or linear combinations [58,59]. But interactions among
environmental drivers are more complex: precipitation, temp-
erature and soil characteristics determine soil moisture; snow
cover and air temperature determine winter soil temperature;
solarradiation, albedo, wind and air temperature determine the
energy balance of ectothermic plants and animals. Additional
complexity arises as organismal trait changes in response to
environment moderate the effects of potential stressors. For
example, when the timing of developmental transitions
(phenology) is sensitive to environmental thresholds, organ-
isms can show sharp trait changes [60]. Animals can use
behaviour to avoid thresholds beyond which abiotic conditions
can become dangerous [6]. As a result, individual fitness
responses to environment are often nonlinear and non-
monotonic, as in mortality caused by freezing temperatures,
rapid nonlinear declines in performance at high temperatures
or hydraulic failure under moisture stress in plants [42,61].

It is difficult to detect thresholds and complex interactions
among measured environmental variables, especially given
the noisy relationships between those variables and abundance
or fitness components. The potential model space to explore is
large. While machine learning approaches have been used to
predict species or genotype geographical distributions based
on complex environmental interactions [62,63], they are not
generative models and cannot be easily customized for
specific studies, data types and questions. Machine learning
approaches can sometimes excel at prediction when they are
used in the exact setting they were designed for, but they lack
the ability to formally incorporate mechanisms via thoughtfully
developed simulation models (e.g. mathematical models, agent-
based models, virtual ecologist models [64]). Furthermore,
nonlinearities that only emerge under novel conditions may
thwart extrapolations of phenomenological relationships.
Forecasting models that do not account for thresholds and inter-
actions might not predict large changes in populations moving
across thresholds under future environments (figure 1).

Direct observation of individual responses to changing
environments, especially under controlled conditions, may
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provide more precise information for building this complexity
into predictive models [6,19,65]. Complexity may be partly
captured in models by relating measured environmental
parameters to conditions directly experienced by organisms,
such as an organism’s body temperature (as opposed to the
air temperature in most gridded datasets). Additionally, this
complexity may be captured by modelling environmental
effects based on developmental, physiological or behavioural
first principles, such as energy budget [66] or stem hydraulics
models [67]. A mechanistic understanding of these responses
might allow prediction of responses to extreme events that
are rarely observed even in long-term observational studies.
A major challenge is that these approaches require many
detailed observations or background information on the most
important aspects of the environment for organisms. For
many species and populations this information currently does
not exist and will require extensive study of phenology, physi-
ology or behaviour. Even in crops, which are among the most
well-studied systems from an ecophysiological and develop-
mental perspective, models struggle to effectively predict
across multiple dimensions of novel environmental conditions
[49]. Additionally, the fine-scale data required to describe
specific aspects of environment that impact fitness might be
challenging to collect, model and predict at large scales [61].

(d) Biotic interactions

Studies of population response to the abiotic environment
and forecasts of large-scale dynamics typically overlook biotic
interactions even though they can have large effects on individ-
ual fitness and population growth. For example, species with
strong interactions (e.g. host-parasite, predator-prey) might
have tightly coupled population dynamics, obscuring the effects
of fluctuating abiotic conditions. Additionally, a given species
might show strong population responses to local gradients in
community composition, as in the case of an early or late succes-
sional specialist. Biotic constraints such as resource competition
may limit organisms’ ability to take advantage of favourable
conditions, such as greater resource supply (e.g. higher rainfall
for plants) [68,69]. Abiotic conditions may determine the
nature of species interactions, such as when stress shifts the
balance between competition and facilitation [70]. The effects
of abiotic change on populations may be constrained and
mediated by these biotic interactions.

Incorporating biotic interactions in predictive models is chal-
lenging because of the high dimensionality of community
ecology (i.e. the number of species and higher-order interactions
among them) and the potential for no-analogue future assem-
blages (figure 1). When species interactions have a strong
influence on population growth, shifts in community compo-
sition caused by abiotic environmental change can offset or
even overwhelm the direct effects of abiotic change [5,71,72].
Unravelling these direct and indirect effects would be straight-
forward if the effects of abiotic factors and biotic interactions
on demographic rates were independent and additive, but we
have good reasons to expect complex interactions. For example,
abiotic change might reduce fitness of a superior competitor
more than an inferior competing species, leading to a population
increase of the inferior competitor despite less favourable abiotic
conditions [73]. Studies often rely on interannual climate fluctu-
ations to observe abiotic-biotic interactions, but when future
abiotic conditions are novel, communities may also enter
novel states, thwarting prediction of a focal species’s population
dynamics based on recent observations (figure 1). Furthermore,

direct human impacts on populations will generate novel com-
munities and biotic interactions [74]. The potential for such
interactions illustrates the need for experiments that manipulate
both abiotic conditions and biotic interactions.

