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Functional magnetic resonance imaging (fMRI) is the dominant tool in
cognitive neuroscience although its relation to underlying neural activity,
particularly in the human brain, remains largely unknown. A major research
goal, therefore, has been to uncover a ‘Rosetta Stone’ providing direct trans-
lation between the blood oxygen level-dependent (BOLD) signal, the local
field potential and single-neuron activity. Here, I evaluate the proposal
that BOLD signal changes equate to changes in gamma-band activity,
which in turn may partially relate to the spiking activity of neurons.
While there is some support for this idea in sensory cortices, findings in
deeper brain structures like the hippocampus instead suggest both regional
and frequency-wise differences. Relatedly, I consider four important factors
in linking fMRI to neural activity: interpretation of correlations between
these signals, regional variability in local vasculature, distributed neural
coding schemes and varying fMRI signal quality. Novel analytic fMRI
techniques, such as multivariate pattern analysis (MVPA), employ the dis-
tributed patterns of voxels across a brain region to make inferences about
information content rather than whether a small number of voxels go up
or down relative to baseline in response to a stimulus. Although unlikely
to provide a Rosetta Stone, MVPA, therefore, may represent one possible
means forward for better linking BOLD signal changes to the information
coded by underlying neural activity.

This article is part of the theme issue ‘Key relationships between
non-invasive functional neuroimaging and the underlying neuronal activity’.
1. Introduction
Functional magnetic resonance imaging (fMRI) remains one of the dominant
techniques in humans for relating underlying brain activity to behaviour.
Indeed, compared with all other methods currently used in humans, it conveys
numerous advantages. It is non-invasive and, unlike other methods like posi-
tron emission tomography (PET), requires no injections. By contrast to other
methods such as scalp encephalography (EEG) and magnetoencephalography
(MEG), it has superior spatial resolution (approx. 1 × 1 × 1 mm voxel size as a
likely upper limit [1]), and it can successfully image deep brain structures
like the thalamus and hippocampus. Finally, fMRI has gone through extensive
methodological development since its first uses in cognitive neuroscience in
the early 90s, and techniques for performing analyses are readily available to
interested students via software and other published resources [2–4].

A lingering issue with fMRI, however, is that it is an indirect measure of
underlying neural activity and its relationship to neural function still remains lar-
gely undetermined, particularly outside of sensory cortices [5]. How is it that
such a fundamental issue could remain unresolved? Part of the reason for this,
which I will explore here, is that blood oxygen level-dependent (BOLD) signal,
which forms the basis of fMRI, is itself a heterogeneous signal [6,7]. Another
reason for this impasse is that ‘neural’ signal is also multifaceted, and therefore
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defining exactly how these two signals relate involves some
degree of approximation and simplification. Finally, exper-
iments that directly compare BOLD with neural activity are
challenging, particularly in humans, leaving an important
area of linkage somewhat neglected compared with studies
that employ either BOLD or electrophysiology independently.

Tounderstand the first reasonwhy it has beendifficult topin
down a neural basis for the BOLD signal across the brain (i.e.
BOLD as a multifaceted signal), it is useful first to consider
how this signal comes about. The BOLDsignal is based onmag-
netic inhomogeneities producedbydifferences indeoxygenated
versus oxygenated haemoglobin concentrations, with deoxyge-
nated haemoglobin concentrations increasing initially owing to
transient increases in neural and glial activity and then rapidly
decreasing owing to the influx of freshly oxygenated blood
[6,8–10]. Changes in the ratio of deoxygenated to oxygenated
haemoglobin result fromseveral different sources andhave con-
tributions from a mixture of different factors that drive the
BOLD signal observed with fMRI [11]. These include cerebral
oxygen metabolism (CMRO2), which refers to the utilization
of oxygen by active cells, cerebral blood flow (CBF), which
refers to the rate at which blood flows through vessels in the
brain, and cerebral blood volume (CBV), which typically
indexes expansion and contraction of vessels, particularly arter-
ioles, in response toneural and/orbehavioural events. There are
a variety of different invasive and non-invasive methods for
measuringCMRO2, CBFandCBV, and I cover these only briefly
for clarity. Techniques like optical imaging allow independent
measurement of CMRO2 and CBF but are restricted to non-
human animal models. Near-infrared spectroscopy (NIRS)
allows measurement of CBF in humans but is restricted to
superficial brain areas. Calibrated fMRI allows measurement
of CMRO2 in humans but has drawbacks in the spatial
resolution I will discuss inmore detail shortly. PET can, in prin-
ciple, allow measurement of all three (CMRO2, CBF and CBV)
but the time course and spatial resolution of PET are
significant limitations.

Initially, it was thought that at least one major measurable
component of the BOLD signal was CMRO2 [12]. The activity
of neurons and glia requires at least some oxygen utilization to
restore metabolic stores via the Krebs cycle (ATP) and thus
would be expected to be a major component driving the
BOLD signal. While some studies suggested the possibility
of observing CMRO2 during the earliest phase of the BOLD
signal (the initial dip) [12], the inconsistency of this signal at
different field strengths, in different brain regions and even
across studies has led to a focus on using calibrated fMRI to
measure CMRO2 [13]. Calibrated fMRI involves arterial spin
labelling (ASL) to ‘tag’ incoming blood into the brain and
therefore calculate CBF. With the addition of simultaneous
BOLD, hypercapnia and pulsometry, one can calculate
CMRO2 using an equation that relates these variables
[14,15]. Consistent with this, CMRO2,when it can bemeasured
independently using calibrated fMRI, shows a robust corre-
lation with the activity of individual neurons [7,16].

