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Mind-wandering has become a captivating topic for cognitive neuroscientists.
By now, it is reasonably well described in terms of its phenomenology and the
large-scale neural networks that support it. However, we know very little
about what neurobiological mechanisms trigger a mind-wandering episode
and sustain the mind-wandering brain state. Here, we focus on the role of
ascending neuromodulatory systems (i.e. acetylcholine, noradrenaline,
serotonin and dopamine) in shaping mind-wandering. We advance the
hypothesis that the hippocampal sharp wave-ripple (SWR) is a compelling
candidate for a brain state that can triggermind-wandering episodes. This hip-
pocampal rhythm, which occurs spontaneously in quiescent behavioural
states, is capable of propagating widespread activity in the default network
and is functionally associated with recollective, associative, imagination
and simulation processes. The occurrence of the SWR is heavily dependent
on hippocampal neuromodulatory tone. We describe how the interplay of
neuromodulators may promote the hippocampal SWR and trigger mind-
wandering episodes. We then identify the global neuromodulatory signatures
that shape the evolution of the mind-wandering brain state. Under our pro-
posed framework, mind-wandering emerges due to the interplay between
neuromodulatory systems that influence the transitions between brain states,
which either facilitate, or impede, a wandering mind.

This article is part of the theme issue ‘Offline perception: voluntary and
spontaneous perceptual experiences without matching external stimulation’.
1. Introduction
Mind-wandering is a mental state where thoughts arise spontaneously, relatively
free from constraints and intentions [1]. Behaviour that is shaped by prior
intentions, action plans and external constraints necessarily narrows the scope
of possible states available to a system [2,3]. By contrast, mind-wandering
suggests a widening of possibilities and a system untethered to constraints
imposed by the externalworld. It reflects a systemengaged in abstract, descriptive
processes, shifted away from immediate sensorimotor goals or interactive behav-
iour with external affordances [4,5]. These characteristics are reflected in the
phenomenology of mind-wandering: free-wheeling, undirected thoughts, with
variable content and unpredictable trajectories. Such system properties and phe-
nomenological characteristics are not unique to mind-wandering, but feature
across the related phenomena of creativity, dreaming and hallucinations [6–8].
Collectively, these modes characterized by a lack of constraints on thoughts,
and on the transitions between thoughts, are termed ‘spontaneous thought’ [1].

As mind-wandering captured the attention of cognitive neuroscientists, the
default network quickly became front and centre [9–11]. Although a more com-
plex story has emerged, as an increased activity within the default network, and
its relative engagement with attentional, control and sensorimotor networks,
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Figure 1. Ascending neuromodulatory pathways. The ascending neuromodulatory systems and their projection nuclei, which send broad projections to different parts of
the brain. (a) The cholinergic system, projections from the basal forebrain, including the septal nuclei (top) and basal nucleus of Meynert (bottom); and from the
brainstem pedunculopontine/laterodorsal tegmental complex; (b) the noradrenergic system, from the locus coeruleus; (c) the serotonergic system, from the dorsal
(top) and median (bottom) raphe nuclei; (d ) the dopaminergic system, from the substantia nigra (top) and ventral tegmental area (bottom). (Online version in colour.)
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are the brain activation patterns most consistently associated
with mind-wandering [1,12–14]. Yet, despite the reasonably
detailed picture we now have of the attendant brain
networks, we know very little about what might trigger
mind-wandering and what neurobiological mechanisms
control transitions in and out of the mind-wandering state.

Ongoing behaviour and cognitive function are strongly
determined by fluctuations in brain state [15]. These states
reflect an interaction between sensory input and intrinsically
generated activity. In this way, brain state is dually determined
by environmental engagement and by endogenously gener-
ated rhythms [16]. Despite this equilibrium process, most of
our understanding of cognition has derived from studying
brain activity and behaviours in response to external stimuli.
Such ‘behaviour-yoked’ paradigms tend to overlook the influ-
ence of underlying intrinsic brain states, which continuously
shape and constrain ongoing cognitive, sensory and motor
processes [17]. Indeed, many brain states, particularly during
quiet periods of stillness or sleep, are dominated by stochastic,
intrinsic activity patterns that are not driven by external inputs
[18,19]. Endogenously generated activity seems particularly
relevant to mind-wandering, which by its nature arises in a
spontaneous, undirected manner, often with little or no
identifiable influence from external stimuli. Here, we identify
a hippocampal brain state, the sharp wave-ripple (SWR), as
an intrinsically driven brain state that is particularly conducive
to mind-wandering.
A key mechanism for regulating brain states are broadly
projecting neuromodulatory systems [15,20,21]. The influence
of ascending neuromodulatory systems plays a vital role
across all aspects of behaviour, including higher order
cognitive function [22,23]. By modulating the relatively fixed
structural connectome of the brain to meet environmental
challenges, neuromodulators support our capacity to flexibly
transition across diversemodes of behaviour [24,25]. Chemical
neuromodulation from these systems alters the properties of
target cells by increasing, or decreasing, the likelihood of
their firing (i.e. altering their gain; [26]). Neuromodulators
can exert their influence over varying timescales, acting on
target neurons to hyperpolarize or depolarize them, or to
alter the plasticity of their synapses [27]. The resulting
change in responsivity of target neurons is referred to as a
change in neural gain, which can be thought of as a measure
of neural signal amplification [28,29]. These properties of
neuromodulators can be distinguished from the faster, direct
signalling provided by classical neurotransmitters, such as
GABA and glutamate [30].

