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Infectious diseases, including transmissible cancers, can have a broad range
of impacts on host behaviour, particularly in the latter stages of disease
progression. However, the difficulty of early diagnoses makes the study
of behavioural influences of disease in wild animals a challenging task.
Tasmanian devils (Sarcophilus harrisii) are affected by a transmissible
cancer, devil facial tumour disease (DFTD), in which tumours are externally
visible as they progress. Using telemetry and mark–recapture datasets, we
quantify the impacts of cancer progression on the behaviour of wild devils
by assessing how interaction patterns within the social network of a popu-
lation change with increasing tumour load. The progression of DFTD
negatively influences devils’ likelihood of interaction within their network.
Infected devils were more active within their network late in the mating
season, a pattern with repercussions for DFTD transmission. Our study
provides a rare opportunity to quantify and understand the behavioural
feedbacks of disease in wildlife and how they may affect transmission and
population dynamics in general.
1. Introduction
Disease can be a strong driver of behavioural interactions among individuals in
both human and wildlife populations [1–4]. The extent of influence of disease
depends on multiple variables, including the social system of the host, environ-
mental stressors, pathogen load/virulence and the long-term consequences of
infection [5–8]. Alterations to behaviour are expected to be contingent on infec-
tion stage and driven by gradual physiological changes in the host [9]. As a
result, there is often a threshold at which behavioural changes begin to occur
or increase in intensity [10]. Individual changes in behaviour influence social
interaction dynamics; thus infection-induced alterations in behaviour impact
not only individual hosts, but also population-level transmission dynamics [11].

Behavioural responses to disease can be observed in healthy as well as
infected individuals. Healthy individuals may alter their behaviour by avoiding
sources of infection, while infected individuals may undergo disease-induced
behavioural changes. The former is caused by active avoidance of diseased
individuals [12], driven by selective pressure on healthy individuals to avoid
infection. The propensity for avoidance to occur depends on the transmission
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mode and relative cost of infection, as well as the social system
of the host and the context of interactions [13]. Secondly,
infected animals must trade-off energy allocation to different
fitness components: fighting infection to survive versus
energy devoted to reproduction [14]. The suite of behavioural
responses to infection are collectively termed ‘sickness beha-
viours’ and are generally associated with energy budgeting
[5,15]. In some cases, increasing severity of infection may
alter behaviour progressively, as body condition of the indi-
vidual worsens and energetic demands on the immune
system increase. Over time, infection can drive animals into
social isolation, to avoid potentially costly competition with
conspecifics, to conserve energy or to avoid infection of kin
[7,16,17]. Alternatively, there may be fitness benefits to aggre-
gating, which can help reduce the cost of an infection [18].
While questions of sickness-induced behavioural changes
have been addressed in a theoretical context [19] and under
laboratory conditions [12,20], the effects of avoidance and sick-
ness behaviours can be difficult to disentangle in populations
of wild animals. For example, Weber et al. [21] found
that European badgers infected with bovine tuberculosis
(Mycobacterium bovis) were socially isolated from their own
groups, but it was unclearwhether this was the result of avoid-
ance by healthy individuals or self-isolation of infected
individuals. Overall, the effects and progression of sickness
behaviour remain relatively poorly studied in free-living
wildlife populations.

Studying the effects of disease-induced behavioural
changes of individuals requires detailed and time-step knowl-
edge of disease status and interaction patterns. This has been
achieved in some group-living species, notably primates,
mongooses and mice [7,22,23]. However, obtaining robust
data is particularly challenging in non-gregarious species
where interactions are less common, and in which those infre-
quent interactions are essential for pathogen transmission. The
difficulty of timely assessment of clinical diagnosis of infection
in wild animals [24] presents a further complication. Many
diseases can induce behavioural or physiological changes
without the host displaying clinical symptoms (e.g. Ross
River virus; [25]). Other diseases with high mortality, such as
cancer, are particularly difficult to diagnose in wild popu-
lations [14,26,27] with the incidence of cancers in wildlife
poorly understood [28]. Animals affected by most forms of
cancer are generally not diagnosable until tumours are visible
externally, and death often occurs before clinical symptoms are
apparent [29]. Given the ubiquity of oncogenic processes in
most multicellular organisms [30,31], studying their behav-
ioural effects in wild populations is both ecologically and
epidemiologically relevant across a broad range of taxa. How-
ever, studying sickness behaviour in wildlife requires a system
in which (i) individuals display clearly diagnosable clinical
signs at an early stage, and (ii) interactions of individuals in
a population can be monitored during disease progression.