Calibrated fMRI involves, however, poorer spatial resol-
ution, the need to employ breath holding, and overall is
used infrequently compared with BOLD fMRI, thereby limit-
ing how readily and consistently one can measure CMRO2.
No work to date in humans has performed calibrated fMRI
and electrophysiology in the same study, and thus their
relationship in humans is unknown. Glucose and other metab-
olites are also critical for neural function, and shifts to
anaerobic processes may render oxygen consumption, in
some cases, less relevant to neural activity [11]. More readily
measured signals that include both oxygen and glucose
metabolism are CBF and CBV, both of which alter the balance
of oxygenated and deoxygenated haemoglobin. Importantly,
both CBF and CBV have strong correlates with local vascula-
ture [17], and likely play a stronger role in BOLD signal
changes observed with conventional fMRI than CMRO2.

Numerous findings suggest that CBF and CBV contribute
substantially more to the BOLD signal than CMRO2, particu-
larly at the field strengths most often used in conventional
fMRI (1.5 T, 3 T). This is because CBF greatly exceeds (perhaps
10–20 times over, in some brain regions) the oxygen needs of a
local patch of active neurons [10,11]. This likely occurs because
failure to deliver sufficient oxygenated blood will result in
hypoxia and brain damage, thus potentially providing the
type of evolutionary pressure resulting in the ‘watering the
entire garden for a single flower’ phenomenon often used to
describe the BOLD signal [10]. This overshoot phenomenon,
however, creates an interpretational issue when considering
the BOLD signal. If CBF, which relates, in part, to CBV based
on changes in flow through capillaries/arterioles, consistently
overshoots the needs of an active patch of brain, one must
necessarily take into consideration howneurons and glia inter-
act with the surrounding vasculature to produce such changes
in blood flow [11,18,19].
2. The neurovascular unit: constraints on
neurovascular coupling

The interaction between neural activity and the surrounding
vasculature is often referred to through the concept of the neu-
rovascular unit (NVU) [20]. Both ‘feedback’ and ‘feed-
forward’ neural signals directly influence the BOLD signal.
Feedback signals refer to changes in blood flow driven by
dips in oxygen concentration/ATP/glucose, typically due to
consumption by active neurons in a brain area. This vasodila-
tion of arterioles may sometimes be distant from local active
sources and can be considered a response to low concen-
trations of needed metabolites—whatever the cause. Feed-
forward signalling, in contrast, refers to local changes in
blood flow through capillaries driven more directly by
increases in glutamate (due to synaptic signalling from incom-
ing afferents). Such increases in glutamate trigger astrocytes
and vasoactive agents that interact directly with local capil-
laries [11,21]. The overshoot phenomenon mentioned earlier,
in which CBF greatly outpaces metabolic demand [10], is
likely a consequence of such feed-forward signals driven by
incoming synaptic activity from neighbouring brain areas
[22]. Interestingly, there may even be situations in which the
haemodynamic response can influence neural activity, for
example, increases in pressure with penetrating arterioles
can suppress or enhance pyramidal cell activity [23,24].
Together, these findings suggest that neural activity alone
does not drive the BOLD signal: in fact, it is a complex, bidir-
ectional interaction. Consistent with this idea, studies looking
at both CBF and neural activity suggest that changes in CBF
can occur with no corresponding changes in neural activity
[25] and that glial activity in isolation can result in changes
in CBF [9].

The idea that the BOLD signal is fundamentally inter-
twined with the actions and mechanisms of the NVU creates
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Figure 1. How the vasculature affects BOLD-neural correlations. Two examples of how the vasculature puts important constraints on how precisely one can relate
neural activity to BOLD signal changes. (a) A dense capillary network as one might find in primary sensory cortices. A small ensemble of neurons (each shown as a
single neuron) can trigger separate increases in blood flow, allowing discrimination of the activity of individual neurons. (b) A sparse capillary network, such as
might be found in the hippocampus, places significant constraints on how precisely one can measure the activity of small ensembles of neurons. As shown here, it is
not possible to distinguish different levels activity from two neighbouring ensembles that both trigger blood flow changes from the same capillaries/arterioles.
(Online version in colour.)
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somewhat of a paradigm shift in terms of how onemight think
about the BOLD signal [20]. Undoubtedly, there are situations
where neural activity correlates strongly with changes in the
BOLD signal, demonstrated clearly and consistently in numer-
ous species in sensory cortices [26–31]—issues I will discuss in
more depth shortly. These situations might be expected in
areas like the visual cortex, in which the cortical layers
recorded from (layers 1–6) have a clear columnar organization
and relationship to underlying vasculature [32]. In situations
in which the NVU differs from the sensory cortices, however,
one might reasonably expect differences in neurovascular
coupling in other brain areas. One important constraint with
the BOLD signal is that it is sluggish (with about a 1–2 s
delay to onset and about a 6–10 s response period overall).
Therefore, situations in which proximate neural ensembles
are simultaneously active, particularly in cases of sparse
vascularization, would be difficult to disentangle with fMRI
(figure 1). Similarly, because both inhibitory (e.g. GABAergic)
and excitatory (e.g. glutamatergic) neural activity have meta-
bolic demands [33], disentangling which particular mixture
of the two is driving the BOLD signal will also be difficult.

