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Fluctuations in blood oxygenation and flow are widely used to infer brain
activity during resting-state functional magnetic resonance imaging
(fMRI). However, there are strong systemic and vascular contributions
to resting-state signals that are unrelated to ongoing neural activity.
Importantly, these non-neural contributions to haemodynamic signals (or
‘rude mechanicals’) can be as large as or larger than the neurally evoked
components. Here, we review the two broad classes of drivers of these sig-
nals. One is systemic and is tied to fluctuations in external drivers such as
heart rate and breathing, and the robust autoregulatory mechanisms that
try to maintain a constant milieu in the brain. The other class comprises
local, active fluctuations that appear to be intrinsic to vascular tissue and
are likely similar to active local fluctuations seen in vasculature all over
the body. In this review, we describe these non-neural fluctuations and
some of the tools developed to correct for them when interpreting fMRI
recordings. However, we also emphasize the links between these vascular
fluctuations and brain physiology and point to ways in which fMRI
measurements can be used to exploit such links to gain valuable information
about neurovascular health and about internal brain states.

This article is part of the theme issue ‘Key relationships between
non-invasive functional neuroimaging and the underlying neuronal activity’.
1. Introduction
It is now widely understood that functional magnetic resonance imaging
(fMRI) does not directly measure neural but rather haemodynamic activity.
The success of blood oxygen level dependent (BOLD) and cerebral blood
volume (CBV) based fMRI signals as proxies for local neural activity makes it
easy to forget their vascular basis. But there are at least two reasons to keep
this basis in mind.

First, the neural mechanisms driving the vascular response are complex and
can vary between brain regions. This determines how we interpret haemo-
dynamic measurements in terms of local neural activity [1]. The
interpretation can change between different cortical areas [2]. It can vary non-
linearly between cortex, thalamus and brainstem for a sensory pathway [3]. It
even reverses sign [4,5]. This complex ‘neurovascular coupling’ linking vascular
responses to neural activity is an area of considerable research, however, and is
well covered by other recent reviews [6–8].

Next, in addition to neurally evoked responses, brain vasculature exhibits
large fluctuations in arterial diameter and hence in blood volume and flow
independent of local neural activity. Although such fluctuations have long
been noted, and these fluctuations can be as large as or even larger than neu-
rally evoked ones [9,10], they are relatively less well studied. These are the
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subject of the current review. There appear to be two broad
classes of vascular fluctuations. One class is systemic and
can be related to physiological drivers such as heart rate or
breathing [11]; or ‘systemic low-frequency oscillations’ that
move through the brain vascular network like a travelling
wave but can also be detected in the fingertips and toes
[12]. The other class is local and comprises fluctuations in
blood vessel diameter that correlates over much shorter
distances, e.g. over 100s of microns in the mouse, though
they may be bilaterally symmetric [9,13]. These local fluctu-
ations may be a form of ‘vasomotion’, i.e. rhythmic
dilations and constrictions that were first reported in veins
in the bat wing [14] and also have been described since in
many blood vessels, particularly arteries, throughout the
body [15]. Vasomotion is intrinsic to blood vessels and is
generated locally without the need for external drivers,
although the fluctuations can be neurally modulated and syn-
chronized (see §4). Imaging studies often treat both systemic
and local vascular fluctuations as confounds to be removed.
But they have important physiological relevance. The sys-
temic fluctuations are a valuable probe of neurovascular
health. The local fluctuations are likely critical for normal
vascular perfusion and in shaping the local neurovascular
response, and could carry information about internal brain
states of arousal and engagement in a task. These points
are elaborated further in this review.
2. Systemic haemodynamic fluctuations
Systemic fluctuations in brain vascular responses are tied to
physiological processes such as heart rate, breathing and
blood pressure (BP). Importantly, the processes relevant in
the brain comprise not just the external drivers (in humans,
heart rate approximately 1–2 Hz, breathing approximately
0.5 Hz and their slower fluctuations) but also the brain auto-
regulatory mechanisms triggered by resultant changes in BP
and CO2, as described in the next paragraph. The overall sys-
temic processes are low frequency (approx. 0.1 Hz) and can
cause dynamic cerebrovascular changes at similar frequen-
cies. Since fMRI cannot resolve individual micro-vessels,
rather giving information averaged over relatively large
areas of cortex, it is strongly modulated by these systemic
processes. Their overlap with frequencies attributed to slow
fluctuations in neural activity (approx. 0.01–0.1 Hz) makes
it particularly problematic to interpret low-frequency fluctu-
ations in BOLD fMRI signals such as intrinsic or resting-
state measurements [16,17]. BOLD is a vascular signal that
depends not only on the cerebral metabolic rate of oxygen
(CMRO2—which can be assumed to be a proxy of neural
activity) but also on other factors such as cerebral blood
flow (CBF) and CBV [18], both of which can change indepen-
dently of neural activity. More importantly, since these
dynamic changes occur at the same frequency as the sup-
posed neural fluctuations, they cause issues with the
interpretation of resting BOLD fluctuations as purely
neural. For example, by increasing test–retest reliability [19]
significant differences in default mode network connectivity
between Alzheimer’s disease patients and controls can disap-
pear once non-neural fluctuations are accounted for [20].
However, this also provides an opportunity to use fMRI to
investigate the vascular fluctuations themselves, opening
the possibility of using fMRI as a tool for investigating
cerebrovascular health, for example, assessing cerebrovascu-
lar reactivity (CVR) after stroke [21], investigating the
beneficial effects of exercise [22] or linking vascular rigidity
to cognitive ageing [23].

