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Successive generations of hunter—gatherers of the Late Glacial and Early
Holocene in Iberia had to contend with rapidly changing environments
and climatic conditions. This constrained their economic resources and
capacity for demographic growth. The Atlantic facade of Iberia was occu-
pied throughout these times and witnessed very significant environmental
transformations. Archaeology offers a perspective on how past human
population ecologies changed in response to this scenario. Archaeological
radiocarbon data are used here to reconstruct demographics of the region
over the long term. We introduce various quantitative methods that allow
us to develop palaecodemographic and spatio-temporal models of population
growth and density, and compare our results to independent records of
palaeoenvironmental and palaeodietary change, and growth rates derived
from skeletal data. Our results demonstrate that late glacial population
growth was stifled by the Younger Dryas stadial, but populations grew in
size and density during the Early to Middle Holocene transition. This
growth was fuelled in part by an increased dependence on marine and estu-
arine food sources, demonstrating how the environment was linked to
demographic change via the resource base, and ultimately the carrying
capacity of the environment.

This article is part of the theme issue ‘Cross-disciplinary approaches to
prehistoric demography’.

1. Introduction

In this paper, we examine how human demography was influenced by past
environmental change via changes in ecosystem productivity and carrying
capacity. Recent palaeodemographic research for the Pleistocene-Holocene
transition has revealed new insights into the dynamics of human populations,
including different impacts of climate change, episodes of migration and popu-
lation bottlenecks [1-4]. However, the reconstruction of population dynamics at
a regional scale faces major empirical and methodological limitations when
coastal regions are concerned. Factors of site preservation and visibility, and
the complexities inherent to the calibration of marine samples with different
local reservoir effects, have considerably limited the application of paleodemo-
graphic studies based on radiocarbon evidence. This problem is particularly
relevant as coastal areas were especially sensitive to climatic and environmental
changes, driving different foraging adaptations whose consequences in terms of
population trajectories and settlement organization remains to be investigated.

The Atlantic facade of Iberia presents a paradigmatic case study. Located in
the westernmost end of the Eurasian continent and the subject of significant
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Figure 1. Maps indicating: (a) the location of the Atlantic facade of Iberia; (b) the distribution of post-LGM hunter—gatherer sites in the study region; and (¢,d) the
concentration of Late Mesolithic sites in the Muge and Sado estuaries, respectively. (Online version in colour.)

changes in biological marine productivity driven by oceanic
upwelling, previous research, e.g. [5-7], suggests that hunter—
gatherer economy and culture comprise a mix of continuous
and resilient adaptations, punctuated by rapid transformations
associated with drastic rapid climatic events that would have
affected the carrying capacity of the environment and driven
a series of human adaptations.

Following the Last Glacial Maximum (LGM), during the
Magdalenian period (ca 20.5-13 kyr ago), foraging adaptations
focused on terrestrial game, with increasing evidence of
diversification [5,7]. The return of cool conditions in the
Younger Dryas (YD) prompted a greater reliance on small
prey, particularly lagomorphs, but culturally there was much
continuity from earlier times, which remained during the
following Epipaleolithic phase. The most dramatic shift
in subsistence, settlement patterns and lithic technology
occurred around 8200 cal. BF, with the widespread adoption
of a repertoire of geometric microliths typical of the Late Meso-
lithic, e.g. [8,9]. It is during this phase that marine resources
seem to become of paramount importance for the human
population of the Atlantic fagade of Iberia. The most important
sites of this period are situated in palaeoestuaries that came
under tidal influence at approximately the same time as their
human exploitation began [8,10]. The Muge and Sado valleys
in particular (figure 1) contain two concentrations of Mesolithic
palaeoestuarine sites that consist of rich shell middens of inter-
tidal species. These sites usually interpreted as semi-permanent

settlement comprise thick shell-matrix with domestic waste
enveloped within a complex stratigraphy [8]. They also contain
a rich funerary record, with over 300 of human burials known.