Some researchers have fit joint models of community
members’ responses to abiotic conditions while including
interactions among species [4,75,76]. However, such an
approach requires large amounts of data, and it remains
unclear how these efforts will succeed at forecasting under
environmental change when models are fitted to noisy obser-
vational data [77,78]. A major reason there has been slow
empirical progress in this area is the challenge in experimen-
tally manipulating multiple community members (a problem
of high dimensionality). Mechanistic models of species inter-
actions are one potential way to include these interactions in
predictive models [5,79]. Alternative approaches focus on
forecasts of community- or ecosystem-wide responses to
environmental change [2]. These aggregate over the many
dimensions of community variation, but may offer little infor-
mation about dynamics of individual species of interest.

(e) Demography

Simple, linear and phenomenological models that relate
environment to abundance might work well for organisms
with very simple life cycles. For organisms with more complex
life cycles, ignoring differences in how individuals of different
ages, life stages, sizes or sexes respond to the environment may
be problematic (figure 1). When these sources of heterogeneity
are important, models need to account for how individual
vital rates (e.g. survival, growth and fecundity) vary as a func-
tion of both demographic state (e.g. age, size, sex) and the
environment [80].

To appreciate why accounting for the interactive effects of
population structure and the environment is important,
consider a phenomenological approach that relates local
abundance of a long-lived plant directly to an environmental
driver. If the population is well established, it is likely to be
dominated by large, mature individuals. Year-to-year vari-
ation in abundance will reflect the growth and mortality of
these large individuals, and contributions from rare recruit-
ment events will be small. If the mature individuals are
stress-tolerant, we might find only a weak correlation
between drought and population growth rate. Extrapolating
this relationship to project the potential impacts of increasing
aridity under climate change would predict minimal impacts
on the population. But what if seedlings are less stress toler-
ant, and recruitment is limited to infrequent cool, wet years
[81]? After disturbance of the established stand, the popu-
lation might have difficulty recovering under future, more
arid, conditions. By contrast, a model that accounts for inter-
actions between size or stage structure and the environment
could correctly predict both the limited impacts of increasing
aridity on a population dominated by mature individuals, as
well as a reduced ability of the population to recover
following disturbance (when population growth depends
most on recruitment). This hypothetical example shows
how traditional demographic analyses, such as matrix popu-
lation models [82] and integral population models [83], can
handle both high dimensionality (interactions between the
environment and multiple vital rates) and novel conditions
(changes in stage structure and environment).
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Figure 2. Reaction norms (figures with coloured curves) occupy a middle position in a hierarchy of biological complexity among the mechanisms discussed here.
Thus, reaction norms can be viewed as a conceptual basis for building integrative models of regional population dynamics. We show a hypothetical plant example.
Predicting regional dynamics (e) may require understanding (a) geographical patterns of genetic variation in environmental response, (b) the phenotypes involved
and complex environment—performance relationships (such as physiological thresholds), (c) biotic interactions such as intraspecific density dependence or
(d) individual demographic rate responses to environment. (Online version in colour.)

While the existing tools for modelling demography
and population growth are sophisticated, they have almost
always been applied to just one local population at a time.
Scaling up to multiple populations along complex environ-
mental gradients represents a much greater challenge.
Fortunately, many demographers are now focused on this
task, using approaches described as ‘landscape demography’
[84-86] or ‘dynamic range models’ [87-89]. These approaches
incorporate differences among populations in environmen-
tal context and stage-structure, but have largely ignored
genetic or phenotypic variation among populations and
species interactions.

3. How do we determine which of these
processes are most important for prediction?

(a) Including all processes in a model may not improve
prediction

We have reviewed compelling arguments for why each of
the processes described in §2 must be considered in a
regional-scale population projection. However, a critical
point that this body of the literature has ignored is that
including all of these processes in a model may not improve
prediction.