When discussing the relationship between systemic pro-
cesses and the BOLD signal, it is useful to frame blood
flow in large feeding arteries in the brain in terms of two
mechanistically differing physiological processes: CVR and
cerebral autoregulation (CA) [24,25]. CVR is the dilation
response to a vasoactive stimulus, such as CO2, that increases
CBF. By imposing large physiological challenges, we can gain
good insight into how the purely vascular components of
fMRI signals can be measured, thus informing us on how
natural fluctuations in vascular dynamics might be disen-
tangled from other neural-related fluctuations. CA is the
brain’s ability to maintain a constant CBF despite changes
in systemic BP. To date, CA has mainly been measured
with transcranial Doppler (techniques [26–28], which are
restricted to large arteries.

An effective way to assess CVR is by altering the mixture
of inhaled gases of subjects. This manipulation changes blood
properties, which in turn causes cerebral haemodynamic
changes that are measurable with fMRI. CO2 is a potent vaso-
dilator that increases CBF—and thus BOLD signals—which
can be used to measure CVR. Breath-holds are a simple
way of increasing CO2 concentrations in the blood that can
provide a repeatable measure of CVR [29]. However, admin-
istering specific levels of CO2 through gas masks in the
scanner provides a more controlled approach [30]. Using
this approach, the calibrated BOLD method allows for the
separation of vascular and neural components of fMRI sig-
nals to calibrate task-related signals resulting in a measure
of CMRO2 changes [31]. Extending this approach by combin-
ing CO2 and O2 gas challenges in the scanner facilitates the
separation of vascular and neural components of fMRI sig-
nals, allowing the measurement of absolute baseline
CMRO2 [32–34]. Baseline levels of CBF can be altered using
CO2, emulating different disease states. Neurovascular coup-
ling—that is, the flow-metabolism ratio of responses to neural
activity (known as n, where n = ΔCBF/ΔCMRO2)—is sensi-
tive to the baseline CBF state, which demonstrates that
differing vascular states can confound the interpretation of
fMRI BOLD signals [35–38]. Combining tasks that invoke
neural activity with CO2 administration shows that there
may be two components of BOLD signals organized into
spatially overlapping networks: a component representing
neural activity and another representing vascular function
[39]. Thus, in addition to responding to localized metabolic
changes, the brain’s vasculature may be regulated in a coor-
dinated manner that mimics (and potentially supports)
specific functional brain networks.