Here, we follow the progression of cancer-induced behav-
ioural changes in a solitary nocturnal animal, the Tasmanian
devil (Sarcophilus harrisii), caused by a transmissible cancer,
devil facial tumour disease (DFTD; [32]). DFTD is a clonal
cancer cell line [33] transmitted between hosts when they bite
one another, predominantly in and around the oral cavity
[34]. Transmission is driven by the social and aggressive beha-
viours of the species, resulting in bite wounds [34,35]. The
majority of transmission is expected to occur during the
devils mating season, when both interaction and injury rates
peak [35]. Once infected, tumours develop around the head
and mouth of the host, resulting in death after 6–12 months in
most cases ([36]; though see [37,38]). The disease severely
impacts the health of infected individuals, particularly as
tumour volume increases, resulting in compromised immune
function, poor body condition and lack of competitiveness in
resource acquisition [39]. As tumour load increases, the meta-
bolic cost of DFTD on the host grows, increasing the need
to conserve energy [39]. In some cases, animals can have
difficulty feeding, owing to tumours displacing teeth or
obstructing the palate and throat. Energy intake is impacted,
and progressively reduces ability to compete with conspecifics
for resources. Increasing tumour load is thus expected to influ-
ence interactions between the host and other individuals, with
consequences for transmission dynamics.

In this study, we used proximity-sensing radiotelemetry to
generate contact networks and investigated interactions within
a population of Tasmanian devils recently infectedwith DFTD.
Over a six-month period, we closely monitored both inter-
actions and disease status of the adult population to test the
effects of DFTD and tumour load on contact patterns. We
used temporal exponential random graph models (TERGMs),
which use social network theory to model an individual’s
probability of interacting with others in the population over
time, while also accounting for changes in disease status.
This allows an evaluation of how cancer progression might
alter social behaviour over a temporal scale. We predicted
that an individual’s probability of interacting would decrease
on exhibiting clinical symptoms of DFTD and with increasing
tumour load.
2. Methods
(a) Proximity loggers
Proximity loggers fitted to adjustable collars (Sirtrack E2,Havelock
North, New Zealand) were used to collect data on interactions
between devils. Individual collars emit a unique UHF pulse,
such that when two, or more, units (i.e. individual devils fitted
with collars) are proximal, details of the interaction are recorded
on the device’s internal memory. Collars were calibrated to
detect and log one another at a distance of 30 cm or less—a biologi-
cally meaningful distance at which devils could conceivably bite
one another. Proximity loggers were set up and calibrated to be
consistent with previous research on Tasmanian devil interactions
(see the electronic supplementarymaterial, S1, aswell as [35,40] for
further details of proximity logger calibration and data handling).
(b) Field site and data collection
The study was conducted in a population of Tasmanian devils
near Smithton in northwestern Tasmania, Australia (−40.980 E,
145.263 S). Individual devils were caught for collaring by setting
40 traps over a 25 km2 area (a standard monitoring area for long-
term devil population studies; [41]) for a period of one month.
Traps were custom built from 300 mm polypipe and baited
with various meats (predominantly sheep and native macropod).
The population had been surveyed for six months prior to com-
mencement of collaring, allowing identification of resident
individuals in the core study area (see the electronic supplemen-
tary material, S2, for details of individuals collared and
background population). All known sexually mature individuals
(2 years and older) were caught and collared in January 2017 (12
females, 10 males). Proximity loggers collected data on individ-
ual’s interactions from January until the end of June. This period
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covers both mating (February–April) and non-mating periods
(May–June), when devil interaction rates differ significantly
[35,40]. Timing of the mating season was estimated from extended
intersex interactions recorded by the proximity loggers and con-
firmed by back-dating birth dates of pouch young based on their
developmental stage [40,42].

Collared devils were re-trapped on amonthly basis throughout
the study period to monitor their disease status, record bite
wounds and assess collar fit. Upon capture, devils were thoroughly
examined for the presence of facial tumours. For all tumours,
length, width and depth were recorded to 0.1 mm using callipers
(Mitutoyo Vernier; Kawasaki, Japan). These measurements were
used to calculate the volume of each tumour according to the
following formula:

volume ¼ 4
3

� p

� �
� length

2
�width

2
� depth

2
:

Multiple tumours on each individual devil were pooled to
obtain a value of tumour load per individual. Tumour load on
each individual at each time-step was categorized into four levels
(as per [37]); (1) 0.0001–50 cm3, (2) 50–100 cm3, (3) 100–200 cm3

and (4) greater than 200 cm3. Devils were also examined
thoroughly for new wounds (see the electronic supplementary
material, S3, and [35] for detailed methods).