Uncertainty in predictive modelling can be divided into
two components: bias, caused by incorrect and overly
simple models, versus variance, due to low numbers of
observations relative to the number of estimated parameters
[90]. While it may appeal to biologists to create models that
incorporate ever more processes in greater realism, increasing
model complexity can increase errors resulting from poorly
estimated parameters, lead to overfitting and decrease inter-
pretability (making it harder to troubleshoot models).
Optimal models for population prediction must balance
bias against variance, and optimal models are often surpris-
ingly simple [91,92]. These problems have already
presented themselves in population forecasting, but there
has not been a reckoning for the complex models that
would be the logical extension of the current movement to
incorporate all the processes in §2.

(b) Comparing models

Optimal predictive models are typically selected through
empirical comparison or regularization (i.e. reducing complex-
ity of a more general model [93]). While we may have extensive
knowledge about some components of the system, we may
lack empirical results to constrain certain model formulations.
Thus, we must make predictions with a set of models that rep-
resent different processes, test those predictions using proper
and local scores based on independent data (data not used
for model fitting [94]), assess which model works best, and
rigorously analyse uncertainties and biases [95].

To date, many efforts to predict species distributional
changes or regional population dynamics have been conducted
without out-of-sample validation. Without out-of-sample
validation, we cannot determine how well predictions will
fare under the novel conditions of the future. Experiments
that manipulate environments to represent potential future con-
ditions will provide important information. By testing model
predictions locally (i.e. for specific locations in geographic or
parameter space), we can begin to understand where and
why models fail. This kind of validation and model comparison
has yet to be performed for a regional-scale population model
that incorporates all of the categories of processes described
above, meaning that the relative importance of these processes
is unknown, as is the utility of an integrative model.

(c) Reaction norms as a conceptual basis for integrative
models

Traditionally, each of the important candidate processes
described above has been studied separately. To test their
relative value for predictions, we need new approaches for inte-
grating information about different processes in statistical
models. Without an integrative model, we cannot compare
models incorporating more than one process, let alone consider
interactions among these processes. For example, information
about a genetic variant or a physiological threshold that affects
organisms of a particular size class might be far more useful in
a size-structured demographic model than in a model that
simply tracks population density.

Reaction norms, which describe the change in a trait or
performance across environments, provide a framework to
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integrate the processes discussed in the preceding sections.
Reaction norms occupy a middle position in a hierarchy of
biological complexity among the mechanisms we discussed,
and thus they may be viewed as a nexus for integration
(figure 2). It is the complexity of these reaction norms that
unites the arguments for incorporating mechanism into
population forecasts (§2, figure 1). We suggest that reaction
norms are an intuitive concept that can be embedded in
integrative population models. Genetic variation can be
linked to reaction norms of lower-level traits like phenology,
behaviour and physiology, which can then be linked to
reaction norms for individual demographic rates and fitness
(figure 2). However, previous research has described the
response of one vital rate or trait to just one abiotic driver
measured under controlled conditions. Such idealized reac-
tion norms may be of little use for predicting population
dynamics at a single location affected by many interacting
environmental drivers, let alone for scaling up population
models across a heterogeneous region containing genetically
differentiated populations. The complexities we highlight
require higher-dimensional reaction norms (figure 1).

One benefit of shifting to models that include reaction
norms for key traits is that population models are more easily
linked to ecosystem processes. For example, if photosynthetic
rates are built into population models of a plant, it is easier
to build integrated population—ecosystem models that allow
us to assess how environmental changes jointly impact both
(e.g. as has been investigated in crop models [49]). The com-
plexity of trait relationships with demography and ecosystem
processes requires a substantial integration of underlying
mechanisms into population—ecosystem models [96].

4. Integrative hierarchical framework

We propose a hierarchical Bayesian framework to construct an
integrated reaction norm model with genetic, phenotypic and
demographic components (figure 3). These components corre-
spond to multiple types of experimental and observational
data, including DNA sequences, phenotypes, vital rates and

environmental conditions. The components of this model are
linked by relationships that have been historically modelled
separately. To account for and link the processes described
above, an integrative model is required ([98], ch. 25). We pro-
pose straightforward extensions and generalizations of past
efforts that enhance the power of our inferences and compare
the importance of different components, and build on
approaches developed for other integrated models that
borrow strength from multiple data sources [99,100].