While there are many families of neuromodulatory
neurotransmitters, we focus on four of the major ascending
neuromodulatory systems: acetylcholine, noradrenaline, seroto-
nin and dopamine (figure 1). Although each neuromodulatory
system has unique characteristics, certain general principles
apply. Despite their extensive projections, each system is
capable of remarkably specialized regional effects; the systems
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Figure 2. Hippocampal brain states. An example of the hippocampal theta rhythm and the sharp wave-ripple (SWR). Illustrated beside each recording is the
associated behavioural state: locomotion and task engagement (theta), and a quiescent behavioural state, conducive to mind-wandering episodes (SWR).
(Online version in colour.)
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are self-regulating, via actions at auto-receptors and descending
projections; and, finally, they follow an inverted-U shaped
curve (known as a Yerkes-Dodson-like function [31]), whereby
efficacy of performance is governed by an optimal level of
neuromodulatory influence,with toomuch or too little resulting
in deleterious effects on behaviour [25].

To date, the limited attention that neuromodulators have
received in mind-wandering has focused on the influence of
tonic noradrenaline levels (e.g. see [32,33]). Extending these
ideas, we examine the hypothesis that a balance between
neuromodulatory neurotransmitters shapes brain states that
promote spontaneous thought. We argue that tonic activity
within specific combinations of neuromodulatory projection
nuclei acts to influence the transitions between brain states
that either facilitate (or interfere with) the ability to mind-
wander. In addition, we describe how neuromodulatory
tone might influence the phenomenology of spontaneous
thought. We focus initially on the hippocampal SWR as a
brain state that can trigger mind-wandering, highlighting the
neuromodulatory influences that promote this hippocampal
rhythm. We then describe more global neuromodulatory
signatures that shape the subsequent evolution of the
mind-wandering brain state.
2. Hippocampal sharp wave-ripples: a brain state
for mind-wandering

(a) Hippocampal sharp wave-ripples and their
functional relevance for mind-wandering

The link between behaviour and brain states has been
well studied in the hippocampus, particularly with respect to
theta and SWR hippocampal brain states, which both have
their own characteristic oscillatory rhythms and behavioural
correlates [16,19]. During awake, task-engaged behaviours, hip-
pocampal activity is dominated by theta oscillations, promoting
sensory processing and information sampling. By contrast,
during slow-wave sleep and quiescent periods of wakefulness,
and also during consummatory periods or following receipt of
a reward, distinct neural patterns known as SWR complexes
occur in the hippocampus (figure 2). The sharp wave refers to
high-amplitude depolarization of a large subset of CA1 neur-
ons, driven by excitatory, recurrent activity in the upstream
CA3 region; these sharp waves commonly co-occur with ‘rip-
ples’, which are brief, high-frequency oscillations in large
populations of CA1 pyramidal neurons [18,34]. Importantly,
SWR bursts are not induced but ‘released’ in the absence of
suppression mechanisms such as particular patterns of neuro-
modulatory tone [18,35]. The synchronous discharge of these
pyramidal neurons in the hippocampal–entorhinal output
pathway has powerful diffuse effects, leading to both up- and
downregulation ofwidespread network activity [36,37]. Of par-
ticular relevance is that SWRs are consistently associated with
hippocampal-prefrontal activation [38], and ripples have been
linked to selectively increasing ongoing activity in the default
network [39].

SWRs are a critical event in memory consolidation and
retrieval. SWR neuronal activity can correspond to a previous
experience, constituting a time-compressed ‘replay’ or reactiva-
tion of that event. This activitymay reflect events relevant to the
immediate environment or can be drawn from more remote
memories [40]. Coordinated hippocampal–cortical activity fol-
lowing SWRs is thought to promote ‘systems consolidation’,
whereby hippocampally mediated associations are progress-
ively embedded within the synaptic weights that comprise
neocortical networks, a process driven by the recurrent retrieval
of memories over time [41]. This process is predicted by two-
stage models of memory formation, where the encoding of
new memories in the hippocampal formation occurs during
active waking, and consolidation is promoted via random
hippocampal reactivation during offline states of rest and
sleep [42].

There is a good deal of flexibility in how these neuronal
sequences are reactivated, suggesting that mere replay does
not capture their diversity of function [43]. Part of the richness
and diversity of SWR sequences may derive from the fact that
they are often preceded by neocortical activity, consistent with
the possibility that their content may be biased by information
held in long-term memory [44,45]. During SWRs, neuronal
sequences can be recapitulated in the forwards or reverse
order of an experienced event [46], and activity can reflect
novel combinations of past experiences or predicted future
actions not previously experienced [47–49], sometimes com-
prising completely random, novel sequences [50]. Therefore,
apart from a role in consolidating memories and retrieving
them to aid immediate decision-making and planning,
SWRs may also contribute to our ability to re-combine
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stored memories and simulate novel scenarios—abilities that
underpin imagination [34]. The potential for SWRs to evoke
memory and imagination and to activate the default network,
raises the intriguing possibility that they may act as a trigger
for episodes of mind-wandering.
publishing.org/journal/rstb
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(b) Hippocampal sharp wave-ripples drive default
network activity and may promote conscious
thought content

Hippocampal rhythms are capable of driving widespread
neuronal activity. By synchronizing and coordinating large
populations of hippocampal neurons, hippocampal waves can
orchestrate the co-activation of distributed neuronal ensembles
throughout the subcortex and neocortex [19,51]. This makes
them ideally suited to support memory-related processes,
which rely on information encoded across anatomically distinct
brain regions [52]. Common neural regions are engaged by
various memory-related processes, including remembering
the past, simulating the future and imagination [53]. Regions
activated during these processes reliably involve the default
network and its context-dependent engagement with sensory,
attentional and control networks [54]. Mind-wandering uses
neural regions similar to those that support memory processes;
however, it is initiated spontaneouslyand sustained in anundir-
ected manner, which differs from deliberative, goal-directed
processes that can typify memory retrieval and future planning
[1]. The SWR hippocampal brain state is one such mechanism
that can recruit neural regions involved in memory-related
processes, but in a spontaneous, undirected way.