To measure CA, a stimulus that changes BP and systemic
tone is required. Clinical assessment using gravitational stres-
sors such as tilt-table tests [40] and orthostasis [41] (standing)
is widely carried out, but these stressors are not suitable in
the magnetic resonance imaging (MRI) environment for
obvious reasons. Lower body negative pressure allows the
participant to stay supine while simulating gravitational
shifts in central blood volume, which results in reductions
in central venous pressure, cardiac output and increases in
total peripheral resistance and heart rate [42]. The cerebrovas-
cular response to such a stimulus has been successfully
measured using MRI, suggesting a differential change in
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arterial CBV dependent on baseline arterial CBV [43]. These
results may indicate that there are differential changes in vas-
cular tone within different segments of the vascular tree; that
is, different sized vessels respond differently to BP changes,
with large arteries decreasing volume (approx. −50%
change in CBV) and smaller arterioles increasing volume
(approx. 150% change in CBV). If this size-dependent prop-
erty of the vasculature holds true, it further complicates the
relationship between resting fluctuations in BP and measured
fluctuations in BOLD signals. Some areas will show a positive
relationship between BP and BOLD, some a negative relation-
ship, dependent on the relative ratio of large and small
vessels within a voxel. This could be problematic when
comparing fluctuations across different brain regions within
a subject. While comparing groups with different vascular
structures (such as those with higher tortuosity of
vessels owing to arterial stiffening), spurious differences in
fluctuations may result.

Additionally, work in rodents [44] and larger, anaesthe-
tized animals [45,46] has shown that arterial oxygen
saturation fluctuates with respiration rate and within the
breath-to-breath cycle. The oxygenation of blood will thus
vary in time. Because of the transit time delays present in
the cerebral vasculature [47–49], different brain regions will
experience the fluctuations at different times, though these
signals will be bilaterally symmetrical, mimicking patterns
of BOLD activation. It is also worth noting that fluctuations
in the respiration rate are linked with the behavioural
state [50,51], and that there are strong interconnections
between respiratory brain regions and neuromodulatory
centres [52,53]. How this complicated interaction between
respiration, blood oxygenation and activity levels in neuro-
modulatory regions plays out in the human brain is not at
all understood.

It is clear from the previous paragraphs that imposed
changes in physiology provide measurable changes in fMRI
signals. MRI with advanced physiological challenges can
provide a comprehensive assessment of vessel health along
the cerebrovascular tree and can help inform when neurovas-
cular coupling breaks down during disease. However, when
considering the haemodynamic fluctuations that are the
topic of this paper, we are discussing fluctuations during
the baseline state, that is, those related to natural fluctuations
in systemic physiology. In the field of resting-state fMRI,
much work has been done to measure systemic fluctuations
(or to infer them from the data), and then to remove them
as confounds in the hope that what is left is related solely
to oscillations in neural activity [11,54]. Cardiac and respirat-
ory cycles can be measured with a pulse oximeter
and respiratory bellows, respectively. Related variance in
BOLD signals has been removed using techniques such as
RETROICOR [55] (which determines changes related to the
phase of cardiac and respiratory cycles). Slower changes
(less than 0.1 Hz) in heart rate variability [56] and respiratory
volume (RVT) [57] have also been measured and removed. A
large proportion of BOLD fluctuation variance can be
explained by these methods. For example, at 7T it was
shown that in voxels across grey matter (after neglecting
low-frequency drifts and thermal noise), RETROICOR, RVT
and heart rate variability can explain approximately 10% of
the variance each, with the remaining 70% deemed to be
spontaneous fluctuations [58]. End-tidal gas tensions can
be measured using nasal cannulae and gas analysers. Such
measurements show that fluctuations in ventilation rate and
volume alter the amount of CO2 in the blood, in the same
low‐frequency range. This changes CBF and thus the BOLD
signals, with end-tidal CO2 explaining approximately 15%
of the regional BOLD signals [59]. Since these early methods
were developed, there has been a proliferation of techniques
that refine physiological confound removal [11,54]. Recently,
synchronized low-frequency oscillations in BP and BOLD sig-
nals have demonstrated that a proportion of BOLD
fluctuations are due to localized control of blood flow that
is independent of activity and related to general systemic
autoregulatory processes [60]. On a group level, this effect
is quite weak when averaged across grey matter, explaining
2.2% of the variance. However, in some highly vascular
areas of the brain, the variance explained at the group level
can be as high as 9%. In individual subjects, the effect sizes
can be even higher.
3. Ongoing local vascular fluctuations not driven
by neural activity

