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Relieving Cost of Epidemic by Parrondo’s Paradox: A
COVID-19 Case Study

Kang Hao Cheong,* Tao Wen, and Joel Weijia Lai

COVID-19, also known as SARS-CoV-2, is a coronavirus that is highly
pathogenic and virulent. It spreads very quickly through close contact, and so
in response to growing numbers of cases, many countries have imposed
lockdown measures to slow its spread around the globe. The purpose of a
lockdown is to reduce reproduction, that is, the number of people each
confirmed case infects. Lockdown measures have worked to varying extents
but they come with a massive price. Nearly every individual, community,
business, and economy has been affected. In this paper, switching strategies
that take into account the total “cost” borne by a community in response to
COVID-19 are proposed. The proposed cost function takes into account the
health and well-being of the population, as well as the economic impact due
to the lockdown. The model allows for a comparative study to investigate the
effectiveness of various COVID-19 suppression strategies. It reveals that both
the strategy to implement a lockdown and the strategy to maintain an open
community are individually losing in terms of the total “cost” per day.
However, switching between these two strategies in a certain manner can
paradoxically lead to a winning outcome—a phenomenon attributed to
Parrondo’s paradox.

1. Introduction

The outbreak of coronavirus disease 2019 (COVID-19) has spread
rapidly across the globe at an alarming pace, causing consid-
erable anxiety and fear among the general public.[1–3] The epi-
demic has witnessed an exponential growth in infections without
any proper strategy to control the spread.[4] The issues involved
in the epidemic are both nuanced and complex. Approaching
these issues from multiple fields of expertise such as machine
learning,[5–8] complexity science,[9–11] network science,[12–14] and
uncertainty measure[15–17] will help accelerate us toward solu-
tions. Early lessons from some countries have shown that, by
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not imposing a lockdown, increases in
the numbers of infected individuals and
deaths[18–20] are inevitable. Other than the
rampant spread of COVID-19, populations
are also coping with other substantial health
and psychological stresses.[21,22] This will
put a strain on healthcare services, espe-
cially for countries with less developed fa-
cilities ill-equipped to manage the sudden
spikes in hospital admission. Irrefutably,
an absolute lockdown reduces the oppor-
tunities for individuals to come into close
contact with one another, thereby limiting
the disease transmission.[23] While an ab-
solute lockdown is effective in curbing an
epidemic,[9,24,25] it will paralyze economic
activity across the world as factories shut,
bringing manufacturing to a halt, and in-
dividual activities are hampered.[26,27] This
will have a huge impact on the economy
and individual purchasing power.[28,29] That
is to say, lockdown strategy has benefits
in alleviating the spread of the virus, but
it will decimate the economy. When con-
sidering the health and well-being of the

population, as well as economic impacts, the two strategies—a)
keeping communities open and b) implementing lockdown—
are both losing strategy when considered individually. We then
ask an important question: can both losing strategies be com-
bined in a certain manner, leading to a winning outcome, de-
fined in our model as an outcome having a falling daily “cost”
over time? In this paper, we seek to answer this question by mod-
eling the population using Parrondo’s paradox with the view of
relieving cost of the epidemic by a switching strategy. We will
explore how the combination of two losing strategies can lead
to a winning outcome, similar to the framework of Parrondo’s
paradox.[30] Parrondo’s paradox was first conceptualized as an ab-
straction of flashing Brownian ratchets,[31–33] wherein diffusive
particles exhibit unexpected drift when exposed to alternating pe-
riodic potentials. It has since been applied across a wide range
of disciplines in the physical sciences and engineering-related
fields,[34,35] such as diffusive and granular flow dynamics,[36,37]

information thermodynamics,[38–40] chaos theory,[41–47] switching
problems,[48–50] and quantum phenomena.[51–57] The paradox has
also found numerous applications in life science,[58–62] ecology
and evolutionary biology,[63–65] social dynamics,[66–70] and inter-
disciplinary work.[71]