Dense hippocampal projections to core regions of the
default network, including retrosplenial and posterior
cingulate cortices, make this network a primary target for pro-
pagating hippocampal SWR activity [39]. Spontaneous SWR
activation in the hippocampus and hippocampal–entorhinal
output pathway has the potential to engage the default net-
work more broadly, supporting the conscious elaboration
of memories and simulations. One hypothesis is that the
SWR acts as a subconscious search mechanism, which can
bias subsequent thought content by priming the relevant cir-
cuits and assembly sequences necessary for an item to enter
into consciousness [18]. Such biasing may occur via pattern
completion processes, whereby a stored memory trace is
activated with only a partial or degraded cue [55–58].

Pattern completion is classically attributed to the CA3
region of the hippocampus, on the basis of the recurrent collat-
eral connections of its pyramidal cell population and its
attractor dynamics [59–62]. This recurrent circuitry provides
the basis of an ‘auto-associative network’, capable of instan-
tiating attractor dynamics that promote stable firing patterns.
More concretely, the associativity of the network means
that an entire neuronal population encoding an episodic
memory may be activated based on activation of any subset
of that population [63,64]. These dynamics support the
highly associative nature of episodic memory and they are
well described by two-stage models of memory recollection.
Such models predict a priming of relational associations in
the hippocampus—a rapid and unconscious process—which
can either end, or evolve into a slower, conscious process
associated with hippocampal–cortical interaction [65,66]. Pat-
tern completion processes may also contribute to the itinerant
and often highly associative nature of mind-wandering [67],
where we can drift across a loosely connected train
of thought, or certain contexts spontaneously evoke-related
memories or imaginings. A memory recalled during pattern
completion may trigger further pattern completions, which
would support dynamic thought trajectories with variable
content, but at the same time allow for thematic relationships
and partial associations to persist across consecutive mental
states [68]. Converging evidence from human studies shows
that a considerable proportion of mind-wandering tends to
be unconstrained or ‘freely moving’ [69], and that when exter-
nal demands are reduced, thoughts can tend towards novel,
exploratory associations [70,71]. Hippocampal CA3 sharp
wave activity has been linked to pattern completion attractor
dynamics [72], providing a mechanistic link between the
SWR brain state, and these associative mnemonic processes
that may underpin mind-wandering.

It is currently unclear to what extent SWRs, which rep-
resent only a small fraction of hippocampally mediated
activity in the awake state, are associated with conscious recol-
lection versus a subconscious, mnemonic process [43]. Indeed,
much of what we know about SWRs is based on rodents and
non-human primates, so we lack detailed descriptions of their
phenomenological content. Importantly, however, there is a
good deal of human functional magnetic resonance imaging
(fMRI) evidence demonstrating the spontaneous reactivation
of previously learnt information during rest periods [73]. An
even closer link with animal studies was recently established,
with fMRI evidence for sequential offline replay identified in
the human hippocampus following a non-spatial decision-
making task [74]. Furthermore, decoded magnetoencephalo-
graphy signals have been identified that are consistent with
the temporally compressed replay of abstract rule sequences
learnt during a task [75]. Importantly, these replay events
coincided with ripple-band power increases (120–150 Hz)
and could be localized to the medial temporal lobe, consistent
with the hippocampal–neocortical regions activated during
SWRs. Only very recently was the conscious content of hippo-
campal SWRs directly probed in human subjects, using
intracranial electrophysiological recordings in neurosurgical
patients. A transient increase in SWRs was observed just
prior to the spontaneous free recall of images, which was
related to SWR rates measured when participants originally
viewed the images [76]. The anticipatory nature of their occur-
rence suggests a role for SWRs in the initiation of spontaneous
recollection, providing evidence that SWR activation has the
potential to influence the content of conscious thought.

A critical role for the hippocampus in influencing both the
frequency and content of mind-wandering has been high-
lighted in recent work showing that hippocampal atrophy is
associated with reduced mind-wandering in dementia [77]
and reduced diversity in terms of content in individuals
with selective bilateral hippocampal damage [78]. The SWR
may be one mechanism that underpins the contribution of
the hippocampus to mind-wandering. However, there is no
reason to assume that all SWR events should provoke mind-
wandering, as they are likely to be functionally heterogeneous,
and both the anatomical locations of SWRs within the hippo-
campus [79] and timing of the sharp wave to ripple coupling
[80] lead to different patterns of downstream brain activation.
It could be anticipated that only certain subtypes of SWRs
might promote mind-wandering.