In addition to the systemic vascular fluctuations described
above, haemodynamic measurements are also strongly
affected by ongoing local vascular fluctuations; these are
uncorrelated with the systemic fluctuations, although the
two overlap in frequency. Here, we argue that these ongoing
local vascular fluctuations are driven not by neural activity
but rather mostly reflect processes intrinsic to the blood
vessels. Local ongoing fluctuations of about 0.1 Hz in cerebral
blood vessel diameter have been reported at least since the
early 1980s [61]. Such fluctuations are present in all species
studied, including humans [62–64], and drive fluctuations
in capillary blood flow that are coherent over at least several
hundred micrometers [65]. They occur both during wakeful-
ness and under anaesthesia, although the dynamics change
with anaesthesia. Even the earliest reports proposed a
purely intrinsic, vascular origin akin to vasomotion [61]
although later groups also suggested neuromodulatory
mechanisms [66]. Recent imaging studies with concurrent
multi-unit spiking and local field potential recordings have
made it possible to regress away the neurally predicted
haemodynamic components and thereby separate out and
characterize the residual ongoing component [9,67,68]. A
comparison shows that although uncorrelated, the two com-
ponents are comparable in amplitude and sum together
linearly in the net measured haemodynamics. Thus, predic-
tions of haemodynamics using neural activity account for
only about 40% of the net measured haemodynamic variance
in awake subjects, even during epochs with strong sensory
stimulation and correspondingly strong evoked neural
activity [9,10]. The variance explained by neural predictors
drops to 20% during periods with no extraneous sensory
stimulation where neural activity is correspondingly weak
[9]. Separating the ongoing haemodynamic component has
also made it possible to test for the effects of systematically
blockading neural activity and thereby constrain possible
underlying mechanisms. Such blockades of net neural
activity (using muscimol), local excitatory postsynaptic
activity (with CNQX and APV) and adrenergic influence
(by blocking receptors) just partially reduced the ongoing
haemodynamic fluctuation even when the concurrent
neural activity was strongly suppressed [9]. These negative
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Figure 1. Task-related haemodynamic response: pial arteries show rhythmic contraction and dilation at the task period. (a) Time course of responses measured from
primary visual cortex of monkey performing simple periodic fixation task in a dark room. Trial period: 18.7 s, starting 0.0 s. Solid line: mean haemodynamic response
over recorded area (recording of CBV, at 536 nm. Vertical scale bar: dR/R, i.e. change in light reflected off cortical surface, as a fraction of the trial mean). Dashed
line: mean arterial response (measured using a mask selective for the artery; arbitrary units). (b) Sequence of images (536 nm) showing arterial contraction (turning
white: reduced CBV) and dilation (turning black: increased CBV; greyscale: dR/R, defined as in (a)). Black squares in individual panels mark times when monkey
fixated periodically. All panels: adapted from Sirotin and Das [67].
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results reinforce the idea that at least a portion of the ongoing
component is intrinsically vascular and not neural.