In this paper, we propose a compartmental population model,
which we call the SIADE model, that takes into account the health
and well-being of the population, as well as economic impacts. In
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this SIADE model, we partition the entire population of a com-
munity into five different compartments. The general population
is susceptible (S). During the epidemic, people in S can be iso-
lated (I). The people in S can also be infected, and an infected
patient is either ailing (A) or diagnosed (D). Finally, the portion
of population that succumbs to the disease is counted toward the
extinct population (E). By using the SIADE model, it provides a
framework to calculate the “cost” borne by each response strategy
to COVID-19 management (which is strictly based on the size of
each population compartment). The employed strategy will de-
termine how the population flows in each compartment. Mean-
while, a cost function that takes into consideration the health and
well-being of the population, as well as economic impact, is pro-
posed to compute the cost attributed to the different strategies.
This index will indicate the effectiveness of the different sup-
pression strategies and reveal how two losing strategies can be
combined to achieve a winning outcome. Section 2 shows the
population interaction model and presents the results of the var-
ious strategies employed. Subsequently, we provide analysis and
discussion in Section 3. We further develop the methods in Sec-
tion 4. More details on these parameter functions can be found
in the Supporting Information.

2. Results

2.1. Population Model

The SIADE model describes the interaction and flow between the
different population compartments during the COVID-19 epi-
demic. In this model, there are five different compartments. Dur-
ing an epidemic, the government can impose a strict lockdown
strategy, which shifts the susceptible population from S into iso-
lation I at a rate ϕ(t). Similarly, an isolated population I can come
out of isolation and become susceptible S at rate 𝜑(t). The suscep-
tible population S can be infected at rate 𝛼. However, after infec-
tion, only a portion is detected and diagnosed D, with probability
𝜇(D). The remaining infected population that goes undetected is
classified as ailing A. The isolated population is assumed to be
effective in preventing further infection,[72] in that the isolated
population will not be infected. With detecting, the ailing popu-
lation can be diagnosed. This is proportional to the detection rate
𝛾 . Individuals in both the ailing (A) and diagnosed (D) popula-
tions can recover with rates 𝜁 and 𝜉(D), respectively, or die with
rates 𝜐 and 𝜔(D), respectively. The evolution of the population in
different stages over time, is shown below:

Ṡ(t) = −𝛼S(t)A(t) − 𝜙(t)S(t) + 𝜑(t)I(t) + 𝜉(D)D(t) + 𝜁A(t)

İ(t) = 𝜙(t)S(t) − 𝜑(t)I(t)

Ȧ(t) = 𝛼
(
1 − 𝜇(D)

)
S(t)A(t) − 𝛾A(t) − 𝜐A(t) − 𝜁A(t)

Ḋ(t) = 𝛼𝜇(D)S(t)A(t) + 𝛾A(t) − 𝜔(D)D(t) − 𝜉(D)D(t)

Ė(t) = 𝜐A(t) + 𝜔(D)D(t) (1)

where S(t), I(t), A(t), D(t), E(t) refer to the population sizes of each
compartment at any given time t. In this model, we assume no
new birth or natural death, thus, S(t) + I(t) + A(t) + D(t) + E(t)
is a constant for all t. Figure 1 illustrates the interactions among

Figure 1. The SIADE model depicting the interaction between each com-
partment. The population is partitioned into five compartments: Suscepti-
ble (S), Isolated (I), Ailing (A), Diagnosed (D), and Extinct (E), respectively.

Table 1. Description of initial conditions and parameters.

Parameter Description Initial conditions

S(0) Number of susceptible people 107

I(0) Number of isolated people 200

A(0) Number of ailing people 200

D(0) Number of diagnosed people 0

E(0) Number of extinct people 0

𝛼 Infection rate 1.4 × 10−7

𝜁 Recovery rate of A 0.2

𝜐 Mortality rate of A 0.5 × 10−2

𝛾 Detection rate Random [0.1, 0.2]

ϕ(t) Isolation rate 0

𝜑(t) Discontinue isolation rate 0

𝜉(D) Recovery rate of D Sd(D, 2.5 × 104, 3 × 103, 0.5, 0.45)

𝜇(D) Probability of diagnosis on infection Su(D, 2 × 104, 7 × 103, 0.5, 0.45)

𝜔(D) Mortality rate of D Su(D, 3 × 104, 3 × 103, 0, 10−3)

different populations. The initial values of the different popula-
tions and flow rates used in this paper are shown in Table 1. The
parameter functions in Table 1 are further discussed in the Sup-
porting Information.