This issue also relates to the degree of sparsity versus dis-
tributed neural coding schemes within a region, in other
words, how many groups of neurons are active and in what
manner [34]. If sparse neural signals are present, this may
result in relatively small changes in BOLD compared with
other brain regions that employ a more distributed response
(e.g. figure 1). The density of the vasculature itself is particu-
larly relevant: if capillary/arteriole spacing is dense and well
connected with astrocytes communicating with active neur-
ons, detecting even small changes in neural activity will be
possible (figure 1a). By contrast, for sparse vasculature in
which blood flow is less precisely modulated by local neural
activity, such neurovascular coupling may be less predictable
and corresponding neural codes more difficult to decipher
(figure 1b). I will consider these issues in more depth shortly
when I compare neurovascular coupling in the hippocampus
with that in sensory cortices. Sparse versus distributed
coding is also important to what types of analyses are useful
for interpreting BOLD signal changes. For example, as I will
explore in more depth shortly, multivariate pattern analysis
(MVPA), rather than univariate modelling, is likely better
suited to capturing such underlying changes in distributed
coding of populations of neurons. This is because MVPA is
sensitive to changes in both strongly and weakly active
voxels, although one trade-off with this increased sensitivity
to population responses is MVPA cannot inform about how
a single voxel might relate to a small group of neurons
within a voxel.
3. What does one mean by neural activity?
Before discussion of studies that have looked at how the
BOLD signal relates to underlying neural activity, it is worth
defining exactly what one means by ‘neural activity.’ Interest-
ingly, this definition of ‘neural activity’ is probably most
accurately referred to as ‘what one can observe with existing
extracellular and/or calcium imaging techniques’ rather than
an absolute measure of something more specific like the
number of action potentials emitted by a single neuron in iso-
lation or glutamatergic synaptic activity specifically. This is
because extracellular recordings involve the need both to
identify post hoc individual neurons (which can be imprecise
and inaccurate [35]) and to apply specific filter setting to
observe the local field potential (LFP) [36]. In addition, the
signal produced from extracellular recordings is hetero-
geneous in origin and exactly what types of underlying
neural signals they represent remains unclear. For example,
there is no clear idea when something like synaptic activity
(which is thought to dominate the lower frequency bands)
ends and action potentials (which are thought to dominate
the higher frequency bands) begin [36], which will become rel-
evant in my subsequent discussions.

One important component of the LFP derives from a
low-pass filter of extracellular recordings [37]. This signal typi-
cally contains semi-periodic fluctuations ranging from very
low frequency (less than 1 Hz, infraslow), to low frequency
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Figure 2. Multiple and ambiguous origins of the local field potential. Spatio-
temporal organization plays a critical role in what synaptic potentials will
contribute to the low-pass local field potential. (a) Fibres arranged parallel
to each other with synaptic potentials occurring close in time will produce
sinks and sources that will allow maximum linear summation. (b) By contrast,
temporally asynchronous synaptic potentials will produce significantly fewer
summations as sources will dissipate rapidly, resulting in less summation.
(c) Fibres arranged in a perpendicular or closed-loop structure (such as the
hippocampus) would be expected to produce little net contribution to the
local field potential, particularly when measured outside of the structure.
When measured inside of the structure, it will be difficult to discriminate
cancelling, interfering and summating sources to the local field potential.
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(1–20 Hz, delta, theta, alpha, beta), to low/mid-range gamma
(20–60 Hz), to high-gamma (greater than 60 Hz) [38–42]. Sig-
nals in the LFP below 60 Hz are likely the result primarily of
summations of excitatory synaptic potentials [37], which
refers to infraslow, delta, theta, alpha, beta and low–mid-
range gamma bands. Note that the ‘cutoff’ for the low-pass
LFP varies by studies, with some using thresholds as low as
30 Hz (e.g. [28]). Other electrophysiological signals also
undoubtedly contribute to the ‘low-pass’ LFP, however, includ-
ing inhibitory synaptic potentials, subthreshold potentials due
to other neuromodulators, and backpropagating signals [37].
For simplicity’s sake, I focus primarily on excitatory post-
synaptic potentials and their putative contributions to the
LFP as these are typically thought to dominate in most record-
ing situations [43]. I shall consider the high-pass signal of the
LFP (greater than 60 Hz), referred to alternatively as ‘broad-
band gamma’ and ‘high-gamma’, shortly, although note
again that this threshold can vary by studies, with some studies
using values as high as 80 Hz (e.g. [44]).

A critical component dictating how these synaptic
potentials summate in the low-pass LFP is how neural fibres
are arranged relative to each other [43]. This idea can be readily
illustrated by considering a simplistic situation of either paral-
lel or perpendicularly arranged fibres in a brain structure
(figure 2). For example, synaptic potentials from two parallel
fibres that co-occur in time will summate, resulting in the
active flow of charge from one region to another (figure 2a,
b). This separation of charge due to current flow is referred
to as a dipole or a sink/source, depending on the flow of
charge. By contrast, synaptic potentials from fibres arranged
perpendicularly or with flows in opposing directions will
produce significantly lower or no net dipole at all when
measured with a distal electrode (figure 2c). Electrodes
placed within such closed-loop structures will record a combi-
nation of summating and interfering signals. In this way, both
the arrangement of fibres and temporal synchrony are critical
determinants of what types of signals will manifest in the LFP.

The other critical component that can readily be extracted
from extracellular recordings is the higher frequency signal,
often referred to as high-pass gamma-band activity or ‘high-
gamma’. This signal contains a significant portion of spikes
from nearby neurons firing in a synchronous manner [42,45].
The main difference between the high-pass and low-pass LFP
is that the high-pass signal contains faster action potentials
while the low-pass signal contains comparatively slower sum-
mating synaptic potentials [37]. In both cases, though, the
arrangement of fibres and their temporal synchrony are critical
determinants of what neurons will contribute to either
component of the LFP [37]. Again, it is also important to note
that neither the low- nor high-pass signal can be considered
‘pure’ and the high-pass signal, in particular, contains contri-
butions from synaptic activity as well [37,42,45]. When
filtering above approximately 300 Hz (with this cutoff itself
somewhat variable, either lower or higher depending on the
study), one can also obtain multi-unit activity (MUA), and
with additional analysis, action potentials from individual
neurons [35], often referred to as single-unit activity or SUA.

The variable genesis of electrophysiological recordings
suggests that the basis for these signals themselves might be
regionally variable [5]. In a location like the visual cortex,
which has a columnar structure [46], or motor cortex, which
has an organized mapping based on the representation of
body parts [47], one might expect that local interactions and
gamma-band modulations from the thalamus will exert a
powerful effect on the LFP [45]. In this instance, one might
expect the LFP to be dominated by changes in high- and
low-gamma-band activity during visual or motor stimulation,
consistent overall with such electrophysiological observations
[31,48–50]. Similarly, one might expect that anatomically
neighbouring orientation-selective neurons would be active
during stimulation by a bar of light, resulting in synchronous
discharge and emergence of modulations in the high-gamma
band due to temporally synchronous MUA [51]. This might,
in turn, bear some connection to why relatively strong neuro-
vascular coupling is typically observed in the visual cortex,
often between multi-unit firing, mid/high-gamma-band
activity and the BOLD signal [32].