(c) Network construction
Contact networks were formulated using twelve 14-day periods
running from the point at which all adult animals in the popu-
lation had been collared—19 January. The 14-day period
represents enough time to identify new infections (clinical symp-
toms of DFTD), while being sufficiently temporally fine-scale to
identify shifts within seasons. The time series examined encom-
passes both mating (16 February–26 April) and non-mating
(19 January–15 February and 27 April–5 July) periods. In net-
work visualizations, individuals are represented as nodes
linked by observed contacts—lines (edges) between nodes are
weighted by the frequency of contacts (consistent with previous
research into devil networks [35,40]), i.e. edges represent the rela-
tive frequency of interactions between each pair of nodes. All
networks were produced using the igraph package [43] in R
v. 3.4.2 [44].

Within each 14-day period, we calculated four node-level
network metrics using igraph. All provide an indication of an indi-
vidual’s position and interactive potential within the network:
(i) interaction frequency, (ii) degree (the number of other individ-
uals associated with), (iii) betweenness centrality (the number
of shortest paths flowing through an individual; a measure of
their importance in connecting disparate parts of a network),
and (iv) closeness centrality (sum of all shortest paths flowing
through an individual; highlights nodes best placed to influence
the entire network most quickly). For each metric within each
time-step, we used a node-permuted general linear model to test
for differences between healthy and DFTD-infected individuals.
To account for the non-independence inherent in network analysis
[45,46], these were compared to 10 000 randomized networks that
had the disease status of each node allocated at random.

(d) Temporal exponential random graph models
TERGMs were used to investigate whether individual interaction
patterns within a contact network differ as a result of infection
status or tumour load. TERGMs can be used to examine network
structure through time, allowing evaluation of the effect of DFTD
on interaction patterns. TERGMs were run using the package
btergm [47] in R v. 3.4.2 [44].

Separate TERGMs were independently fitted to examine the
effects of DFTD status and tumour load on edge formation
within binary fortnightly contact networks. These models were
further subdivided into mating and non-mating season to
account for known seasonal variability in Tasmanian devil inter-
actions [35,40]. Each model included the following terms; edges—
similar to the intercept term in a general linear model (GLM), this
gives the probability of edges forming in a network relative to a
random network [48]; memory—models if interactions remain
consistent over time; nodefactor (Sex)—models sex-based vari-
ations in interactions; nodemix (Sex)—accounts for any tendency
for sexes to interact preferentially; nodefactor/cov (Wounds)—the
number of bite wounds (discrete numerical covariate) accrued
over the time periods modelled, effectively a proxy of infection
risk in the devil/DFTD system [34]. The final nodefactor/cov() in
each model was aimed at examining the tendency of interactions
to vary based on the key variables of DFTD status (binomial
factorial) or tumour load (continuous numerical covariate).
Each model was fitted using bootstrapped pseudo-likelihood
estimation, with models bootstrapped 10 000 times to obtain
confidence intervals.
3. Results
(a) Contact networks
The total number of interactions recorded over the six-month
period was 8504 (7273 in the mating season, 1231 in the non-
mating season). At the beginning of the study, three individuals
had clinical symptoms of DFTD infection,while a further seven
individuals began displaying clinical symptoms during the
following six months; the remaining 12 devils remained dis-
ease-free throughout the study period (figure 1). Network
density was significantly higher in mating season contact
networks (0.14 ± 0.02 95% confidence interval (CI)) than
non-mating season contact networks (0.09 ± 0.02).

Interaction frequency differed significantly between
healthy and DFTD-infected individuals for three periods
during the mating season (figure 2a; node-permuted GLMs;
F4, p < 0.001; F6, p < 0.001; F7, p < 0.001). Degree was signifi-
cantly lower in DFTD-infected individuals during the first
three periods of the mating season (figure 2b; F3, p = 0.033;
F4, p = 0.045; F3, p = 0.012). Betweenness was significantly
lower in DFTD-infected animals for the first two non-
mating periods in the study (figure 2c; F1, p < 0.001; F2,
p < 0.001) and a further three within the mating season
(figure 2c; F3, p < 0.001; F5, p < 0.001; F6, p < 0.001). Closeness
was only found to be significantly divergent (higher in
healthy devils) for one period during the mating season
(figure 2d; F1, p = 0.029).