Based on the evidence reviewed above, we suggest that
SWRs represent a compelling candidate for a brain state that
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may trigger mind-wandering. The SWR hippocampal brain
state meets many criteria relevant to mind-wandering: it is
associated with relatively quiescent behavioural states; activity
is spontaneously evoked and can be propagated via the default
network; and it is functionally associated with recollective,
associative, imagination and simulation processes. Through
these mechanisms, SWRs may trigger episodes of mind-
wandering, which are subsequently sustained and elaborated
via the default network, and its engagement with attentional,
control and sensorimotor networks [1]. In the next section,
we summarize the relationship between SWRs and neuro-
modulatory tone, and the broader role of neuromodulators in
larger scale brain dynamics, identifying how these might
promote and sustain the mind-wandering brain state.
il.Trans.R.Soc.B
376:20190699
3. Neuromodulatory influences over hippocampal
sharp wave-ripples and the global dynamics
that sustain the mind-wandering brain state

TheoccurrenceofSWRs is stronglydeterminedbyhippocampal
neuromodulatory tone, suggesting that interactionsbetween the
neuromodulatory system and hippocampal SWRsmay be a key
component in the neuropharmacological signature of mind-
wandering. Coupling between the hippocampus and subcorti-
cal neuromodulatory structures may provide an important
means of orchestrating the brain-wide dynamics that follow
SWRs [81,82], which are likely to be instrumental in sustaining
mind-wandering. Neuromodulators are also important for con-
straining the brain-wide dynamics that shape the evolution of a
specific mind-wandering episode. That is, although a specific
set of circumstances may be required to trigger an SWR, the
dynamic recruitment of different neuromodulatory systems
may influence how a given mind-wandering episode plays
out over time. Here, we describe the major neuromodulatory
systems of the brain (figure 1), and how they interact with
the presence (or absence) of SWRs and the evolution of the
mind-wandering brain state.

(a) Cholinergic system
Acetylcholine is released in widespread brain areas from
projection nuclei in two main sites: the basal forebrain cholin-
ergic system and the brainstem cholinergic system (figure 1a)
[83–86]. The basal forebrain cholinergic system includes cells
in the medial septal nucleus and nucleus basalis of Meynert,
which send projections to the neocortex and limbic system.
Brainstem cholinergic neurons are clustered in the peduncu-
lopontine tegmental nucleus and laterodorsal pontine
tegmental nuclei, which together project to the thalamus,
basal ganglia and basal forebrain.

The cholinergic system plays a major role in modulating
brain states owing to its ability to promote high-conductance
states in the cortex [87], which are associated with high-fre-
quency cortical activation, reduced low-frequency fluctuations
and less synchronized activity among neuronal populations
[16]. The high-conductance state is linked to enhanced sensory
processing, improved task performance and increased task
engagement [88–92] and in the past has been described as
desynchronized (though see [16,93]).

Cholinergic tone is at its highest during wakeful, task-
engaged behaviours and also during rapid eye movement
(REM) sleep, suggesting that the cortical activation in high
cholinergic states need not necessarily be associatedwith behav-
ioural activation [15].Although thecholinergic systeminnervates
manybrain regions, there is increasing recognition that its projec-
tions are relatively localized [94–96], meaning that it influences
target regionsmuchmore precisely thanwaspreviously thought
[97]. In this way, while acetylcholine can have global effects
that promote an activated brain state, it also plays highly specific
roles in cognitive function. Acetylcholine promotes encoding,
attentional selectivity and sensory processing, via various
physiological effects that serve to improve the signal-to-noise
ratio of neural processing and enhance processing of extrinsic/
feed-forward inputs, relative to intrinsic feedback [86,98].

Cholinergic innervation of the hippocampusmainly derives
from the septohippocampal pathway, with projections from the
septal area (medial forebrain, rostral to the corpus callosum)
innervating all regions of the hippocampus [99,100]. In the
hippocampus, acetylcholine increases the amplitude of the
theta rhythm, a state which is comparable to the high-
conductance state in the cortex [16]. By contrast, the presence
of acetylcholine is known to suppress SWRs, which has been
demonstrated in vitro [101] and in both awake and anesthetized
animals [102]. High cholinergic tone has been shown to
simultaneously promote theta rhythms and suppress SWRs
[72,102], suggesting that hippocampal theta functions in an
antagonistic manner to SWRs as a function of cholinergic
input. This is consistent with the opposing behavioural and cog-
nitive correlates of the theta and SWR states. High cholinergic
levels in the hippocampus, promoting the theta state, favour
externally driven sensory processing and engagement with the
environment [103], whereas the lower cholinergic tone promot-
ing theSWRstate supports internallydrivenprocesses [104]. The
low cholinergic state enhances intrinsic hippocampal dynamics,
allowing internal connections to be reorganized and strength-
ened based on previously encoded associations [105]. Taken
together, a relatively low cholinergic tone in the hippocampus
would bias intrinsic hippocampal dynamics over extrinsic
input, promoting the spontaneous activation of SWRs.

At the global level, similar to the SWR hippocampal
brain state, we hypothesize that mind-wandering should be
associated with relatively low cholinergic tone. As described
earlier, despite projecting to many areas of the cerebral cortex,
cholinergic projections follow a highly topographic and
differentiated, rather than diffuse, organization [106]. This
organizational feature supports functionally and spatially
selective signalling [107]. Cholinergic activity promotes selec-
tive neuronal population coding and a cortical network that
is less driven by global fluctuations from diffuse inputs
[96]. This is achieved by selectively boosting the neuronal
gain in target regions, enhancing feed-forward connections
and network specificity [108–110]. A direct prediction from
these studies is that at the macroscopic network level, heigh-
tened cholinergic tone should promote segregated (i.e. tightly
connected communities of brain regions with weak inter-
connections) patterns of information processing [111]. Such
segregated topology is optimized for functionally selective
operations and sensory processing, which contrasts with the
distributed, integrated information processing that would
support mind-wandering.