The timing of the local ongoing fluctuations provides
further support for a vasomotion-like mechanism. The link is
clearest when the animal is awake but not engaged in a task.
The ongoing fluctuations show an intrinsic time scale of
about 10 s, but with considerable variability and no long-
term temporal correlations, consistent with free-running vaso-
motor fluctuation (see §4 on vasomotion). The situation
appears to change when the animal engages in a periodic
task. The haemodynamic fluctuation also becomes periodic
and entrains robustly to the task timing, over all task periods
tested, ranging from about 6–30 s [67,69]. At the vascular
level this corresponds to a task-entrained, cyclic fluctuation
in blood vessel diameter that is synchronized over the network
of pial arteries (figure 1). The precision of this entrainment
depends on the animal’s level of engagement in the task.
When the animal is particularly engaged—for example,
when working for a high reward—the task-related response
is temporally precise and tightly aligned to the task timing
as well as being slightly higher in amplitude [70]. When the
animal is less engaged, for example, when working for a low
reward, the temporal alignment is less precise, with greater
variability in timing, as well as slightly weaker (also see the
last paragraph of §4). Notably, there are no other ongoing
haemodynamic fluctuations when the task-entrained ones
are present. An attractive and parsimonious hypothesis is
that both ongoing and task-entrained local haemodynamic
fluctuation reflects the same intrinsic vascular mechanism as
vasomotion found elsewhere in the body. This could result
in the spontaneous vascular fluctuations during wakeful rest
but could get synchronized by a task-linked timing signal
when the subject is engaged in a task.
4. Vasomotion is an intrinsic property of blood
vessels

Arteries and arterioles are not simply passive conduits of
flow but also contain a large complement of ion channels
that are gated by voltage, calcium, pressure and other
mechanical forces that can combine together to generate
emergent dynamics [71], often referred to as vasomotion
[72]. To study these vascular dynamics in a controlled
environment, vessel segments can be dissected out and
cannulated, allowing the study of their electrical and contrac-
tile properties under conditions where the pressure and flow
are controlled by the experimenter. Isolated vessels will show
spontaneous oscillations in diameter [71,73,74], sometimes
with a clearly defined frequency in the 0.1–0.3 Hz range or
lower, and other times with no clear peak frequency. The
amplitude and frequency of vasomotion in isolated arterioles
can be modulated by internal pressure [75] and spontaneous
calcium dynamics, which presumably drive the constriction
of the vessels. It is suppressed by neural activity in parench-
ymal arterioles [76]. Vasomotor activity is also suppressed by
beta adrenergic input and facilitated by alpha adrenergic
input [77]. Thus, despite the intrinsically local nature of vaso-
motion, it could plausibly be correlated bilaterally through
neuromodulatory or callosal connections. The mechanism(s)
underlying the diameter oscillations is not understood,
though several models have been hypothesized [78,79].
What is known is that the frequency and amplitude of spon-
taneous arteriole diameter oscillations are greatly reduced by
anaesthesia [80], possibly contributing to the differences seen
in functional connectivity in awake and anaesthetized ani-
mals [81]. While excised vessel experiments show that
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Figure 2. Oscillations in arterial diameter in the absence of neural activity. (a) Diameter and fluid flow through an isolated, cannulated arteriole subjected to
different oscillations in flow. The spontaneous oscillations can lock to the imposed input. (b) Spontaneous arteriole diameter measurements in vivo after local
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cannula). This shows that spontaneous oscillations of cortical arteriole diameter in vivo can occur in the absence of neural input. (a): Adapted from Stergiopulos et al.
[82]. (b): Adapted from Winder et al. [9].
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arteries have the intrinsic capacity to generate spontaneous
fluctuations, they do not reveal the extent to which this hap-
pens in vivo. When local neural activity is reduced by
approximately 90% by infusion of muscimol, there is only a
minimal reduction in the amplitude of arterial diameter oscil-
lations, CBV and tissue oxygenation fluctuations [9,44] in
mice at rest (figure 2). Amplitude-wise, these spontaneous
fluctuations are of order ±3% of diameter. Sensory-evoked
arterial dilations to brief stimuli are of order 5–10% [83].
These results suggest that arterioles are able to generate spon-
taneous oscillations in diameter at the frequencies seen in
resting-state studies, independent of neural activity. Arterial
dilations will increase blood flow, which will increase tissue
oxygenation, which is correlated with the BOLD signal [84].
Recordings of tissue oxygenation in un-anaesthetized mice
have shown that the spontaneous fluctuations in oxygenation
have a standard deviation of approximately 1.5 mmHg,
and these fluctuations in oxygen tension are not affected by
blockade of neural activity [44], while sensory-evoked
changes in tissue oxygenation are around 2–3 mmHg [44].
Both arterial diameter measurements and oxygen measure-
ments suggest that these ongoing fluctuations that are not
of neural origin are approximately half the size of the largest
sensory-evoked fluctuations.