By contrast, for an area like the hippocampus, one might
expect somewhat of a different relationship [5]. The septal
nucleus provides a strong drive within the theta band
(4–8 Hz) and thus the LFP is typically more dominated by
changes in theta-band activity than gamma [52]. Similarly,
given observations of sparse and anatomically uncorrelated
place cells [34,53], activity in hippocampal pyramidal neurons
would be unlikely to havemuch influence on higher frequency
activity, although some of this might depend on the electrode
recordings and their location within the hippocampus.
The hippocampus itself is often referred to as a ‘closed-loop’
structure because, anatomically, the different subfields form
an interconnected and (in the coronal plane) nearly ovular
structure [54,55]. As such, onemight expect a clearly decipher-
able summation of local activity within the hippocampus to be
difficult to observe (figure 2c). Consistent with such obser-
vations, neurovascular coupling in the hippocampus, if
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present, often appears within the theta band and less com-
monly with underlying neural activity [56]. I will explore
these two structures in more detail when I consider neurovas-
cular coupling in the neocortex and hippocampus shortly.
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4. Neurovascular coupling in the visual and
somatosensory cortex: does this provide us
with a Rosetta Stone?

The Rosetta Stone, when discovered, allowed definitive trans-
lation of Egyptian hieroglyphics, which were unknown at the
time. This was possible because alongside hieroglyphics was
ancientGreek text thatwas inscribed for the sameproclamation.
Similarly, one of the central goals of research in neurovascular
coupling is to determine what electrophysiological signals
underlie the BOLD signal. The idea of a Rosetta Stone in the
context of fMRI is that one could readily interpret increases
and decreases in the BOLD signal provided one knew exactly
how this related to underlying changes in neural signalling.
The issues I will discuss, however, with attempting a Rosetta
Stone for fMRI are that: (i) regional variability makes a single
Rosetta Stone untenable, (ii) the contributions to BOLD and
electrophysiology are heterogeneous, involving different
scales which themselves may have varying and difficult to
pin down contributions, (iii) sparse neural coding schemes, in
particular, may be difficult to observe with fMRI, and (iv)
signal quality may vary with fMRI independently of electro-
physiology, confounding direct comparisons.

To determine how electrophysiological signals relate to
the BOLD signal, one requires some means of comparing
the two signals, either simultaneously or serially. Studies in
non-human animals have involved both simultaneous and
serial comparisons of signals such as BOLD, CBV, CBF and
CMRO2 with different components of electrophysiological
recordings. Studies in humans involving invasive recordings
(allowing access to deeper brain structures) typically use
serial comparisons because of dangers with electrode heating
and other safety concerns with implanted electrodes in a
strong magnet [57]. Here, I will focus first on studies in
non-human animals and then attempt to tie this in with
humans. It is important to note that when correlating electro-
physiological and haemodynamic signals, they involve
inherently different temporal resolutions, which must be
taken into account. Specifically, electrophysiological signals
can occur on the time scale of milliseconds (particularly
action potentials, which last about 1–3 ms) while the BOLD
signal occurs on the scale of seconds (6–20 s, depending on
the experimental design). To compare the two, one must con-
volve faster electrophysiological signals with some function
representing the haemodynamic response and account for
its delay. Another option is to compare electrophysiology
and the haemodynamic response function (HRF) separately
with ongoing behaviour, although this still requires some
modelling of the BOLD response based on behavioural
stimulation. Importantly, there are a number of different func-
tions one can use to convolve to model the haemodynamic
response, with a common choice being a double gamma func-
tion, although even the haemodynamic response function can
vary by brain region [58].

In seminal studies conducted in the visual cortex by Nikos
Logothetis’s laboratory in both anaesthetized and awake
behaving monkeys [26,59,60], the authors recorded BOLD,
LFPandMUAsimultaneously in the visual cortex. The authors
found that increases in BOLD fMRI strongly correlated with
increases in the low-pass LFP recorded simultaneously at
nearby electrodes (r2 = 0.52). Putative MUA activity, which
involved a high-pass signal, showed a significant although
weaker correlation (r2 = 0.45) with BOLD than the low-pass
LFP [26]. Subsequent studies also suggested that both
increases and decreases in BOLD in the monkey visual cortex
could be related to increase and decreases in the low-pass
LFP [59]. Similar findings have also been reported in rodent
somatosensory cortex [61,62]. These findings, which have
been extensively reviewed elsewhere [32], suggested that
synaptic activity, as reflected in the low-pass LFP, and, to a
lesser extent, MUA, underpinned much of the BOLD signal.

Findings suggesting a three-way correlation between
BOLD, the gamma-band LFP and MUA have also been
reported from sensory areas in humans such as the primary
auditory cortex [27,28]. In one study by Mukamel et al. [28],
the authors employed microelectrode recordings (approx. 40
μmplatinum–iridium electrodes) in a group of patients watch-
ing a movie and compared them with a separate group of
healthy participants watching the same movie. Mukamel
et al. [28] averaged the spike rate of about 50 neurons recorded
from two patients to generate predicted BOLD responses in
the auditory cortex in healthy participants. When comparing
with the filtered LFP above 40 Hz, both BOLD and spike rate
(MUA) correlated strongly, with correlations (r2) between
BOLD and spike rate comparable to Logothetis et al. [26]
(r2≈ 0.4–0.5). These findings suggested that a significant per
cent of the variance in the BOLD signal could potentially be
related directly to changes in action potentials and synaptic
activity [28]. Based on both the Logothetis et al. [26] and
Mukamel et al. [28] studies, one version of a Rosetta Stone,
which I term the BM Rosetta Stone (BOLD–LFP–MUA), is
that the BOLD signal correlates with both low-pass and
high-pass gamma-band activity. Because synaptic and spiking
activity are correlated in sensory areas in some studies, the
BOLD signal should reflect both low-pass gamma-band
activity and MUA [63].