A possible contention with the notion that relatively low
cholinergic tone promotes mind-wandering is that cholinergic
tone is also highest duringREMsleep, and there are recognized
phenomenological and cortical activation similarities between
mind-wandering and dreaming [7,112]. However, contrary to
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the long-held view that dreaming is synonymous with REM
sleep, dreaming is also known to occur during non-REM/
slow-wave sleep [113–116]. While non-REM dreams often
have a shorter and fragmented quality, they can also exhibit
phenomenological characteristics indistinguishable from
REM dreams, being longer, vivid and with a self-narrative
[117].When drawing parallels betweendreams andmind-wan-
dering, it is also important to note that neuromodulatory tone
differs significantly across waking versus sleep. Serotonergic
and noradrenergic systems considerably reduce their activity
in non-REM and become inactive in REM, whereas cholinergic
systems are virtually silent during non-REM, becoming highly
active in REM [6,117,118]. Together, this highlights that similar
phenomenological experiences can occur across waking
and non-REM/REM brain states, each associated with very
different neuromodulatory levels. In this respect, the low
cholinergic state promoting SWRs may be considered one
route to mind-wandering in the awake state, while different
combinations of neuromodulators drive this phenomenology
in other brain states.
76:20190699
(b) Noradrenergic system
The locus coeruleus (LC), situated deep in the pons, is the pri-
mary source of noradrenaline in the brain. This small nucleus
has widespread projections innervating most brain regions,
with the exception of the basal ganglia, and it provides
descending input to the spinal cord and autonomic nuclei
[119] (figure 1b). Highly collateralized LC projections can
release noradrenaline via non-synaptic or paracrine mechan-
isms, enabling diffuse influence over cortical activation
and behavioural arousal [118]. At the larger scale brain
network level, LC-noradrenaline activation facilitates reor-
ganization of functional networks in response to changing
environmental demands. Through the simultaneous action
of noradrenaline at multiple target structures, ongoing func-
tional interactions can be interrupted and reconfigured to
promote a change in behaviour [120].

Early reports of LC-noradrenaline function focused on
its role in general arousal and vigilance, based on its links
with the sleep-wake cycle. However, increasingly more fine-
grained functions have been related to the LC-noradrenaline
system, including a central role in cognition and behavioural
flexibility [121]. One way that noradrenaline regulates behav-
iour is by negotiating the balance between ongoing focus on a
task and the need to shift focus to alternative options. Termed
the ‘exploitation-exploration trade-off’, this underpins an
organism’s ability to persist with a behaviour while it is useful
and to explore more advantageous opportunities when use
decreases. Thesemodes of behaviour aremapped to temporally
distinct firingpatterns in theLCandchanges in tonic noradrena-
line levels [122]. When tonic noradrenaline levels are optimal,
phasic firing occurs in response to task-relevant stimuli, and
this is associated with task focus and good performance.
Following a Yerkes-Dodson-like function, optimal task per-
formance is typically associated with the middle range of
tonic noradrenaline levels. Lower tonic levels are associated
with low arousal and reduced alertness, which negatively
impacts task performance. High tonic levels are associated
with distractibility and an exploratory mode, facilitating the
organism to disengage and pursue another behaviour.

Limited in vitro evidence using hippocampal slices suggests
a receptor-dependant modulatory role of noradrenaline in
SWRs, with α1 adrenoreceptor activation associated with SWR
suppression and SWR expression associated with β1 adrenore-
ceptor activation [123,124]. Consistent with this, during certain
SWR subtypes brain-wide activity shows downregulation of
the LC, suggesting a modulatory role from this system in SWR
events [80]. These studies raise the possibility that hippocampal
noradrenaline levels may have both suppressive and potentiat-
ing effects on the occurrence of SWRs.

The LC densely innervates the hippocampus and regulates
cellular excitability, cellular reorganization, synaptic plasticity
and long-term potentiation, influencing all aspects of
memory formation [125–128]. In addition to facilitating encod-
ing, the LC-noradrenaline system is reactivated in the window
after initial learning, at the stage of offline memory conso-
lidation [129,130]. This phasic reactivation may relate to
hippocampal SWR events. There is indirect evidence for this
phenomenon, as delayed LC excitation after learning was
found to occur exclusively during slow-wave sleep, a state in
which SWRs are known to occur [130]. During slow-wave
sleep, noradrenergic activity is at a relatively low tonic level;
however, the LC is not completely silent [131]. The LC fires
transient bursts during slow-wave sleep that coincide with
hippocampal SWRs [132,133]. This suggests that phasic
bursts of noradrenergic activity during states of relatively low
(but not silent) noradrenergic activity may be conducive to
SWRevents in slow-wave sleep [134].We speculate that similar
noradrenergic factors—i.e. those that occur when one is awake
but not particularly focused or stressed—may be conducive to
SWR events in the awake state.

Co-activation of the noradrenergic system during replay
could serve to promote plasticity and stability in the distributed
cell assemblies reactivated during an SWR, contributing to
systems consolidation in the offline state [121,130,135]. The nor-
adrenergic release associated with an SWR-mediated phasic
increase in LC activity would act to bring both the cortex and
hippocampus into a more excitable, highly conductive state
that would promote cross-regional interactions [136,137]. At
the systems-level, theactivationof relatively low-affinityα1adre-
nergic receptors promotes a ‘reset’ of large-scale networks [120].
In this way, the noradrenergic activity coinciding with an SWR
may be sufficient to reset cortical dynamics and in turn promote
a brain state conducive to mind-wandering.