Recently obtained ancient DNA evidence suggests there
was a strong genetic continuity to these Final Pleistocene-
Early Holocene changes in subsistence and material culture
[3,11]. Therefore, the Atlantic region of Iberia offers a
unique opportunity for studying long-term endogenous pro-
cesses of demographic change in its ecological context from a
multi-proxy perspective. This study aims to reconstruct long-
term demographic dynamics using archaeological radiocar-
bon data. We introduce various quantitative methods that
allow us to develop palaecodemographic and spatio-temporal
models of population growth and density. Motivated by
models of the relationship between ecosystem productivity
and population size, e.g. [12], we also turn to a reconstruction
of palaeodietary trends and draw comparisons with fertility
rates derived from skeletal data.

2. Methods

We compiled a database of 62 archaeological sites and 371 radio-
carbon dates, updating upon a synthesis previously published [4].
The data were subjected to two rounds of data screening, where
dates with excessive error terms (greater than 200 years) were fil-
tered from the database to reduce noise, as were dates where the
archaeological association with human activity was not clear.
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Custom calibration was performed, using the IntCal20 marine
and atmospheric curves [13], mixing these curves where necessary
using published estimates of marine diet for each human bone
sample. For both mixed-source and marine carbon reservoir
samples, local offset values were used to calibrate the dates
(electronic supplementary material, table S1).

Our population proxy is developed from summed prob-
ability densities (SPDs), calculated from the radiocarbon dates
and normalized. To circumvent the likelihood that large numbers
of dates from heavily sampled sites influenced the results, we
used hijerarchical cluster analysis [14] to reduce the dataset
such that each site phase (defined for our purposes as the inter-
generational period of 30 years) was represented by one
radiocarbon date chosen at random from those available. The
final number of dates retained was 284. Dates from open-air
sites were summed separately to those from other sites, and
their SPD was scaled according to the taphonomic correction
proposed by Surovell et al. [15]. Dates from closed sites (caves
and rockshelters) were then added to this SPD without any
taphonomic correction. A confidence interval for the SPD was
calculated using the bootstrapping method of [4].

Null hypotheses of exponential population growth were
tested by fitting an exponential curve to the SPD and bootstrap-
ping a confidence interval [4], and the periods of significant
departure from this null model identified by comparing the
bootstrapped confidence intervals of both curves. Adopting
the rcarbon visual syntax, those areas of the bootstrapped
SPD whose 95.4% confidence interval were above or below
the confidence interval of 95.4% of the exponential null model
were, respectively, shaded in blue and red, to denote statistically
significant departures from the null model. We consider this
approach is more robust against the calibration artefacts ‘false
positives’ compared to methods that use a rolled mean SPD,
e.g. [15,16]. Kernel density estimate (KDE) models for the data
were calculated using the method of McLaughlin [17], also
using one date per site phase, and this method was further devel-
oped to allow the calculation of dynamic models of the mean
annualized growth rate. Unlike approaches that find the average
geometric growth between fixed points in the SPD, such as cen-
tury-wide ‘bins’ [16], we derived a fully continuous reading of
growth from the radiocarbon data. This was done by numerically
differentiating the bootstrapped KDE and expressing it as a time
series with a defined confidence envelope. A similar analysis has
been proposed by Brown [18], who pointed out that KDE-
derived continuous growth models were a more useful explora-
tory tool than SPDs in this regard owing to their capacity for
cancelling calibration noise.

To investigate the correlation between the SPD-based popu-
lation proxy and other proxies, such as palaeotemperature
proxies, we used Spearman’s rank correlation coefficient, and
subset our data to 500-year time slices stepped at 50-year intervals.
The mean distance between sites was calculated by recording the
pairwise Euclidean distance between each site [19] in 500-year
time slices, using 50-year steps to develop these measurements
into a timeseries.

For testing whether changes in population size are related to
a widespread shift towards marine and estuarine food resources,
we gathered together the details of all 54 published cases
from the region where samples of ancient human tissue have
been analysed for measurements of radiocarbon, stable carbon
and stable nitrogen isotope ratios (electronic supplementary
material). In this task, we were limited to a post-8500 cal. BP
timeframe because to our knowledge, no earlier data are avail-
able from the region. We used locally estimated scatterplot
smoothing (LOESS) regression to determine whether there was
any time-dependent trend in the palaeodiet. This procedure
used a Monte Carlo process to draw point samples from the cali-
brated radiocarbon ages, and used these to calculate 1000

individual LOESS models, each using a different set of randomly n

drawn ‘dates’. The fitted values for each of these 1000 predictions
were averaged to generate a regression model of palaeodietary
trends. Using this approach, the regression can be expressed
with a confidence interval that conveys the uncertainty intro-
duced by the radiocarbon calibration process as well as the
uncertainty of the LOESS prediction.