(b) Temporal exponential random graph models
The probability of edge formation in fortnightly contact net-
works was observed to decrease with DFTD infection; this
effect was seen across both the mating and non-mating seasons
(table 1a). Individuals with DFTD were predicted to be 26%
(CI = 0–78%) less likely to form an edge with another individ-
ual in the network during the mating season (table 1a) and
22% (CI = 0–48%) less likely during the non-mating season
(table 1a), though this effect was not significant in either case.
Edges were more likely (mating season estimate = 1.73,
CI = 1.55, 2.43; non-mating season estimate = 1.99, CI = 1.75,
2.30; table 1a) to form between individuals that shared edges
during the previous time period, indicating the persistence of
regular interaction partners through time, regardless of infec-
tion status. There was no effect of sex or number of wounds
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Figure 1. Fortnightly (F) contact networks based on the interactions between individual Tasmanian devils over the course of six months during the early stages of a
DFTD outbreak; F1–12 represent 14-day time steps with the mating season highlighted in grey. Squares represent males, while circles represent females. Nodes
coloured solid red represent those with clinical symptoms of DFTD, where size is scaled by tumour load category (1, 0.0001–50 cm3; 2, 50–100 cm3; 3, 100–
200 cm3; 4, greater than 200 cm3; [37]). Edges between nodes represent interaction frequency within the dyad, the thicker the line, the more interactions between
those individuals. Edges have been scaled (dyad interaction frequency/30) to allow depiction of high edge weights without occluding entire networks. (Online
version in colour.)
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accrued on the probability of edge formation, while sex-mixing
was unbiased towards either homophily or heterophily
through time in both seasons (table 1a).

A significant effect of tumour load was observed in
TERGMs investigating the effect of tumours, with devils
becoming progressively less likely to form edges with other
individuals in the network, with increasing tumour load
(table 1b). For each increasing level of category of tumour
load (1–4) that an individual progressed through, the likeli-
hood of forming an edge decreased by 17% (CI = 5–30%) in
the mating season, and by 15% in the non-mating season
(CI = 5–25%; table 1b).
4. Discussion
We provide, to our knowledge, the first empirical study of the
progression of a transmissible cancer and its effects on social
behaviour through a population of wild animals by closely
monitoring their disease status and interactions over a



Table 1. Model output for temporal exponential random graph models investigating the influence of (a) DFTD status and (b) tumour load on edge formation
within 14-day contact networks during the mating and non-mating seasons. (Confidence intervals (CI) provide the lower and upper bounds of the 95% CI
around the model estimate.)

model term

mating season non-mating season

estimate CI estimate CI

(a) DFTD status

edgesa −2.47 −3.50, −1.57 −2.57 −3.16, −2.10
memorya 1.73 1.57, 2.42 2.04 1.83, 2.36

sex (M versus F) 0.27 −0.63, 0.85 0.06 −0.32, 0.38
same sex versus different sex −0.05 −0.42, 0.19 −0.19 −0.66, 0.22
wounds 0.08 −0.006, 0.18 0.10 −0.11, 0.22
DFTD status (+ ve versus −ve) −0.26 −0.78, 0.05 −0.22 −0.48, 0.09

(b) tumour load

edgesa −2.78 −3.87, −1.88 −2.81 −3.30, −2.53
memorya 1.70 1.53, 2.40 2.02 1.78, 2.35

sex (M versus F) 0.29 −0.61, 0.87 0.07 −0.32, 0.40
same sex versus different sex −0.05 −0.41, 0.18 −0.19 −0.67, 0.22
wounds 0.08 −0.02, 0.17 0.09 −0.10, 0.20
tumour load (0–4)a −0.17 −0.30, −0.05 −0.15 −0.25, −0.05

aSignificant terms are those for which the confidence intervals do not cross zero.
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six-month period. An individual Tasmanian devil’s probability
of interaction declines progressively as DFTD load increases.
Consequently, disease progression reduces the connectivity of
DFTD-infected animals within their social network, particu-
larly during the mating season when most potential disease
transmission opportunities occur [35]. These findings have
implications for our understanding of the progression and
transmission of DFTD in Tasmanian devils, while also contri-
buting to our knowledge of disease-induced sickness
behaviours.