2.2. Strategies Implemented

In an epidemic, the government can employ several strategies to
combat the societal implications of the disease. In this context,
we define a losing strategy as one bearing a substantial cost to
the society.

2.2.1. Individual Strategies

In our case, we consider a) open community and b) lockdown
individually. The details of both strategies are discussed below.
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a. Open community (Strategy A) will not encourage isolation.
This will see a flow of population from I to S, if the population
is initially in isolation. The implementation is as follows:
1) 𝜑(t) = Su(t − tstart, 10, 7, 0.05, 0.05) + r, where r is a random

number drawn uniformly from [ − 0.03, 0.03].
b. Lockdown (Strategy B) imposes restrictions on the physical

movement of the population in S, resulting in S mass con-
verting to I. This will also facilitate an improvement in the
detection rate 𝛾 . We also assume that individuals who feel un-
well will go to the hospital at the soonest available time, re-
sulting in an improvement to 𝜇(D). Notably, in our model, we
impose an upper limit to I, set at 9.5 × 106. This accounts for
workers required to maintain essential activities such as food
supply, transportation, and daily operations in the hospitals
when most people are isolated and infected. The implemen-
tation is as follows:
1. ϕ(t)= Su(t− tstart, 20, 10, 0.05, 0.05)+ r, where r is a random

number drawn uniformly from [ − 0.03, 0.03];
2. 𝛾 increases from its previous value to a random number

in [0.2, 0.3];
3. 𝜇(D) is Su(D, 104, 5 × 103, 0.5, 0.45).
The random number r in 𝜑(t) and ϕ(t) is incorporated in both
strategies to account for a small portion of the population that
does not adhere to the prescribed strategy.

2.2.2. Alternating Strategies

There are three different types of alternating strategies to be stud-
ied in this paper. These strategies employ various switching rules
involving both of the individual strategies A and B. They are the a)
time-based switching scheme, b) result-based switching scheme,
and c) random switching scheme.

a. Time-based switching scheme alternates between strategy A
and strategy B based solely on time t,[73] that is, if

{
0 ≤ mod (t, T) < t1, employ strategy A
t1 ≤ mod (t, T) < T, employ strategy B

(2)

This means that strategy A and strategy B will be applied in se-
quence. Open community is implemented in the period [0, t1)
and lockdown is imposed in the period [t1, T). For illustrative
purpose, we use T = 10, t1 = 5 in the numerical experiments
in this paper.

b. Result-based switching scheme has dynamics similar to the
time-based switching scheme. However, instead of switching
according to time, this switching scheme is decided by the
number of new infections from the previous day, that is, if

{
𝛼S(t)A(t) < LD, employ strategy A
𝛼S(t)A(t) > LU, employ strategy B

(3)

Here, 𝛼S(t)A(t) is the number of new infections per day. When
the infection count is higher than LU = 6000, lockdown is im-
posed. On the contrary, an open community strategy is then
applied when the infection count is lower than LD = 1000.
When 𝛼S(t)A(t) is in [LD, LU], the community will continue
with the strategy from the previous day.

c. Random switching scheme will adjust the implementation
strategy arbitrarily every day. In the long term, each strategy
will be implemented with probability 0.5.

2.3. Cost Function

We quantify the efficacy of each strategy via a cost function. The
cost function takes into account the loss to both society and in-
dividuals in the form of hospitalization cost, personal opportu-
nity cost, human capital investment (defined as the economic
value of a worker’s experience and skills), and the cost of risky
behavior.[74] The cost function F(t) is defined as

F(t) = FH(t) + FI(t) + FC(t) + FR(t) (4)

where FH(t), FI(t), FC(t), and FR(t) are the hospitalization cost, in-
dividual opportunity cost due to isolation, human capital invest-
ment, and the cost of risky behavior, respectively. The way we
quantify each term can be found in the Supporting Information.
Meanwhile, the cumulative cost  (t) is considered together with
the “cost” per day. The cumulative cost  (t) is the cumulative cost
from the beginning to time t. More details can be found in the
Supporting Information.