The computer code (in R) we used to undertake all the
analyses presented in this paper is included as the electronic
supplementary material.

Figure 2a shows the SPD population proxy fitted against a null
exponential model of population growth for this timeseries
[4,23]. Comparing the bootstraps’ confidence envelopes, the
probability that the two curves reflect the same underlying
population dynamic is significantly low, p=25x107"° In
figure 2a, we highlight cases where the outer bounds of the
SPD confidence envelope depart from the null model. The SPD
population proxy shows some significant negative departures
from the exponential model, especially during climatic episodes
of temperature downturn such as the Heinrich event 1 (HI-1,
ca 18000-15000 cal. BP), the (YD ca 12800-11 700 cal. BP) as
well as the end of the Early Holocene. By contrast, we find a posi-
tive departure around 13 500, near the end of the Greenland
Interstadial 1(GI-1 or Belling/Allered), before the YD com-
mencement. The main trend is highly consistent with the
histogram of site counts (see the electronic supplementary
material, figure S1), indicating sporadic evidence for occupation
until 14 500 cal. BP and oscillating activity thereafter, with the
greatest density occurring in the Late Mesolithic. The Early Holo-
cene section of the timeseries reveals that the increases in activity
during the Mesolithic were abrupt, and the record is punctuated
by downturns at 10 500 and 9000 cal. BP.

The comparison of the population proxy to high-
resolution sea surface temperature records at regional level
(figure 2d) shows how Final Pleistocene and Early Holocene
climate changes impacted upon the human population at the
Atlantic fagade of Iberia. The YD is associated with a marked
population decline across the Atlantic facade, which is consist-
ent with a pattern also described at Iberian scale [4]. Proxy
evidence, based upon marine core alkenone unsaturation
ratios at a resolution of 300 years [20], indicates that the
reduction in surface temperature of the Atlantic coast lagged
behind the global situation and cold seawater conditions pre-
vailed until a warming phase from 11000 cal. BP to 10000
cal. BP. This pattern coincides with the demographic trends
derived from the radiocarbon data which show relatively low
levels of human activity until the ocean waters warmed to
the levels prevalent throughout the Holocene. The overall cor-
relation between the population proxy and the Atlantic surface
temperature is, therefore, quite high (Spearman’s p 0.73),
although this masks moments in time where there was an
apparent causal relationship between the proxies but with a
degree of lag. For example, population growth was interrupted
around 10500 cal. BE just after a brief reversal in the ocean
warming trend. Considering the correlation over 500-year win-
dows stepped at 50-year intervals, an oscillating pattern of
pronounced negative and positive relationships between the
demographic and temperature proxies is observed (electronic
supplementary material, Spearman’s correlation; figure 2),
broadly implying that there can be strong correlations between
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Figure 2. (a) The population proxy (the 95% confidence interval of 1000 bootstrapped simulations of SPDs of radiocarbon dates from archaeological contexts)
compared to 1000 bootstrapped simulations of a fitted exponential null model (shaded area), with significantly high periods of activity heighted in red and

low activity highlighted in blue. (b) Annualized dynamic growth rates (95% co

nfidence interval) based on the first derivative of temporal Gaussian KDEs (150

year bandwidth) for radiocarbon dates from the Atlantic region. (c) Mean distance between all sites in 500-year time slices, stepped at 50-year intervals, demon-

strating the concentration of sites before the Younger Dryas and a trend towards

increased site density starting in the Early Holocene. (d) Sea surface temperature

(SST) from the Iberian Atlantic coast [20] and a 400-year running mean of the oxygen isotope series from the NGRIP icecore using the GICCO5 chronology [21,22].

(Online version in colour.)

rising or falling temperatures and populations for millennia,
but it takes some considerable time for this causal link to
become established, presumably because of the lags intro-
duced by the dynamics of the ecosystem, and the human
sociocultural responses that take some number of generations
to map on to demographic change.