The effect of noradrenaline at the brain network level
can be contrasted with the cholinergic system. The broad
reach of gain modulation from the noradrenergic system is
a key mechanism for enabling dynamic reorganization of cor-
tical networks [138]. Noradrenergic function has been linked
to increases in the strength and clustering of functional con-
nectivity [29] and increased network integration [139],
suggesting a role for noradrenaline in promoting distributed
information processing across widespread brain regions, via
its capacity for diffuse alterations in response gain [111]. Rela-
tively higher global tonic noradrenaline, with respect to
cholinergic tone, may promote increased integration across
the brain to facilitate the coordinated information processing
required to sustain episodes of mind-wandering.
(c) Serotonergic system
The serotonergic system innervates most brain regions, with
the majority of ascending projections arising from the
dorsal and median raphe nuclei in the brainstem (figure 1c)
[140,141]. Serotonergic projections arborize across diverse
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brain regions, with some providing paracrine transmission
that enables diffuse influence over target regions. The seroto-
nergic system acts on a large and diverse family of receptors
[142], adding to the diverse functional capacity that is already
conferred by its diffuse projections [143]. The highly selective
distribution of receptor subtypes across cortical layers
means that in addition to the ability to modulate brain-
wide dynamics, the serotonergic system can exert very
precise modulation over specific neuronal populations [144].

There is in vitro evidence that high levels of hippocampal
serotonin can suppress SWRs [145]. In vivo, recordings from
the serotonergic median raphe region (which projects to the
entire hippocampal formation) showed that many of these
neurons were inactive at the time of SWRs [146]. Furthermore,
optogenetic excitation and inhibition of median raphe neurons
respectively suppressed and enhanced SWR activity [146].
During certain SWR subtypes, brain-wide activity shows
downregulation of the serotonergic dorsal raphe, in keeping
with a modulatory role from this system in SWR events [80].
Therefore, inhibition of serotonergic hippocampally projecting
neurons may be a critical factor in promoting the occurrence of
SWRs. This action probablyoccurs viamodulation of serotoner-
gic 5HT1A receptors, which are abundant in the hippocampal
CA1 subregion [147,148] and are typically associated with
inhibitory G-protein-coupled effects [149].

The concentration of serotonin in different brain regions
could also influence the evolution ofmind-wandering episodes
after an SWR has occurred. There is compelling evidence that
serotonin is involved in the alteration of global dynamics in a
way that is consistent with the phenomenology of the mind-
wandering brain state. Serotonergic psychedelics, such as
lysergic acid diethylamide (LSD), psilocybin and ayahuasca/
dimethyltryptamine (DMT), provide unique insights into the
impact of brain serotonin upon the neurophenomenology of
perception, as well as the boundaries between spontaneous
thought and dreaming. While psychedelics do not act exclu-
sively upon serotonin receptors, extensive work has revealed
the dominant role for a specific serotonin receptor subclass
(5HT2A) in psychedelic neurophenomenology [150,151].
Recent work has suggested that 5HT2A agonists may shift the
brain into a more entropic or anarchic mode of processing,
in which the brain shifts between states in an irregular
manner that is much less tethered to the external world than
normal,waking consciousness [152,153]. By selectively increas-
ing the gain of layer V pyramidal-tract-type cells (the major
output population of the cerebral cortex), 5HT2A agonists
are suggested to flatten the attractor landscape [153], which
means that novel patterns can form in the place of neuronal
ensembles that are typically activated according to well-
established firing patterns. This is consistent with the novel
associations that may form during mind-wandering, raising
the possibility that a mind-wandering episode occurring in
the context of higher cortical serotonin may follow more
novel, associative trajectories.

These lines of reasoning suggest dual effects of serotonin,
with intermediate levels in the hippocampus promoting SWRs
and higher levels in the cerebral neocortex promoting the evol-
ution of a mind-wandering episode. Speculatively, these
effects can be partly explained by actions at different serotoner-
gic receptor subtypes (5HT1Aversus 5HT2A). This highlights the
complexity of neuromodulatory influences over behaviour, as
actions at different subtypes have varied and nuanced effects,
which are mostly unexplored in relation to mind-wandering.
(d) Dopaminergic system
Dopamine may serve to promote SWRs in order to bias
encoding and retrieval of salient or rewarding events [43].
There is a well-established role for dopamine in the formation
and consolidation of memories, most notably via dopamine-
driven mechanisms of hippocampal long-term potentiation.
Midbrain dopaminergic neurons primarily modulate the
hippocampus via a loop involving direct projections from the
ventral tegmental area (VTA) to the hippocampus, which
itself outputs (via the subiculum) excitatory projections to the
nucleus accumbens, inhibiting the ventral pallidum and releas-
ingVTAdopaminergic neurons from tonic inhibition [154,155].
In contrast with the diffusely branching collaterals of the nor-
adrenergic and serotonergic systems that innervate multiple
areas, dopaminergic projections (like cholinergic projections)
are relatively more segregated and modulate more specific
brain regions (figure 1d) [156]. Consistent with this mechan-
ism, the dopaminergic innervation of the hippocampus from
the VTA is relatively sparse, potentially allowing it to have
more specific, nuanced effects on hippocampal function
[157]. Recently, an additional source of hippocampal dopamine
was identified, as neurons projecting from the LC to the
hippocampus co-release both noradrenaline and dopamine
[158,159].