2.4. Rising Cost Arising from Individual Strategies

As noted in our description of this model, neither strategy A nor
strategy B can individually result in a decline to the “cost” during
an epidemic. Figure 2a–c shows the evolution and flow of pop-
ulations in each compartment and the “cost” under lockdown.
Figure 2d–f depicts the same for an open community. Clearly,
our simulation results show that either individual strategy is a
losing one.

Under the lockdown strategy (Figure 2a), we observe that D
and A have reduced drastically after the implementation of a lock-
down. As the population remains in lockdown after the first wave
of epidemic around t = 25, this aggressive strategy results in the
eradication of the number of people infected by the virus around
t = 40. These simulation results show the effectiveness of a lock-
down in response to epidemics that spread through human con-
tact. Figure 2b shows that as more people go into isolation, the
virus spreads less easily. However, effective as this strategy is,
the total cost starts to rise when the lockdown is imposed, as ob-
served in Figure 2c. The cost then further increases at a faster
rate beyond t = 40. The initial decline is attributed to decreases in
the loss of human capital FC(t) and in hospitalization cost FH(t).
Meanwhile, FC(t) and FH(t) are the direct outcome of the num-
ber of individuals in E(t) and D(t). However, this is soon out-
weighed by the individual opportunity cost due to isolation. FI(t)
rises faster than the decline of other costs, when the isolation pe-
riod reaches TI (See Supporting Information for details on TI).
Hence, the total cost F(t) will continue to increase after t = 40.
This rising cost allows us to classify strategy B as a losing strategy.
The same analysis applies to strategy A, leading to the same con-
clusion. Of particular interest is the smooth “ratcheting” behav-
ior of the cost. Such phenomenon is reminiscent of Parrondo’s
paradox.[30] The cumulative cost  (t) of individual strategy A and
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Figure 2. The epidemic will have different trends under different single strategies. (a–c) show the trend under lockdown, while (d)–(f) show the trend for
an open community strategy. In particular, (a) and (d) show the changes of population which are affected by COVID, that is, Ailing (A), Diagnosed (D),
and Extinct (E); (b) and (e) show the changes of Susceptible (S) and Isolated (I); (c) and (f) show the change in cost under different single strategies.

strategy B tracks the accumulated cost due to the epidemic. (See
Supporting Information for a definition of cumulative cost.) We
will now exploit the ratcheting effect to our advantage by consid-
ering the switching between both strategies.

2.5. Controlled Loss under Alternating Strategies

Despite both strategies (lockdown and open community) individ-
ually resulting in “losing” outcomes as defined in the previous
subsection, we show here that it is possible to obtain a “winning”
outcome by switching between the two strategies. Here, a “win-
ning” outcome is defined as a strategy that results in a moder-
ated cost, while not compromising the number of individuals in
E. A winning outcome can be achieved because switching from
strategy B to strategy A allows the population in I to flow to S.
As a result, this reduces the cost due to FI(t), which is caused
by an extended period of isolation. At the same time, switching
from strategy A to strategy B significantly reduces the hospital-
ization cost FH(t) and human capital investment FC(t) resulting
from infections. Our simulation results show that both the time-
based switching and result-based switching scheme can control
the “cost” caused by an epidemic. Figure 3a–c shows the results
due to the time-based switching scheme. Figure 3d-f shows the
results derived from the result-based switching scheme.

When alternating between the two strategies according to the
time-based switching scheme, we observe that the rate of increase
in population E decreases, and remains lower than if we were
to employ strategy B individually. Meanwhile, the net population
sizes of D and A gradually decrease in each instance of the switch-