The timing and relative strength of short-term fluctuations
that caused the population proxy to temporarily deviate from
this long-term pattern of growth are revealed by the dynamic
growth model (figure 2b). The annualized growth rate can
only be calculated with a usefully narrow degree of confi-
dence for the periods that have a significant density of
radiocarbon dates, which restricts our results to the Epipa-
laeolithic/Mesolithic. The dynamic growth rate model
reveals two phases of Mesolithic growth that shared similar

characteristics in terms of their growth rate and duration
(electronic supplementary material, table S2). During the
Early Mesolithic, we find a first phase of demographic
growth starting at 10300+200 cal. BP lasting about
900 + 500 years, with maximum growth rates of 0.40 +0.10%
reached at 10100 + 300 cal. BP to reach a population maxi-
mum at 9400 + 150 cal. BP. A second phase of population
growth started about 8700+100 cal. BP lasting about
950 +150 years. During this second phase, the dynamic
model estimated a maximum growth rate of 0.25 +0.05%, at
8200+ 100 cal. BB during the onset of the Late Mesolithic
period to reach maximum population at 7750 + 50 cal. BP.

In order to investigate the spatial structure of the relative
population changes, we conducted point-pattern analysis. Fol-
lowing recent approaches [24,25], we decided to do a simple
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Figure 3. (a) Monte Carlo LOESS regression models for palaeodietary trends
for the Later Mesolithic of the Atlantic facade of Iberia. More marine protein
in the diet causes enriched (less negative) S"C values. (b) For comparison,
an archaeological radiocarbon SPD population proxy for the region zoomed to
the same time window. Simultaneous peak in population and the use of
marine resources occurred around 7800 cal. BP. (Online version in colour.)

first-order summary of average inter-site distance to determine
whether changes in relative population levels were correlated
with spatial clustering or dispersals of human populations.
The average distances among all sites were calculated in 500-
year time slices and graphically represented at 50-year inter-
vals along a LOESS regression to summarize the main trends
(figure 2d). The analysis shows the greatest clustering, with
average inter-site distances less than 50 km, during the end
of the Magdalenian period at GI-1. This concentration is
located in the Portuguese Estremadura, where most of the
empirical research on this period has been carried out [7].
With the onset of the YD, we find a sharp but sustained
change in the average distances, reaching a fivefold increase
at the beginning of the Early Holocene. Hence, lower SPD
densities can be associated with a more dispersed population
during times of dramatic environmental change. From ca
10500 cal. BP onwards, we have identified a monotonic
decreasing trend in the mean average distance between sites
(from ca 200 to 100 km), a trend that culminated during the
Late Mesolithic, when a clear clustering in a well-known
settlement distribution associated with estuarine adaptations.

Turning to the palaeodietary evidence from these densely
settled estuaries (figure 3), our LOESS model indicates a trend
of generally increasing reliance on marine food resources until
7800 cal. BE, and a shift back towards terrestrial resources from
that point on. This matches the SPD palaeodemographic
proxy, as peak Mesolithic activity is encountered at the point
in time when marine resources such as fish, shellfish and
marine mammals, were most prominent in the diet. The slight
temporal difference between when burial was most intense at

the Muge and Sado palaeoestuaries results in two clusters of [ 5 |

results, showing that the Muge populations relied more on
marine resources then the Sado group. Taken together with
samples from elsewhere, the trend indicated in figure 3 emerges.
Admittedly, this could be an effect of the different locations of the
main estuaries and independent of dietary choice, although the
pattern is weakly apparent even within the two main locations.