One problem with this idea, however, is that the synaptic
and MUA components of broad-band gamma activity
appear dissociable. Ray & Maunsell [37] studied this issue in
the primate visual cortex by varying the size of a stimulus pre-
sented [37]. This allowed them to dissociate the low-pass
gamma-band LFP from high-pass gamma. Varying the size
of the stimulus presented to the monkey resulted in changes
in low-pass gamma but not high-gamma. In another study,
Ray et al. [42] averaged individual neuron spiking activity to
compare with high-gamma and activity. While increases
in the firing of neurons explained some of the increases in
high-pass gamma activity, synchrony among neurons pro-
vided a significantly stronger prediction of high-gamma
activity [45], consistent with earlier arguments about the
importance of spatial and temporal organization of cells that
contribute to the LFP. Together, these findings suggest that a
significant component of high-pass gamma activity involves
contributions from spiking activity, which in turn relates
primarily to the degree of synchrony among these neurons
and is separable from low-pass gamma-band activity.

Consistent with these ideas, when explicitly dissociated,
low-pass gamma-band activity correlates more strongly with
the BOLD signal than MUA [31,64,65]. Studies in the primate
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visual cortex demonstrated that the abolition of spiking,
through either manipulation of pharmacology [64] or stimulus
characteristics [65], resulted in robust BOLD/CMRO2 and LFP
correlations. Thus, even in the absence of spike rate, which
could be accomplished either pharmacologically or behav-
iourally, the low-pass gamma-band LFP appeared to be the
clearer correlate of BOLD signal changes. It is also important
to note that even in the original Logothetis et al. [26] study,
the correlation was lower between spike rate and BOLD than
the low-pass LFP and BOLD, with subsequent studies in
awake behaving primates also suggesting the low-pass LFP
was a significantly stronger correlate. Finally, it is important
to note that comparisons between BOLD and electrophysi-
ology require temporal smoothing. Thus, particularly given
its transient and temporally varying nature, single-neuron
activity, when compared with BOLD, may be particularly
sensitive to the smoothing kernels applied.

Therefore, instead of concluding that BOLD can reflect
both multi-unit spiking activity and synaptic contributions
from the LFP, a second version of the Rosetta Stone suggests
that BOLD primarily reflects low-pass gamma activity.
Because low-pass LFP activity should be primarily synaptic
and not action potentials, the BSA (BOLD–synaptic activity)
Rosetta Stone suggests that the BOLD signal largely reflects
synaptic activity [22]. This has led to the idea BOLD reflects
the input to a brain region (synaptic activity) while MUA
reflects the output [66]. As I will discuss, these two ‘BOLD
Rosetta Stones’ hinge on several critical assumptions, which
will be carefully evaluated in the next sections.
5. Problems with the BM/BSA Rosetta Stone:
interpreting correlations

The BM version of the Rosetta Stone rests on the idea that the
BOLD signal shows a positive correlation with gamma-band
activity in sensory cortices (e.g. corr(BOLD,gamma) > 0) and
that broad-band gamma activity, in many situations, shows
a positive correlation with MUA (e.g. corr(gamma, MUA) > 0)
[63]. Some have interpreted this to indicate that the three
should, therefore, be interrelated, allowing direct linkage
between findings from the three measures (e.g. [67]).
Simply because the correlation between gamma and BOLD
is greater than zero, and that between gamma and MUA is
greater than zero, does not necessarily mean, however, that
the correlation between BOLD and MUA is, therefore, con-
sistently greater than zero. For example, rain may often be
correlated with the use of galoshes. Galoshes may sometimes
be correlated with age, in other words, older adults are more
likely to wear galoshes. This does not mean, however, that
rain is correlated with the presence of older adults. Or put
another way, correlations are not transitive, and corr(A,B) >
0, corr(B,C) > 0 does not necessarily mean that corr(A,C) > 0.

More generally, while BOLD, gamma-band power and
MUA may covary in some cases this does not imply that
the same factors affecting one, as in the example given,
affect the other. For example, in the Logothetis et al. [26]
study, even though BOLD changes correlated with gamma-
band power changes, and BOLD changes also correlated (to
a lesser extent) with changes in MUA, at least some of this
variance related to the similar time courses of MUA and
the LFP [22]. Note that this is an inevitable consequence of
the fairly fast activation that one sees in both the low-pass
LFP and MUA to behavioural stimulation [68]. Indeed, as
pointed out above, when MUA is explicitly manipulated or
blocked, BOLD and the gamma-band LFP continue to cor-
relate significantly. This suggests that synaptic activity
influences BOLD instead of MUA directly influencing BOLD.

What about the BSA Rosetta Stone, which argues that
changes in synaptic activity, as measured by the low-pass
gamma-band signal, underlie BOLD signal changes? The pro-
blem here is that regional variability in any of these three
measures makes it unlikely that this relationship will hold for
other brain areas or even different substructures of the same
brain area. Li et al. [69] addressed this issue by investigating
evoked activity in the glomerular (GL), mitral cell (MCL) and
granular cell layers (GCL) of the olfactory bulb [69]. Rats
received odours while undergoing BOLD and LFP recordings
in separate sessions. BOLD signal changes in response to
different odours were strongest in GL, then MCL, with the
weakest activation in GCL (GL>MCL >GCL). By contrast,
low-gamma-band activity was strongest in GCL compared
with all other layers such that GCL>GL>MCL, with the
other frequencies (beta and high-gamma) showing a less con-
sistent relationship with BOLD. Finally, the BOLD–LFP
relationship varied by temporal epoch, with variation in
responses for the different LFP bands during the odour onset,
sampling period, odour off and recovery period. Together,
these results suggest that the BOLD–LFP relationship varied
by layer within the olfactory bulb and task component, which
the authors argued likely related to neural arrangement and
vascular factors that differ across layers of the olfactory bulb.