In relation to SWRs, direct application of dopamine to hip-
pocampal slices in vitro results in a long-lasting increase in
SWR frequency [160]. Furthermore, activity in the dopamin-
ergic VTA-hippocampal pathway at the time of encoding
enhances subsequent offline SWR activation [161]. This is con-
sistent with earlier work showing enhanced SWR activity
following rewarded outcomes [162]. Hippocampal dopamine
at the time of experiencing novel, salient or rewarded events
may therefore bias the content and frequency of subsequent
SWR activity [163]. The role of dopamine may also extend to
reinforcing reactivated sequences during offline periods, as
dopaminergic input coordinates with hippocampal activity
during SWRs in the offline state. This is demonstrated by
reward responsive VTA neurons coordinating their firing
with hippocampal SWR replayed sequences during offline
quiet wakefulness [164].

These findings suggest a dual role for dopamine in
increasing the likelihood of SWR reactivation of particular
experiences, as well as further reinforcing reactivation patterns
offline. While this presumably occurs as a means of promoting
consolidation of salient events into long-term memory, it
suggests that dopaminergic tone in the hippocampus may
impact the subsequent spontaneous recall of information
and, in this way, influence the content and the reinforcing
aspects of mind-wandering. A link between the dopaminergic
system and mind-wandering may substantiate recent theoreti-
cal assertions that a goal of mind-wandering is to generate
potentially rewarding cognitive affordances [165,166].

(e) Interactions between neuromodulatory systems may
trigger hippocampal sharp wave-ripples and sustain
the mind-wandering brain state

Based on the evidence reviewed above, we propose that the
combined influence of neuromodulators defines the likeli-
hood that an SWR will occur in the hippocampus, and by
extension, the propensity for an individual to enter into a
mind-wandering episode (figure 3). Lower cholinergic tone
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facilitates an overall dampening of sensory processing, disen-
gagement from the external environment and a relatively
quiescent behavioural state. This promotes hippocampal
SWRs, which may trigger a mind-wandering episode. Simi-
larly, low levels of hippocampal serotonin also facilitate the
occurrence of SWRs. By contrast, high dopaminergic tone in
the hippocampus can enhance the activity of SWRs and
make it more likely for a neuronal sequence to be reactivated
in the future, via reinforcing properties. Finally, phasic bursts
during relatively low levels of noradrenaline may promote
SWRs. Together, these patterns suggest that mind-wandering
should occur during periods of relative quiescence (i.e. low
cholinergic and serotonergic tone) but moderate arousal (i.e.
low noradrenergic tone) in which a rewarding stimulus is
chanced upon (i.e. heightened dopaminergic response),
either via an external or internal cue (figure 3a; teal sphere).

Once triggered, the occurrence of an SWR has the poten-
tial to drive brain networks into a precise, information-rich
(i.e. low entropy) configuration (figure 3b). Specifically, a hip-
pocampal ripple re-activates distributed neuronal ensembles
that were either related to the neuronal sequence that was
embedded into the network during the original encoding
event, or through the Hebbian processes that occur over the
course of learning. In this way, a ripple event would act
to re-energise a unique constellation of regions that were
tangentially related to some aspect of the replay or simu-
lation, opening up particular ways to engage with the
current brain state over time (e.g. by re-exploring the same
memory, or combining it in new ways).

As we have argued above, neuromodulatory tone plays an
important role in shaping the likelihood of the hippocampus
undergoing an SWR, and hence, how likely it would be to
trigger a mind-wandering episode. However, the relative con-
centration of different neuromodulators within the pro-SWR
zone will also probably play a role in defining the mind-
wandering state. For instance, phasic noradrenergic activity
at the time of the SWR may enhance the activation of distribu-
ted neuronal ensembles throughout the subcortex and
neocortex, shaping the amount of integration present between
otherwise disparate brain regions (figure 3c). Higher concen-
trations of noradrenaline would probably facilitate a ‘reset’ of
the global brain state into onewhere a specific memory, associ-
ation, or simulation has been primed into conscious contents,
with the potential to trigger a mind-wandering episode. If
the concentration of noradrenaline is too high (or low), this
could render the phasic burst less (or more) impactful, as the
phasic activity can potentially be obscured against the tonic
background activity of the LC.

Once a mind-wandering episode has been triggered, how
(or if) it evolves will also be further influenced by the neuro-
modulatory tone in the epoch immediately following a SWR.
For instance, the continued low cholinergic tone in the basal
forebrain system could downregulate the impact of incoming
sensory input and bias the system towards intrinsic processes
(figure 3d ). Lower cholinergic tone would also theoretically
lessen the constraints on segregated network topology, allow-
ing for more flexible integration across tangentially related
neuronal ensembles [111]. Noradrenergic tone further deter-
mines the level of engagement with the current external or
internal environment. If noradrenaline levels are optimal for
whatever cognitive or behavioural task is at hand, it is likely
that a person will maintain their focus on that task. However,
if levels are still within an intermediate range but outside
of task-optimal levels, then the triggered mind-wandering
episodemay take hold and allow the person to engage in spon-
taneous thought. Together, the cholinergic and noradrenergic
systems have considerable influence upon overall brain states
[167], working in cooperation to shape the extent to which
we are driven by engagement with the external world, versus
being driven by intrinsically generated activity.