In addition to their intrinsic oscillatory capability, arteries
throughout the body, including the brain, possess gap junc-
tions between endothelial cells and smooth muscles. These
gap junctions electrically couple the cells so that a localized
hyperpolarization (causing relaxation of smooth muscles) or
a depolarization (causing contractions of smooth muscles)
will propagate throughout the vascular tree. The propagation
of this electrical signal will follow the cable equation, so the
hyperpolarization/depolarization will decay exponentially
with distance [85,86] with a length constant in the range of
approximately 1 mm for isolated arterioles [87,88]. The con-
ducted response will tend to ‘blur’ the arterial vasodilation,
limiting the spatial resolution of any haemodynamic signal
[89], and will also serve to couple the oscillations over long
distances. The net effect of this coupling is that the arterial
network can be thought of as a network of spatially coupled
oscillators. Some of these vessels will be receiving similar
tonic and oscillatory inputs (e.g. pressure, sympathetic
drive), though there may be disparate drives across the
network (e.g. local release of vasodilators).

Low-frequency fluctuations in blood flow might have
other causes than changes in vessel diameter. Blood is a
non-Newtonian fluid [90], so fluctuations in the flow may
be enhanced by the nonlinear rheology of blood. Leucocytes
are known to plug vessels [91,92] in both the periphery and
the brain, leading to large increases in resistance to flow.
The presence of leucocytes can drive oscillations of 0.1 Hz
or lower frequency in flow in microfluidic networks [93].
The structure of these networks mimics vascular structure
but channels lack the ability to dilate and constrict, and the
presence of the flow oscillations in these networks under con-
stant pressure shows that the intrinsic properties of the blood,
not just vessel diameter fluctuations, may also drive these
oscillations in flow. It is likely that the low-frequency fluctu-
ations in flow seen in vivo do not have a single mechanism,
but emerge from the interaction of many different drivers
that span the cellular to systemic scales.

Finally, it is important to keep in mind that fluctuations in
blood flow and arterial diameter (and correlations) with
power in the 0.01–0.1 Hz range, like those in resting-state sig-
nals, are seen throughout the body. For example, the left and
right carotid arteries that supply the brain show coherent
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fluctuations in diameter and/or flow in both humans [48,94]
and animals [95] in the absence of any overt stimulation
(figure 3). Similar fluctuations in oxygenation and blood
flow are also present in the skeletal muscle and tumours
[97]. Fluctuations in oxygen in the cat and monkey retina
show pronounced oscillation in the 0.06–0.18 Hz range, far
from respiration or cardiac frequencies, and are likely
owing to arterial dilations at these frequencies. Whether
these fluctuations show spatial patterns like those found in
the brain is not known, but these fluctuations in arterial
diameter are known to be bilaterally symmetric [96], and
the fluctuations in blood flow may be more correlated in ana-
tomically related regions (e.g. left and right radial arteries)
than between nearby locations (ulnar and radial artery)
(figure 3), as is seen in arteriole networks in the brain [13].
These fluctuations in diameter are approximately ±3%, simi-
lar in amplitude to those seen in cortical arterioles when
neural activity is blocked [9]. These peripheral arterial
dilations are coherent with low-frequency oscillations in the
cerebral BOLD signal [98], suggesting that they have a
common origin or are synchronized somehow. In some of
the voxels in the brain, the coherence between the peripheral
signal and the BOLD can reach 0.7, indicating that up to
about half of the variance in the signal is shared between
the BOLD oscillations and systemic fluctuations. Although
the origin of these BOLD oscillations in humans is unknown,
in animal experiments it has been shown that bilateral
sympathetic input drives fluctuations in flow in the same fre-
quency range [95]. These patterns of apparent ‘functional
connectivity’ thus appear to be common throughout the
body’s vasculature, suggesting that care should be taken
when interpreting such patterns in the brain as evidence of
functional neural connectivity, as they could have substantial
contributions from unrelated intrinsic vascular fluctuations.