The negative correlation between tumour load and inter-
action frequency is consistent with expectations that infected
devils would reduce their interactions as the cost of infection
became higher. Devils with a higher tumour load appear to
become increasingly socially isolated, which can be a conse-
quence of both the metabolic and physiological costs of the
cancer. Given that most interactions in devils are based
around competition (either for food or mating partners;
[34,35]), a decrease in interactions is also likely to signal
reduced competitive ability. Ruiz-Aravena et al. [39] found
that body condition in DFTD-infected devils, particularly
males, declines sharply as tumour volume exceeds 3% of
body weight. The fact that our data also show a decrease in
interaction rate, particularly at high tumour volumes, indicates
the presence of a threshold beyond which the effect of disease
burden on behaviour becomes pronounced. Reduced inter-
action rates and network connectivity of devils in the latter
stages of DFTD infection should affect transmission dynamics.
Individuals are expected to be most likely to transmit DFTD to
new hosts when tumours are at their largest because of the
greater area of infected tissue [49]. However, we show that
devils with high tumour loads interact with other animals rela-
tively infrequently, which reduces potential opportunities for
DFTD transmission. Instead, interaction patterns suggest it
may be devils in earlier stages of infection, with smaller
tumour loads and suffering less from the effects of the disease
in terms of overall health, condition and sickness behaviour,
that are likely to be driving disease transmission.

Interaction patterns alter in individuals infected with
DFTD, a tendency that has measurable effects on their overall
connectednesswithin their social network. The observed effects
are driven by reproductive season, with most network metrics
aligning in the non-mating season but diverging during the
mating season. Notably, the network metrics of DFTD-infected
devils were more similar to those of healthy individuals
towards the end of the mating season. Thus, there is an increase
in connectivity of diseased individuals as the mating season
comes to a close—both in terms of the number of individuals
they interact with (degree) and whether they occupy key pos-
itions capable of reaching disparate parts of the network
(betweenness). This period may be important for DFTD trans-
mission dynamics. Not only are infected devils involved in
more interactions, those interactions are with individuals
already likely to be in poor condition and immunocompro-
mised, making these other individuals particularly vulnerable
to infection (a recognized pattern in dasyurids; [50,51]). While
aggressive mating season interactions have been identified as
key to DFTD spread previously [34,35], our results indicate
that late-season interactions may be particularly important
sources of transmission events.

It remains difficult to disentangle the potential effects of
sickness behaviours from the possibility that healthy devils
are actively avoiding those with DFTD. Avoidance behaviour
could become particularly pronounced as tumours increase
in size and present an increasingly clear visual signal of dis-
ease to other individuals. Additionally, DFTD infection is
probably associated with olfactory cues, as ulcerated tumours
are regularly the source of secondary infections and necrosis.
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Devils have a keen sense of smell [52], so it is conceivable that
they would react to DFTD olfactory cues, potentially influen-
cing contact behaviour. Nonetheless, our results suggest that
healthy individuals are not avoiding diseased individuals
entirely. First, networks are not segregated into healthy and
DFTD-infected subgroups. Second, long-term associations
within contact networks continue to persist when one half
of a dyad becomes symptomatic. For example, a female–
female relationship persisted through the entire six-month
study period, including after one female began to develop
clinical signs of DFTD. Most of the dyads’ interactions took
place during the day, indicating the females were regularly
denning together (devils are nocturnal; [52]); a behaviour
unlikely to result in competitive interactions or injury [35].
Further, this demonstrates a healthy individual that was
not actively avoiding a symptomatic individual. While we
cannot rule out behavioural avoidance, it is unlikely to be
the sole driver of alterations in interaction patterns observed
in individuals with DFTD. Future studies combining inter-
action data with geographical location will be useful to
investigate avoidance behaviour further.

Evaluating the effects of disease on behaviour is rare in
wildlife studies, owing to the difficulty of diagnosis and of
following disease progression in a wild setting. Here, we pro-
vide evidence that progression of a transmissible cancer alters
interaction rates and position within a social network in Tas-
manian devils. This has implications for our understanding
of how infectious cancers may evolve and spread. Up to
20% of cancers in humans [53], possibly even more in wildlife
[54], have been associated with direct infectious origins.
Improved knowledge of the behavioural side effects of
infectious diseases can help to further understand their over-
all ecological and evolutionary effects in wildlife across a
broad range of taxa.
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