We briefly describe an integrated hierarchical model that
comprises three levels (figure 3): genetic, phenotypic and
demographic. We offer more detail in the following sections.
Our example model connects the three levels using conditional
stochastic models with latent processes that depend on each
other. In this case, the natural scaling between levels implies
the conditional structure with the demographic process
depending on the phenotypic process, which in turn depends
on the genetic process.

The genetic component allows allele frequencies to change
in space and time as a function of underlying environmental
selective gradients and gene flow. This part of our approach
is similar to genotype—environment association models that
identify loci locally adapted to specific environments [63,101],
or spatial models of allele frequency turnover [102].

The genetic component is linked to a phenotypic model
that determines how genotype and environment deter-
mine phenotypes. This part of the model captures processes
usually studied by genetic mapping approaches that identify
genetic loci causing trait variation [103], or genomic selection
approaches that model the whole-genome contribution to
quantitative trait variation [104], including models of trait vari-
ation across environments [45,48]. This part of the model also
captures plastic trait responses to environment (trait reaction
norms) that are often a topic in ecophysiology, behavioural
ecology and functional ecology.

Finally, the demographic component determines how traits
influence vital rates and ultimately fitness. This approach
mirrors evolutionary ecology, quantitative genetic analyses of
how trait variation is related to vital rates [105], changes in
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these relationships across environments (i.e. how traits mediate
reaction norms of demography) [106,107], as well as how selec-
tion may change across life stages/vital rates [108]. These
model components cover the processes discussed in §2 and
their integration is described below.

(a) Modelling genetic processes based on environment

and space
We start with an approach to model change in allele fre-
quency along environmental gradients and in space in a
way that facilitates prediction of allelic state at genetic
markers (e.g. single-nucleotide polymorphisms, SNPs) for a
given location. Obtaining the predictive distribution of
allele frequencies allows us to make inference on changes in
allele frequencies under changing environmental conditions
or with gene flow [109]. Parametric models allow us to prop-
erly account for, and learn about, uncertainty in a way that
can be correctly propagated through to other types of infer-
ence. To generalize the concept of genotype-environment
associations in a way that accounts for individual-level
variability and mechanistic sources of gene flow, we use a
hierarchical modelling structure where the individual-based
genotype data gj; for individual i=1,...,n; in popula-
tion j=1,...,] and for genetic locus I=1,...,,L, arise
stochastically as

gjit ~ Bern(zj). “4.1)
The population-level allele frequency is modelled as
fp) =XiB + mj, 4.2)

where x; represent a set of covariates (e.g. topography, soil
type, precipitation) and f is an appropriate link function. In
this model (4.2), the coefficients 3; connect the environmental
variables to allele frequency at SNP [ in a way that accounts
for local adaptation.

In cases where we need to account for patterns of gene
flow and population structure, the n; are random effects
(e.g. spatially structured) [109-111] that we can model
jointly as

n~ N(O, %), (4.3)
where the covariance matrix is parameterized as
S = o’R. (4.4)

The ] x ] matrix R may be specified as an intrinsic conditio-
nal autoregressive (ICAR) [112] correlation matrix that
depends on geographic information about the environment.
Hanks & Hooten [109] showed that this type of ICAR formu-
lation provides a formal statistical model for gene flow based
on circuit theory. By allowing the random effects n; in (4.2) to
be spatially structured, we can accommodate gene flow mech-
anisms such as isolation by barrier, distance and resistance
[111]. Note that historical patterns of gene flow, especially
during colonization when drift is strong, may differ from
current gene flow and the model can be generalized to
accommodate such processes.

In the presence of temporal data, the model could be
formulated as

it ~ Bern(z ), 4.5)

for time t=1, ..., T, where the time-specific population-level

allele frequency is modelled as
fGu) = x,jtﬁlt + M- (4.6)

This extended model formulation explicitly accounts for
changes in the environment over time to help us understand
how environment aids in the prediction of genotypes. The
model is generative and can be used to simulate genetic
data to better understand the effects of future environments
on genotypes.

This modelling framework can also be generalized to
account for multilocus dependence explicitly. To do that,
we introduce another random effect to the model in (4.2):

fp) =X+ mj + &, “4.7)

where, jointly across loci, the random effects are assumed to be
structured according to their linkage distance (if on the same
chromosome), such that ¢ i N(0, 2. Not accounting for mul-
tilocus associations when they exist can obscure our inference
about the importance of physically linked loci. Furthermore,
multilocus dependence could improve prediction of genotypes
for cases where the genotype is only partially observable (e.g.
because of limited resources and genetic markers).