What do these local fluctuations mean for the interpret-
ation of fMRI measurements? And can estimating them
provide more insight into local brain responses? As noted
earlier in this review, local vascular fluctuations could be
comparable to or larger than neurally evoked responses
[9,10]. However they can to some extent be corrected for as
they are uncorrelated with the neural response and can be
averaged away in the mean. This could be done by random-
ized stimulus presentation, or by using stimulus contrast in a
block design to remove the common task-entrained fluctu-
ations [10,99]. At a more interesting level, however, the
local vascular fluctuations could have important physiologi-
cal roles integral to the normal functioning of the
vasculature. They likely enhance normal vascular perfusion
[15] and help flush out harmful metabolites or solutes inde-
pendent of increased blood flow [100]. They could also
complement the neurovascular response to increased local
neural activity by back-propagating vasodilation along feed-
ing arterioles. This could act as a local impedance match and
capacitive buffer in the vascular circuit to facilitate increased
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blood flow to the activated location [83,101]. Finally, local
vascular fluctuations could be a marker of brain state. An
attractive hypothesis is that the periodic task-related haemo-
dynamic response seen in area V1 of monkeys engaged in a
visual task may be similar to the ‘task structure related’
BOLD fMRI modulations seen in human visual cortex [102].
As in the human measurements, those from monkey V1 are
also spatially extensive and homogeneous over the imaged
cortical area, and entrain to task timing [69]. As noted earlier,
the task-related haemodynamic response in monkey becomes
more sharply entrained to task timing as well as getting
slightly stronger with higher reward (figure 4) [70]. Since
vasomotion is strongly influenced by neuromodulators [77],
it would be valuable to test if the effect of task engagement
is mediated by sympathetic-like neuromodulatory input. If
so, the task-related BOLD fMRI response in human visual
cortex could provide useful information about the level of
vigilance and engagement [70,103]. It is important to keep
these likely functional roles in mind when designing brain
imaging experiments.
5. Conclusions. Relevance of intrinsic vascular
dynamics to fMRI, and their functional
consequences

fMRI is an easily implemented, high signal-to-noise (SNR)
method of measuring in vivo haemodynamic fluctuations
in the human brain. BOLD imaging is the most extensively
used; however, other lower SNR MRI-based methods exist,
such as arterial spin labelling [104] and vascular space
occupancy [105,106]. In the field of resting-state fMRI, low-
frequency fluctuations in BOLD signal (typically less than
0.1 Hz) are thought to reflect intrinsic fluctuations in
neural dynamics. Similarity in these dynamics across different
brain regions suggests similar neural functions, thus the
regions are taken to represent a functional connectivity net-
work. The existence of multiple networks across the brain
has been repeatedly demonstrated [107] and has been shown
to relate to functional networks activated by particular tasks
[108]. Differences in connectivity strengths between regions
are thought to underlie neurodegenerative diseases [109],
neurological disorders [110,111] and normal behavioural
differences.