ing. This proves that the switching strategy is useful in control-
ling the epidemic. We observe a downward trend for both popula-
tions A and D. Closer inspection of the population size of S and I
in Figure 3b shows that time-based switching gradually increases
the population in isolation I. This ratcheting effect means that
no one single cost can significantly outweigh the three other cost
components, and thus the cost decreases and stabilizes over time
as observed in Figure 3c. As the strategies are time-based, the pe-
riodic rise and fall in the number of infected individuals will be
largely predictable and periodic in real life. A similar trend can
be observed from the result-based switching scheme. It is worth
noting that, as result-based switching is based on the number
of infections from the previous day, it employs a stricter condi-
tion for switching between strategy A and strategy B. This allows
populations A and D to fall significantly, before a second wave
is observed again, as depicted in Figure 3d. This stricter con-
trol measure also results in fewer deaths. Our simulation results
(not shown here) also revealed that even the random switching
scheme based on a simple coin toss can result in relieving the
“cost” borne during an epidemic when compared against the cost
of sticking to an individual strategy. This shows that our model is
robust across a wide range of switching strategies. However, the
random switching scheme may be difficult to implement in the
real world. It will not be further discussed in this paper.

2.6. Sensitivity Analysis Test

We want to study the effects of different parameters on the to-
tal cost F(t) and cumulative cost  (t). Firstly, when implement-
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Figure 3. The epidemic evolves differently under different switching strategies. (a)–(c) show the tendency under the time-based switching scheme. (d)–
(f) show the tendency under result-based switching scheme. In particular, (a) and (d) show the changes of population which are affected by COVID-19,
that is, Ailing (A), Diagnosed (D), and Extinct (E); (b) and (e) show the changes of Susceptible (S) and Isolated (I); (c) and (f) show the change in cost
under different switching strategies.

Figure 4. The variation in cost function F(t) and cumulative cost (t) under sensitivity analysis of the parameters. (a) shows F(t) and (t) as a function
of CD ∈ [10000, 25000] in intervals of 3000. (b) shows F(t) and (t) as a function of CE ∈ [20000, 35000] in intervals of 3000. (c) shows the variation in
lockdown duration by varying t1 ∈ [1, 9] in intervals of 1 in the time-based switching scheme (T = 10).

ing the time-based switching scheme, we studied the impact of
changing CD and CE on the cost F(t) and  (t). The various out-
comes of F(t) and  (t) under different values of CD and CE are
shown in Figure 4a and Figure 4b, respectively. In our simula-
tions, we consider CD ∈ [10000, 25000] in intervals of 3000 and
CE ∈ [20000, 35000] in intervals of 3000. A darker color of the line
represents a greater CD and CE. From Figure 4a, we can conclude
that a change in CD causes a large change in F(t) in the early stage
([10, 30]), because CD mainly depends on the number of individ-
uals in population D. As discussed in the previous subsection,
since the alternating strategy is only implemented at t = 20, the

population count in D is still high. The difference of F(t) in the
later stage is small, because the epidemic is well controlled at that
stage. Thus we do not expect to see large variations in F(t) despite
changing weight CD. Contrary to CD, the differences in F(t) due to
varying CE is mainly observed in the later period. This is because,
as the epidemic develops, the number in E gradually increases,
resulting in greater variations in F(t).

Next, we study the impact of the lockdown duration on the
cost function F(t) and cumulative cost  (t) using the time-based
switching scheme in Figure 4c. In this numerical experiment, we
fixed the cycle period T = 10, with t1 ∈ [1, 9] in intervals of 1 (i.e.,
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for smaller t1, the population is in lockdown for the majority of
the cycle period). A darker color of the line represents a greater
t1. The observed trend confirms the intuition that in the extreme
cases, regardless of whether t1 is small or large, we do not obtain
a decrease in the cost function. This is attributed to the fact that
in these extreme cases, the time-based switching strategy is very
similar to the individual strategy, and so the cost function F(t)
also displays the same outcome.

The cumulative cost  (t) trend in each figure is based on the
value of F(t).  (t) will increase more rapidly with larger F(t) in
each day, as observed in Figure 4. We also observe that we will
obtain a higher  (t) with higher CD, CE, and t1 values. It is worth
noting that when t1 reaches its lower bound,  (t) does not change
significantly (as opposed to at the upper limit of t1). This is be-
cause F(t) has a smaller variation in the later period.