In a similar vein, Herman et al. [70] found additional varia-
bility between the BOLD signal, the LFP and MUA across
cortical layers in the somatosensory cortex when including
separate measurements of CMRO2, CBF and CBV. Specifically,
the magnitude of the BOLD signal, MUA and gamma-band
LFP often varied in opposite directions across upper, middle
and lower layers of the sensory cortex. Interestingly, MUA
correlated across layers with CMRO2 measurements, which
might be expected based on our earlier arguments about a
close relationship between spiking activity and fast utilization
of oxygen. The low-pass gamma-band LFP and CBFmeasures
also correlated, although less consistently, suggesting that the
LFP may be better related to a separate component of the
BOLD signal, regional changes in blood flow. These findings
suggest that different components of the BOLD signal might
dissociate depending on regional vasculature and local meta-
bolic demands. It is important to note that both of these studies
involved primary/secondary sensory areas and, although
low-pass gamma correlated with BOLD in many instances,
there was both regional and task-related variability across
different layers of cortex that mediated this relationship.
6. Regional variability in BOLD–LFP coupling
across the brain

The studies discussed above so far suggest that BOLD neural
coupling may vary as a function of layer and component of
the BOLD signal (i.e. CBF versus CMRO2). The studies
above, however, all focused on a single sensory brain region
in non-human animals. By contrast to animal recordings,
most invasive and non-invasive comparisons with fMRI
in humans typically involve broader coverage across the
brain, including associative and non-neocortical areas (i.e.
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three-layered versus six-layered). It is, therefore, useful to con-
sider how the BOLD–LFP relationship might vary when
comparing between different brain regions.

In a study by Conner et al. [71], patients performed a
naming task in the scanner and then again after undergoing
ECoG implantation. The authors focused on LFP recordings
from ECoG grid recordings and did not recordMUA, although
other studies have relatedMUA activity, in some cases, to high-
pass gamma-band activity recorded with ECoG [41,42].
Conner et al. [71] found that low-pass gamma and beta
accounted for about 22% of the variance in the BOLD signal
across the recording location. The brain region, however, con-
tributed significantly greater variability to this relationship
(28%). To illustrate some of the regional variability that
Conner et al. [71] observed, theta-band activity was the strongest
correlate of BOLD in superior temporal gyrus. By contrast,
low–mid-gamma-band activity was the strongest correlate in
the postcentral gyrus. These findings suggest that regional
variability, for example, differences in local vasculature and
arrangements of neural fields contributing to the LFP, also
contributes significantly to neurovascular coupling.

Kujala et al. [72] performed a similar comparison using
MEG and fMRI in healthy participants. Participants per-
formed silent reading, and analyses employed a partial least-
squares method to identify different factors contributing to
BOLD across frequency bands. Kujala et al. [72] again found
significant regional variability. Many brain regions showed
a correlation between BOLD and low-pass gamma-band
activity (as high as r2≈ 0.36 in some cases), with the exception
of the precentral gyrus, which showed the opposite pattern
(negative correlations for high-pass gamma, e.g. as high as
r2≈ 0.18). There was also variability within the gamma
band, with some regions showing stronger correlations with
high-pass gamma-band activity and others showing stronger
correlationswith low-pass gamma-band activity. For example,
middle frontal gyrus versus lingual gyrus showed opposite
relationships with BOLD and components of gamma. Simi-
larly, within the lower frequency bands, some regions
showed opposite correlations such as theta with BOLD
in middle temporal gyrus versus and beta with BOLD in
superior frontal gyrus. Together, these findings suggested no
consistent relationship across different frequencies bands,
and while gamma-band activity broadly showed the most
consistent positive relationship with BOLD, not all regions
displayed this pattern and there was significant variability
within the gamma band itself.
7. Why does regional variability arise? The
impact of regional vascular differences

Using microelectrode recordings in the human medial tem-
poral lobe and comparing with high-resolution fMRI
(approx. 1.5 × 1.5 × 3 mm voxels) in patients, Ekstrom et al.
reported a correlation between BOLD and the theta-band
LFP (r2 = 0.16) and no correlation between BOLD and MUA
[56]. Even this relationship, however, varied by brain region
as we found that only positive changes in the BOLD signal cor-
related with theta-band changes within the hippocampus.
Finally, we found no significant correlation between any LFP
band and MUA/single neurons across the medial temporal
lobe. Together, these findings suggested that: (i) the BOLD–
gamma-band correlation does not hold in the hippocampus,
a structure in which theta-band activity is most often observed
as the dominant signal within the LFP, and (ii) the hippo-
campus may show additional variability in the BOLD signal
comparedwith other brain regions within the medial temporal
lobe (see also [73,74]). We suggested several possible reasons
for these findings: variations in neurovascular coupling,
which might be particularly pronounced in the hippocampus
owing to sparse capillarization, sparse neural coding schemes
in which few neurons are active, and domination of the LFP by
theta-band activity due in part to cholinergic modulation from
the septum [5]. Here, I explore these explanations in light of
new supportive findings and also consider a fourth factor:
variations in fMRI signal strength.

As discussed at the beginning of this paper, neurovascu-
lar coupling is more complex than the idea that greater
neural activity results in feedback signals that trigger greater
vascular constriction [20]. While neural activity can influence
blood flow/volume through feedback, incoming neural
activity can also influence CBF/CBV. Changes in CBF/CBV
can also occur in an anticipatory fashion [25] and the vascu-
lature itself can, in some instances, influence neural activity
[23,24]. The effect of vascular differences on BOLD would
be expected to be particularly pronounced in cases in
which the capillarization of a brain area is sparse like the hip-
pocampus [75]. As an example of when this can be an issue in
the hippocampus, Shaw et al. [76] compared activation in the
CA1 region of the hippocampus with the visual cortex in
mice undergoing optogenetic stimulation of glutamatergic
neurons. They coupled this stimulation with optical imaging
of CBF, CBV and CMRO2. Consistent with sparse capillariza-
tion within the hippocampus, resting blood flow and
oxygenation were lower in the hippocampus compared
with the visual cortex. In addition, the same degree of stimu-
lation in CA1 as the visual cortex led to less blood vessel
dilation, which in turn related to how responsive the vascula-
ture was to stimulation in the hippocampus versus neocortex.
Neural synchrony and enzymatic responses of astrocytes,
however, did not differ between brain regions. These findings
suggest that the vasculature itself puts constraints on how
neural activity drives CBF, CMRO2 and CBV. Further consist-
ent with these findings, calibrated fMRI studies suggest lower
coupling levels in the hippocampus and other deep brain
structures compared with neocortical areas [15,77].
8. Sparse versus distributing neural coding
schemes