Neurally evoked responses are never seen in isolation,
however. They are unavoidably combined with systemic
and vascular fluctuations owing to the vascular basis of
fMRI (figure 5). Interpreting fMRI results thus requires
some care since non-neural effects can be large, as indicated
in the numbers reported through this review. When consider-
ing systemic fluctuations, cardiac and respiratory effects can
account for up to 30% of individual variance, with end-
tidal CO2 on its own accounting for up to 15%. However,
these numbers are difficult to quantify and vary by a large
amount dependent on the location of the signals and how
they are aggregated across voxels/regions. When considering
the effect of vascular fluctuations, it is noteworthy that arter-
ial diameters oscillate spontaneously with amplitudes
approximately half that of sensory-evoked responses. But
their contribution depends on their spatial correlation over
cortex. When vascular fluctuations are spatially correlated
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through entrainment to a periodic task, their net contribution
could be as large as, or larger than, the visual response
[10,67,102]. Without this spatially extensive correlation, the
net effect could be weaker, but that is an important question
that remains to be fully resolved [9]. The influence of these
non-neural effects also depends on additional experimental
details. As they are mostly additive, these non-neural effects
are a bigger problem in voxels with poorer SNR and
weaker neural responses. Non-neural haemodynamic effects
can also vary considerably with subject groups, being differ-
ent, for example, between Alzheimer’s disease patients and
controls [20]).

Removing variance related to these systemic processes is
done with the aim that the low-frequency BOLD fluctuations
will more closely follow neural activity. However, an impor-
tant caveat is that these fluctuations in systemic physiology
might change neural activity itself [112]. For example, it has
been demonstrated that variations in arterial CO2 caused by
natural variations in breathing modulate neural rhythmicity
and oscillatory power as measured by magneto-encephalo-
graphy [113] Changes in this more direct measure of neural
activity demonstrate that if we remove CO2-related fluctu-
ations from BOLD signals, we could remove true neural
activity-related signals. It is unclear how large this effect
might be and whether it would significantly alter the
interpretation of the BOLD results as we want to relate
them to neural activity. This highlights the difficulty in separ-
ating neural and vascular BOLD components from each
other. Attempting to remove too many physiological regres-
sors at the same time may remove variance of interest
related to neural activity [114]. Pre-processing steps such as
bandpass filtering and temporal delay optimization will
inflate false positives, again removing variance of interest
[115]. Furthermore, if the vasculature is also organized into
networks similar to neural activity, we cannot rely on spatial
information to help distinguish neural and vascular signals.
However, the largest issue may be related to physiological
processes that we cannot measure. The vasomotion processes
shown above will influence low-frequency BOLD signals. It is
unclear to what extent these manifest in the signal and con-
found results because we have no independent in vivo
measure.
Finally, it is important to emphasize that these non-neural
processes carry valuable information about vascular function
and brain state. Most of the field considers systemic or vascu-
lar fluctuations a nuisance confound. In this review we show
why such a view is impoverished. Targeted measurements of
the systemic components can monitor cerebrovascular health
after a stroke [21] or as a consequence of ageing [23], and can
probe the neural benefits of exercise [22]; meanwhile, vascu-
lar fluctuations are likely integral to normal cerebrovascular
function [15,83,100,101] and could also be a measure of
brain states like arousal and vigilance [70,103]. These are
just a few examples of ways that fMRI studies can be
designed to incorporate these prominent and informative
non-neural haemodynamic processes.

This review highlights one of the biggest issues when
using fMRI to examine low-frequency neural oscillations.
We know that BOLD is not only a neural signal but also
includes vascular signals, some of which we can indepen-
dently measure (systemic physiological processes) and some
we cannot (local fluctuations, vasomotion). Without a
ground truth, though, it is not possible to optimize fMRI
analysis techniques to separate these two components. We
cannot know how much vasomotion, for example, affects
functional connectivity measures because we are measuring
a single BOLD signal that is a mixture of neural and vascular.
A further complication is that the close symbiotic relationship
in the neurovascular unit [112,115] probably means that the
two aspects influence each other. Since they cannot exist in
isolation, it may be the case that we can never separate
neural and vascular processes and that we should consider
treating them as a single unit. For resting BOLD fMRI, this
would mean that any changes in connectivity should be inter-
preted as both a neural and vascular change without trying to
attribute them to either specific process.
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