4. Discussion

In contrast with some studies [23,25], we have considered here
a relatively small set of archaeological data, especially for the
Late Glacial period. Given that we are interested in broad-
scale trends in a relatively small region over a 10 000-year
period, the density of our data compare favourably with
other case studies (cf. [26]). In terms of the palaeodemographic
modelling of our data, a likely complication is that sea-level
rise reduced the visibility of earlier sites [7], resulting in an
intense pressure of research on later, better-preserved sites. In
adition, sedimentary processes have affected the preservation
of archaeological contexts during the Middle Magdalenian ca
16-14.5 kyr ago, as pointed out by a recent study published
after our paper was submitted [27]. New research undertaken
in the context of commercial archaeology rescue operations in
the Vouga Valley shows evidence of Magdalenian and Early
Holocene radiocarbon dated sites further north Estremadura
[27]. This suggests that the long term demographic patterns
identified in this study for the Late Glacial might need to be
revisited in the future, as new radiocarbon datasets are pub-
lished. At face value, the radiocarbon data suggest that
compared to other Iberian regions [4], the Late Glacial popu-
lation of the Atlantic region was relatively low, but we
cannot exclude the possibility that there were significant
coastal settlements whose archaeological traces were lost to
sea-level rise. It is not possible to completely eliminate such
biases from our analysis, although we can deploy analytical
tools that are sensitive to shorter-term changes, so that the
dynamics within each phase are revealed without emphasiz-
ing the bias that results in absolute differences between
phases. One such tool is the dynamic growth model (figure 2b),
which expresses the instantaneous rate of change in the popu-
lation without any influence from the absolute level. This
approach is not without its drawbacks, as the uncertainty it
expresses is large for poorly powered regions of time, but is
presented here as a pragmatic solution to a difficult problem.
Similarly, the timeseries of the mean site distance (figure 2c)
is presented as a first-order abstraction of the archaeological
record, and glosses over subtle but potentially important
changes in the balance of clustering and dispersal, but is none-
theless useful for our purposes as a proxy of overall settlement
density in the region. Although these potential pitfalls should
be borne in mind, the Atlantic fagade of Iberia in the post-LGM
period offers an opportunity to study over the long-term how
humans have adapted to rapid and significant environmental
change. Our exploratory palaeodemographic and spatio-tem-
poral models have added to the literature demonstrating that
the archaeological record preserves signals of these density-
dependent foraging adaptations [25]. The main implications
of our findings are discussed below.

The period up to the commencement of the YD at 12 800
cal. BP can be characterized by exponential growth, albeit
starting from a very small base during the LGM. From
15000 cal. BF, the evidence suggests population growth that
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coincided with warm and relatively moist conditions and
forest biome of the GI-1 interstadial. This environment sus-
tained higher populations, but there is some evidence of
short-term oscillations, with peaks in the SPD at 14250,
13500 and 12750 cal. BP and low points in between. These
fluctuations are also present, indeed more prominently so,
in the record from elsewhere in Iberia [4] and this pattern
can be seen as a representation of a wider trend towards
larger populations in the Late Magdalenian enabled by opti-
mum climatic conditions. For reasons not entirely clear, this
activity was concentrated in the Estremadura in Portugal,
west of the Tagus.

Population throughout Iberia was limited by cooler, dryer
and generally unstable conditions of the YD. Despite adap-
tations to the new environment, reflected in the stone tools
and animal bone assemblages from the archaeological sites
in question [5], our radiocarbon evidence indicates a popu-
lation level reduced from that of the preceding interstadial
conditions. Climate can be evoked as the causal factor in
this case; the surface temperature of the Atlantic at the Iberian
coast lagged behind global temperature increases, assuming
stable Holocene values at 10000 cal. BP [20]. Pollen from
marine sediments off the coast of Portugal indicates that at
the beginning of the YD, deciduous vegetation decreases
and evergreen oaks disappear, while Artemisia and Ephedra,
species better adapted to steppe and semi-steppic environ-
ments increase [6,28]. Sea levels were rising rapidly, up to
Im centuryfl, which would have rendered the coastline a
transitory and rapidly changing environment. All these fac-
tors led to a situation whereby the small and dispersed
population did not begin to grow until around 10300 cal.
BP principally because forest cover was lessened and the
environment affected by unstable climate and weather
conditions.