Place cells, neurons that respond at specific locations as a rat
navigates, represent a nice example of how neurons in the
hippocampus might code an abstract variable like location in
the environment [78,79]. Somewhat unlike orientation cells
in the primary visual cortex, however, place cells show
sparse coding, meaning that few place cells fire at any given
moment as a rat explores an environment. For example, com-
putational estimates, based on recordings of multiple place
cells during exploration, suggest that a small fraction of such
cells are active at any given time as a rat explores an environ-
ment [34]. At the same time, place cell responses in the
hippocampus do not show a structured anatomical organiz-
ation. In other words, two place cells that fire nearby each
other on a maze have the same chance of being located next
to each other anatomically within the hippocampus as two
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place cells that fire at distant locations [80]. The combination
of both sparse coding and a lack of clear anatomical organiz-
ation of functional responses has important implications
for the BOLD signal. This is because when few cells fire that
are not anatomically proximate, their collective activity
is unlikely to be sufficient to trigger a change in BOLD in a
1 × 1 × 1 mm voxel.

Consider, for example, exploration of a specific location in
space. Based on the discussion above, a small number of
place cells should be active at any given location and the
cells themselves should be distributed fairly uniformly
across subfields of the hippocampus. Given that the capillar-
ization of the hippocampus is also sparse, this suggests that
location responses will evoke little if any increase in BOLD
signal voxels (e.g. figure 1b). In fact, one might expect that
such signals would be both too weak at a single voxel and
too anatomically disparate to evoke much of a BOLD signal
change at all. Consistent with this, recent attempts to find evi-
dence for place coding within the hippocampus using fMRI
strongly suggest null findings, with overall no support for
location coding using BOLD [81]. This contrasts with the
visual cortex, where studies have observed orientation-selec-
tive responses using fMRI and MVPA [82,83], suggesting
different functional and anatomical organization.
9. fMRI signal quality
The last issue to consider is varying signal quality obtained
with fMRI. This was highlighted in a recent study by Tsao
et al. [84] based on identified areas of activation to faces
(which they termed ‘face patches’) using fMRI. In their
study, Tsao and coworkers [84] compared how well such
functional ‘patches’ code facial identity using both BOLD
and single neuron recordings in non-human primates. They
employed MVPA of both single neuron and fMRI to attempt
to understand how patterns of activity might relate to differ-
ent behavioural variables in their study. Classification of
different faces based on single-neuron firing patterns
improved dramatically as the authors moved posteriorly to
anteriorly within such patches. fMRI classification, however,
showed somewhat of the opposite pattern, resulting in little
correlation between fMRI voxel patterns of faces and single
neurons at the same locations. The authors performed ana-
lyses of signal-to-noise within the patches recorded from
the monkeys and found that anterior sections, which were
closer to the sinuses and ventricles, typically had lower
signal-to-noise than those posterior. Thus, the lower signal
quality seemed to play an important role in what sort of
information could be decoded from the BOLD signal. This
issue is also relevant for areas like the anterior hippocampus
and entorhinal cortex, which also suffer from signal dropout
and distortion, where recent attempts have tried to tie BOLD
responses to those of grid cells [85].
10. The road forward: if not a Rosetta Stone,
then what?

As I have highlighted above, neurovascular coupling shows a
fairly consistent relationship in areas like sensory cortices,
where gamma-band activity, and, to a lesser extent, MUA,
correlate with BOLD. This has led to the hope that perhaps
a Rosetta Stone can be applied across the brain such that
one could tentatively assign BOLD signal changes to
gamma-band changes [63,86]. As discussed, though, the
major issue with this approach is that neurovascular coup-
ling, much like the BOLD signal itself [58,87], is regionally
variable. In other words, while the BOLD signal may corre-
late with the low-pass gamma-band signal in some cases,
it correlates with high-gamma-band activity in others, with
theta-band activity in others, and with no component of the
LFP consistently in others. As discussed, this is likely due
to the fact the BOLD signal itself is a multifaceted signal
comprising CBF, CBV and CMRO2. These contributions them-
selves show regional variability, as does their integration
within the NVU. In addition, neural coding schemes, for
example, sparse versus distributed coding, and theorganization
of neurons within a structure, are important determinants of
how action potentials and synaptic changes will contribute
to the LFP and MUA. As all of these factors can vary by
region, and even cortical layer, thus they make a single Rosetta
Stone unlikely.

The above arguments lead to the possibility, however, that
one could approach the problem of deciphering what the
BOLD signal means as far as underlying neural activity by
considering other factors, like neural synchrony [88] or non-
linear transfer functions [89]. This could potentially lead to
a situation in which we have functions for every brain
region we might be interested in telling us when and how
BOLD will relate to synaptic versus spiking activity. While
such a nuanced Rosetta Stone would certainly be useful, it
should also take into consideration task variability [25],
which might quickly make such a look-up table impractical.

Another approach instead, given some of the variability in
spatial relationship between BOLD and neural activity, might
be to consider how distributed neural patterns code infor-
mation, such as the example considered earlier regarding face
‘patches’with fMRI. Such an approach is already implemented
in some form by fMRI analyses that employmethods to look at
patterns of voxels rather than specific clusters of voxels that are
above or below some statistical threshold [90,91]. This
approach, often referred to broadly as MVPA, looks at how
changes in patterns of voxels relate to behavioural variables.
Such methods fall into two broad categories, pattern classifi-
cation, which typically involves machine learning algorithms,
and pattern analysis, which typically involves correlating pat-
terns of activity across thousands of different active units
(e.g. voxels, single neurons or electrodes recording the LFP).