While inhibition of hippocampal serotonin facilitates
the occurrence of SWRs, wider-spread activation of the
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serotonergic system may shape the evolving content of spon-
taneous thought, which may not necessarily be triggered by
an SWR (figure 3e). Based on work using 5HT2A receptor ago-
nists [152,153], there is evidence that elevated serotonergic gain
in layer V pyramidal-tract-type cells may release neuronal
populations from their stereotypic firing patterns allowing
novel patterns to form, consistent with the novel, unpredictable
trajectory of certain spontaneous thought episodes. This mode
of mind-wandering is consistent with a high-entropic state, as
opposed to the low entropy state that may follow an SWR.
rnal/rstb
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4. Relationship between neuromodulation and
the phenomenology of spontaneous thought

Several lines of evidence link our proposed model of
neuromodulatory influenceswith the phenomenologyof spon-
taneous thought. We have suggested that low-to-intermediate
levels of noradrenaline, albeit outside of task-optimal levels,
are conducive to mind-wandering. In agreement with this,
reduced pupil diameter (a proxy for tonic LC function [168])
indicative of low levels of arousal is associated with an
increased frequency of hippocampal SWRs [88,169]. Evidence
from human studies supports the idea that mind-wandering
may occur when tonic noradrenaline levels are outside of
task-optimal levels, as studies using pupillometry have ident-
ified off-task thought in the context of both elevated and
reduced baseline pupils [32,33,170–173].We suggest that spon-
taneous thought occurring in the context of relatively low tonic
noradrenaline/low arousal most resembles the fleeting and
transitory nature of mind-wandering. At the more extreme
end of the low arousal/low tonic noradrenaline spectrum,
thoughts may become increasingly disjointed and transient,
with less awareness of thoughts, which at its extreme may be
experienced as amind-blanking state (i.e. thinking of ‘nothing’)
[174–176].

By contrast, relatively higher levels of tonic noradrenaline
and arousal that facilitate an exploratory mode of behaviour
may also engender an exploratory mode of spontaneous
thought. This could be realized as exploratory creative thinking,
which is subject to greater deliberative constraints than
mind-wandering but still considered within the family of
spontaneous thought [1]. In keepingwith this, during divergent
thinking—a creative thought process where many possible
associations are explored—larger baseline pupil levels predict
the generation of original ideas [177], suggesting a link between
higher tonic noradrenaline levels and exploratory, creative
thoughts. This contrastswith studieswhere lowered noradrena-
line levels (via β-adrenergic antagonists) improved convergent
thinking (i.e. zeroing in on a single creative response)
[178], suggesting that noradrenaline may influence the extent
to which creative thought is exploitative (convergent) versus
explorative (divergent). Relatively high tonic noradrenaline,
which would be characterized by high global gain and
increased integration across brain regions [117,152,153], may
support a brain state that promotes the dynamic default-execu-
tive network coupling that has been associated with divergent
thinking [179,180].

Based on work using 5HT2A receptor agonists, we have
also suggested that serotonergic activity may facilitate the
formation of novel patterns of neuronal ensembles as a mind-
wandering episode evolves. Psilocybin is shown to enhance
the activation of indirect semantic associations [181], which
fits well with a recent proposal that certain aspects of
mind-wandering may be driven by unconstrained semantic
associations [67]. Furthermore, LSD was found to increase
individuals’ susceptibility to imagining themselves experien-
cing novel, creative scenarios [182]. Dreamlike states, with
vivid visual imagery and cognitive bizarreness, induced by
psychedelics [183–185] are also consistent with the possibility
of novel pattern formation. Although the psychedelic state
may be an intensified form of spontaneous thought, similar
effects probably contribute to the formation of novel
associations in the mind-wandering brain state.
5. Concluding remarks
Mind-wandering induces a shift from a pragmatic mode
where an organism explores its environment, to a mode
where mental states are explored. This process may represent
a key evolutionary development, emerging as more complex
systems interacted with more complex environments, where
such offline processing enabled consolidation and refinement
of learnt associations without being under the pressure of
immediate goal-directed pursuits [186]. Such processing
enables organization (and re-organization) of knowledge
about the world into a high-dimensional space to support
adaptive and flexible behaviour—an idea that has been concep-
tualized as a ‘cognitive map’ [187,188]. The recurrent offline
instantiation of memories and novel simulations that occurs
with SWRs makes them an ideal candidate for maintaining
and modulating these cognitive maps [189,190]. This possi-
bility is supported by recent work showing that replay events
in humans can constitute abstract rule sequences, suggesting
they may function as a mechanism to generalize knowledge
across experiences [75]. Considering a link between SWRs
and mind-wandering, the possibility emerges that an adaptive
function of mind-wandering may well be to augment these
abstract knowledge structures we cultivate over our lifespan.

Here, we have defined spontaneous thought in terms of the
possible brain states that might trigger and sustain it, focusing
on the role of neuromodulatory systems in shaping the mind-
wandering brain state. It is clear that each neuromodulatory
system discussed plays a role in orchestrating the mind-wan-
dering state. Indeed, the interplay between ascending arousal
systems cannot be underestimated, as all of these systems con-
tribute to waking consciousness and there are substantial
interactions between them [191]. Continued understanding of
this interplay remains important across all attempts to link
behaviour and cognition with neuromodulatory systems. Like-
wise, although we have not focused on it here, a key principle
of neuromodulatory systems that enables their exquisite flexi-
bility is that they receive top-down regulation via the very
regions that they are modulating [192,193]. Considering these
reciprocal interactions also remains an important focus for
reconciling neuromodulatory influences over brain-behaviour
states. Finally, it is important to note that we have discussed
brain states in somewhat absolute terms. It is now appreciated
that brain states can at times be a complex mix of overlapping
global and local sub-states [20], which combine to influence
behaviour and cognition.

The field of cognitive neuroscience has made great strides
in establishing the brain networks recruited during the mind-
wandering brain state; however, we are only in the nascent
stages of understanding how neuromodulators affect this
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state. Much of what we have presented here remains specula-
tive; however, we hope that these early ideas may provoke
the future work necessary to uncover the nuanced roles that
neuromodulators undoubtedly play in mind-wandering.
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