(b) Incorporating phenotypes

We can integrate genotype—phenotype and environment—
phenotype relationships into our model. Consider the
measurement of pj;, for trait g on individual i in population
j. To connect the phenotype and genotype in a statistical
model, let

Pjig ~ [pjiq‘lJ«jiq/ Oq]q/ (4.8)

such that [pjig|pji, 05]; is a trait-specific conditional data
model with 6, as trait-specific parameters. We let the trait
data model vary to accommodate a variety of traits; for
example, for binary traits, the distribution in (4.8) should be
Bernoulli and 6§, = 0.

We now introduce the first reaction norm presented in our
model, describing plastic trait change across environments
(e.g. figure 2, ‘phenotypes’), as well as a way to accommodate
higher dimensionality due to genetic variation in reaction
norms. The mean uj;, of the conditional trait distribution is
modelled as

f(/““jiq) = X,]-Dl + Z,]-,-Ul,u + ]’l(Xj, Zji, o) + Ejigs 4.9)

where fis a suitable link function and x’; accounts for phenoty-
pic plasticity (i.e. environmental effects on traits), z; e, accounts
for genetic effects on the trait, ii(x;, zji, o) is a function (e.g. a set
of interactions) that accounts for genetic variation in plasticity
(i.e. reaction norms), and the error term is correlated by a rel-
evant grouping structure due to genetic similarity among
individuals or latent spatial structure, for example. The genetic
component of traits changes in space and time due to changes
in allele frequency as described in the previous section. Jointly
across individuals and groups, the errors are modelled as

&g~ NO, 71 +3,), (4.10)

where the variance component og may be set to zero as
necessary for certain traits 4.

Up to this point, we have described what might be
termed an ‘integrated landscape genomic-reaction norm
model’, following common usage of terms. We can generalize
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this model to account for temporally indexed trait data like
the genotype model described in the previous section. Finally,
the modular nature of the two models implies that we may
be able to apply recursive Bayesian techniques to fit the
model in a computationally efficient framework [113,114].
When genetic data are not available or desired, patterns of
local adaptation in genetic trait-environment correlations
can be accommodated in our framework by treating the
genetic process in §4a as latent.

(c) Incorporating demography
We can learn about population dynamics using demographic
models, the specific form of which will vary depending
on the study system. For example, at site j we observe 7;
individual-level survival outcomes (w;;=1) that we model as
w;; ~ Bern(r;;), where r;; represents the survival probability of
individual i. By specifying individual-level demography, we
can link individual genotype and phenotype to environment
and the effects on demography. Our approach is to build reac-
tion norms of demographic vital rates that depend on (possibly
latent) phenotype-environment interactions, where the pheno-
types themselves are modelled as reaction norms as described
in the previous section.

At the end of a reproductive season, we can model the
number of offspring of a hermaphroditic individual i, d;;, as
arising from the zero-inflated distribution
dij - { POiS()\ij), ZU,‘]‘ =1

0, w,-j- = 0, (411)

where A;; represents the fecundity of individuals surviving to
reproduction.

We seek to infer the effect of phenotype and environment
on individual-level fecundity and survival at site j. Consider
the latent process model for individual-level survival
probability r; where

f@) = X ve + 1Yy, + WK, iy Vi), 4.12)

and the covariates and associated regression coefficients are
specified in the same manner as in the genetic and pheno-
typic model components. This model allows us to account
for multivariate phenotypic effects u; on survival. When
important traits are unknown or unmeasured (a common
occurrence) we may use genotypes in place of or in addition
to w;;, to model selection on latent traits. We can specify a
similar model for fecundity 4; as

10g ()\1]) = X;j')’)\ + M‘;j’Y)\,,u, + h(xij/ /»Lij/ 7A,h)' (4.13)

Biotic interactions (e.g. conspecific density dependence,
parasitism) can be incorporated via x;. This model can be
fitted from a hierarchical perspective (perhaps jointly with
the previously described genetic and phenotypic components).

To review, we have a genetic model component connected to
a phenotypic component, which is then linked to selection and
demography. Note that the h(x;;, Wijs Ya) functionin (4.13) (and
the similar function in (4.12)) and the X8, term in (4.2) both rep-
resent changes in selection across environmental gradients x;,
and the information on these changes in selection arises from
both the distribution of alleles across environments, their effects
on phenotypes and the changes in selection on these phenotypes
across environments [115]. Together with the genetic and phe-
notypic model components, we can express the full integrated

hierarchical genetic—phenotypic-demographic-environmental [ 8 |

model as a directed acyclic graph (figure 3).