Pattern classification typically involves training a machine
learning algorithmon a subset of trials involving neural activity
and specific behavioural conditions and then subsequently test-
ing whether the algorithm can correctly ‘guess’ the behavioural
condition from ‘test’ neural data. Such methods have a rich his-
tory in fMRI [83,90,92–94]. Importantly, such methods often
(but not always) apply no assumptions about the HRF at all
and use normalized voxel intensities as neural input data to
train the classifier. By contrast, pattern analysis techniques
involve correlating the patterns of voxels (or single-neuron
activity [95,96]) across active voxels to determine the extent to
which patterns are the same or differ for behavioural conditions
of interest (for example, successful versus unsuccessful retrieval
[97]). Typically, pattern analysis employs some assumptions
about the underlying HRF, although this too can vary by the
methods applied. For example, finite impulse response (FIR)
modelling techniques, often applied to pattern analysis with
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fMRI [98], make minimal assumptions about the shape of the
HRF [87,99], while other approaches employ canonical HRFs
and then correlate the degree of such ‘fits’ across voxels. Impor-
tantly, the main advantage of both pattern classification and
analysis (referred to as MVPA here) is that they pick up on
both weakly and strongly active voxels, which can move in
either direction relative to baseline.

By contrast, univariate approaches focus on modelling
changes in the HRF one voxel at a time, typically as the same
function across the brain, and then determine howwell the con-
volution of this function with the behavioural variables of
interest fit the observed fMRI patterns across all voxels in the
brain. Subsequent analyses then focus on finding clusters of
activation that exceed some threshold, allowing determination
of whether activation in these clusters increased or decreased
relative to baseline. The issue with this approach, however, is
that an increase or decrease in activation is difficult to interpret
directly in terms of underlying electrophysiological activity
because the electrophysiological basis of the BOLD signal is
regionally variable. In addition, the basis of LFP changes can
include different contributions from action potentials, excit-
atory and inhibitory post-synaptic potentials—all of which
are difficult if not impossible to determine for any given
patch of tissue. Finally, the haemodynamic response function
may be regionally variable [58,87], leading to ambiguity in
terms ofwhether an increase or decrease in BOLD reflects poss-
ible true or false positives [100].

MVPA involving pattern classification, as discussed
above, does not need to involve explicit modelling of the
haemodynamic response function while pattern classification
can involve some assumptions about the shape of the HRF
depending on the approach. Importantly, though, because
MVPA focuses on the population of activity rather than a
single voxel of activity, the haemodynamic response function
does not matter as much in this case because the distributed
voxel patterns themselves are what drives information retrie-
val and not whether the signal correlates better with a
hypothesized response function. This is advantageous in
other ways because the BOLD signal can have its origins at
arterioles (distal) or capillaries (local), particularly at conven-
tional field strengths [21,101], which MVPA naturally
captures by considering a spread of voxels. The third advan-
tage of MVPA with regard to better capturing underlying
electrophysiological activity relates specifically to the fact
that MVPA considers the distributed patterns of strongly
and weakly active voxels and how voxels relate to a behav-
ioural variable rather than considering whether activation
goes up or down sufficiently at a subset of restricted voxels.
For example, LFP responses may also reflect a distributed
signal, particularly for lower frequency bands [102], and
therefore methods that capture this spatial spread are better
suited to capturing information carried by underlying elec-
trophysiological signals. Also, the LFP, and BOLD signal by
proxy, could involve excitatory or inhibitory signals that are
almost impossible pinpoint and, therefore, it is more
meaningful to consider the patterns of activity rather than
whether they go up and down.

By focusing on patterns and their relationship to infor-
mation, rather than focal activation going up or down in
response to a stimulus, one can avoid problematic interpret-
ations inherent in interpreting BOLD related to baseline, and,
perhaps most importantly for our current considerations, the
magnitude of those changes. Such MVPA techniques can also
readily be performed on numerous different types of electro-
physiological recordings and related to perceptual and
memory processes, including scalp EEG, MEG, ECoG and
single-neuron activity [84,95,96,103,104]. Some studies in fact
suggest striking consistencies between MVPA of fMRI and
single-neuron recordings in monkeys [105,106]. Since the
scale of the patterns of voxels is somewhat arbitrary, one can
increase or decrease the resolution of neural recordings to
more directly compare with MVPA techniques from fMRI by
filtering or averaging. MVPA also does not typically employ
spatial smoothing, allowing determination of how information
in each voxel might relate to electrophysiological signals inde-
pendently from their neighbour. In this way, one can perform
more principled comparisons of what sorts of information
are carried at the different scales of fMRI andneural recordings,
although one loses the ability to directly relate an increase or
decrease at a specific voxel to a corresponding change in
neural activity within that voxel.
11. Conclusion
The considerations presented here suggest that regional factors
play a significant role in neurovascular coupling. Such con-
siderations, based on differences in vascular neural regional
organization, put significant constraints on the likelihood
that a single Rosetta Stone will work for the entire brain. It is
important to note, however, that nuanced and informed
interpretations of fMRI are still very much possible, particu-
larly if one employs multivariate methods that consider
patterns of voxels and their relationship to information
coding rather than focal activation. Using such methods, one
can gain insight into what sorts of information a brain region
codes at the level of fMRI and relate this to what sorts of infor-
mation the LFP and MUA code. Given that these signals also
exist at different spatial scales (with single neurons being the
smallest for extracellular electrophysiology), it may be that
one can learn different sorts of information by focusing on
these different scales. Thus, rather than employing a Rosetta
Stone to interpret fMRI, one may instead think about what
sorts of complementary and convergent information one can
obtain from the different spatio-temporal scales provided by
fMRI and electrophysiology.
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