3. Discussion

In this study, we have shown the paradoxical result of switching
between two losing strategies to lower the “cost” of an epidemic
via Parrondo’s games. We have also quantified and analysed the
impact of different strategies on the health and well-being of the
population, as well as on the economy. When combining two los-
ing strategies, we show that one can achieve a winning result,
defined as a strategy that leads to a decline in the “cost” per day.
From this study, we show that keeping the community open re-
sults in a large number of infected individuals and a sharp in-
crease in the number of deaths over time, so naturally the “cost”
also increases. At the same time, a lockdown strategy reduces the
possibility of infection, but has an adverse effect on the socio-
economic cost. This means that neither strategy A nor strategy
B can individually result in a decline to the “cost” in the long-
term during an epidemic. Such rising “cost” allows us to clas-
sify them as losing strategies. Meanwhile, if most people do not
comply with the compulsory lockdown strategy, or if strategy is
not maintained long enough, the benefits will be significantly re-
duced. Our proposed model also shows that alternating strategies
will gradually bring down the costs.

Our model is important as it reveals the possible strategies that
can be implemented to curb the spread of COVID-19 or future
epidemics. When one switches between the losing strategies in
accordance with any of the proposed alternating strategies, the
“cost” per day will decline. This, in itself, is a winning strategy
to control the loss caused by COVID-19. In this paper, three dif-
ferent switching rules have been introduced. They are the time-
based switching, result-based switching, and random switching
scheme. While the first two switching schemes can be evalu-
ated and realistically implemented in the real-world, the random
switching scheme may not be feasible due to the potential confu-
sion that it may bring about to the residents.

Regarding the switching strategies, the result-based switching
scheme sees a steeper fall in the total “cost” compared to the time-
based switching scheme. The increasing trend of  (t) in these
two alternating strategies is slower than that for either individ-
ual strategy (deployed on its own). Our results have shown that
an alternating strategy following any of the switching rules will
effectively reduce the “cost” caused by an epidemic, a counter-
intuitive result exploited through Parrondo’s games. It is impor-
tant to point out that regardless of which alternating strategy is

adopted, the resulting total cost F(t) is about an order of mag-
nitude lower than that of the individual strategy implementa-
tion. Finally, we conduct a sensitivity analysis test by varying the
weights involved in populations D and E. We conclude that the
parameter CD associated with population D affects the variation
of cost in the early stage of strategy implementation, while CE af-
fects the later stage. We expect these results to serve as simple but
strong baselines that can motivate future work in lockdown exit
strategies. This work is useful for policy makers to chart a strategy
to manage the epidemic in their respective country. In our model,
we have considered the health and well-being of the population,
as well as the economic impact. In order for the model to remain
tractable, there are other costs and gains which are not consid-
ered here. We further note that changes in the characteristics of
the strain of the virus, like the severe disease rate and infectiv-
ity, caused by mutations are not considered in this model. The
novelty of our work lies in designing a methodology and math-
ematical framework to combine two losing strategies in a com-
partmental population model to achieve a winning outcome—a
phenomenon attributed to Parrondo’s paradox.

4. Experimental Section
MATLAB 2016a with ode23 differential equation (ODE) solver was used

to simulate the population model. Simulations under different parameters
showed that the lockdown strategy and open community strategy are both
losing strategies in the long-term, resulting in the greatest cost to society
as quantified by the cost function. The initial value of different populations
and parameters are shown in Table 1. The population starts as an open
community at time t = 0 and strategies will be implemented according
to the rules described above. The period of open community is set to be
from t = [0, 20], that is, the first instance at which a decision needs to be
made (on which strategy to employ) is t = 20+. Under the switching strat-
egy in Equations (2) and (3), the strategy will be switched only once a day,
rather than detecting time t and number of new infections 𝛼S(t)A(t) at any
time. When the detected data meets the switching conditions, the param-
eters will be modified to pre-defined values in the switching rule. Then, the
population interaction model will continue to be simulated under new pa-
rameter conditions. The cost at any time, which considers the health and
well-being of the population, as well as the economy, will be calculated by
Equation (4) to evaluate the efficacy of each strategy. Published real-world
data from organization and government report (available in refs. 72,75-
77) were used to validate the model with parameter values given in the
Supporting Information. The parameter functions78 in Table 1 are further
discussed in the Supporting Information.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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