We can generalize the ecological model component by allow-
ing for additional data sources when available. For example, we
can fuse presence-only and occupancy (with no individual
identification) data, as well as unmarked counts of individuals
if replicates are available, by adapting (4.2) to include the point
process, occupancy, or N-mixture model frameworks [98].
Furthermore, we can accommaodate time series data by indexing
the data with a t subscript as described in §4a.

(d) Resulting inference
The full hierarchical model in figure 3 is generative and can be
used to simulate data to better understand the effects of future
environmental regimes on populations, phenotypes and geno-
types. For example, by comparing contemporary genotypes in
a given location with genotypes under future environments,
we can better understand sensitivity to changes in environment
[15] and link this inference to spatio-temporal predictor
variables and create maps of these sensitivities with uncertainty.

Each model component in figure 3 can be fitted individu-
ally to the relevant subset of data while conditioning on
known or hypothesized elements from other components.
However, the benefit of constructing a jointly specified inte-
grated model is that we can fit the full hierarchical model
and simultaneously learn about all the model quantities
while allowing for feedbacks to occur among demographic,
phenotypic and genetic processes. The full hierarchical
model also allows the uncertainties to propagate among
model components so that we can make valid conclusions
about the relative importance of each process. We can also
compare predictions from the full model with predictions
from simpler models that ignore one or more components
and the processes they represent. These comparisons will
identify the optimal level of complexity for prediction.
When implementing the model, if additional flexibility is
needed, we can use basis function expansions of the environ-
mental, genetic and phenotypic space [116] to account for
nonlinearities in the relationships.

To optimize predictive ability, we can hold out data from
a subset of sites (or time points) for model validation. We can
use the integrated model to obtain the posterior predictions
for the latent processes. The direct comparison of observed
and predicted population growth is essential for quantifying
sources of uncertainty in the model, an important step in
guiding future research to improve the model.

(e) Feasibility

Fitting our integrated model will require an unprecedented,
coordinated data collection effort. But unprecedented does
not mean impossible. Annual plants may be a good starting
point because their simple life cycles facilitate estimation of
lifetime fitness, even in experimental settings. For example,
existing knowledge and resources make the model annual
plant Arabidopsis thaliana amenable [40,47]. We are leading a
network of researchers tackling the goal of this paper using
Bromus tectorum, a widely distributed annual grass invasive
in western North America. Even some long-lived perennial
plants have been studied using common gardens, demo-
graphic observations and genomic techniques (especially in
species of economic value) [117,118]. While controlled field
or lab experiments may even be possible for some small
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animals [119], for many species controlled experiments are
extremely difficult. Additionally, the complexity of biological
systems may resist our efforts to experiment, observe and
build mechanistic models. In the face of such challenges, inte-
grative regional forecasting models may be built with fewer
of the processes described above, or with phenomenological
components. The strength of our suggested approach is its
ability to quantify the predictive value of any processes that
can be feasibly modelled.

5. Conclusion

It is clear that a wide range of biological processes can be incor-
porated into large-scale forecasts of population dynamics under
environmental change. But the route to accurate prediction
might not involve building models of ever-increasing complex-
ity. While the integrated model we describe does account for
many underlying processes, we emphasize that this full
model is intended for development and may not itself be the
ideal model for prediction. To advance the field of regional
population prediction, we need extensive empirical study and
an iterative process of model improvement [120]. Which pro-
cesses are important for good forecasting may depend on the
time scale of the forecast (or forecast horizon) [121].

We presented a statistical framework to integrate these
diverse processes in a model for use in prediction. This

framework is novel because it formally unifies genetic, phe-
notypic and demographic components into an integrated
reaction norm model and suggests general computational
methods for fitting it. We can compare our methods with
other existing, less integrated approaches and quantify the
value added when formally borrowing strength across mul-
tiple sources of data in a single, cohesive hierarchical
modelling framework. The answer to the question we
posed, ‘what processes must we understand to forecast
regional scale population dynamics?’, will be found only
through careful study that generates the extensive multi-
dimensional data discussed here combined with an integra-
tive modelling approach.
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