The SPD population proxy contains two marked phases
of high population, both occurring in the Early Holocene.
The first of these occurred from 10 300 cal. BP and lasted over
a millennium. This activity was mainly concentrated in Estre-
madura west of the Tagus, with several sites in Algarve also
known. The growth rate was approximately 0.3%, over twice
the growth that occurred during the climatic amelioration of
the GI-1 interstadial. The faunal record indicates that small
land animal prey were still of primary importance, but
marine resources featured more prominently in the diet too
[5]. At 9400 cal. BF, this population entered a phase of decline,
as did the human population elsewhere in Iberia [4]. However,
at the Atlantic fagade, the decline was of greater magnitude
and lasted for longer; strong growth occurred in other regions
around 8500 cal. BE, whereas in the Atlantic region, this expan-
sion was more gradual in nature. This decline occurred as
offshore sea temperatures reached their coldest values
(figure 2a), so this localized worsening in environmental con-
ditions could explain why this Iberian population lull was so
pronounced at the Atlantic fagade.

The period 90007500 cal. BP in Atlantic region saw steady
growth and a dense concentration of sites. This boom in
population occurred mainly in central-southern Portugal; in
the Muge and Sado river estuaries, and also in a more
dispersed pattern across Algarve. Estremadura also saw con-
tinuous occupation throughout this period, but at a lower
level and with no additional growth from the levels already
attained since the Early Holocene. Shell middens, which dom-
inate the SPD signal at this point, provide rich archives of

palaeoeconomic data. As such, the estuarine sites of Late
Mesolithic Portugal have been very well studied and, thus,
we can compare our radiocarbon-derived population models
with other independent population proxies. Based on the pro-
portion of juveniles in the burials, existing estimates of growth
at Muge sites are high, around 0.6% per annum (although
significantly less than the 1% growth for the Early Neolithic),
driven by increasing fertility [29]. The dynamic growth
model derived from the radiocarbon data for the Atlantic
region as a whole suggests the regional growth was less than
this, 0.27 + 0.05% annum™' which is much higher than usual
for hunter-gatherer societies, thus highly compatible with the
short-term demographic estimates drawn from skeletal data
and reinforces the validity of our results.

In terms of its bioclimatic context, the Atlantic facade of
the Iberian Peninsula presents an important intersection
of ocean-driven weather prevailing over a Mediterranean
forest biome. The global changes in climate that occurred
since the Late Glacial period, therefore, express themselves
uniquely in this landscape, and as such, human adaptations
to the changing conditions can be expected to follow different
trajectories than those elsewhere. In comparison with other
Iberian regions, Lower Magdalenian populations seemed
low and there is no signal of growth until 16 000 cal. BF,
when interstadial conditions became established. Short- and
medium-term instability in these conditions seems to have
been a factor that limited growth (see the electronic sup-
plementary material, Spearman’s p). It is significant that
when a notable phase of population growth occurred at
14000 cal. BF, sea surface temperatures had stabilized and
would remain so for two millennia. This was a watershed
moment in the population history of the region because the
colder and unstable conditions that ensued during this
period eventually had the effect of reducing the population
across Iberia, including in the Atlantic region. By contrast,
when Holocene conditions were established, the relative den-
sity of population in the Atlantic fagade was similar to or
even higher than elsewhere in Iberia [4].

What enabled this growth? From an archaeological per-
spective, the record is one of continuity; trends in stone tool
manufacture, settlement type and prey choice can be traced
from the LGM until the start of the Late Mesolithic [5,30]. In
earlier work, Bicho ef al. [8] argued that the emergence of
inland estuarine shell middens forming large shell mounds
with persistent funerary activity areas resulted from a punctu-
ated environmental change induced by the 8.2 kyr ago event,
which caused the arrival of salt water in the Tagus palaeoestu-
ary. Under this view, the Portuguese estuaries became foci of
settlement because they provided resource-rich stable environ-
ments, and ones that were newly formed, unlike the coastal
ecosystems that were adversely affected by the 8.2 kyr ago
cold event. Earlier work has also suggested that evolving
material culture in the region can be read as evidence for
ongoing adaptations to a changing environment without sig-
nificant population turnovers [5]. This is a view supported,
or rather not contradicted, by the recent ancient genomic analy-
sis of an individual from Moita do Sebastido, who shares a
significant amount of ancestry with people who lived in
Iberia since at least 19 000 cal. BP [3]. The radiocarbon evidence
we consider here suggests this line of continuity was nonethe-
less unstable in terms of the population size. The data also
illustrate how the formation of new maritime environments
after the 8.2 kyr ago event either transformed the local fertility



(as suggested by the bioarchaeological evidence) or permitted
inward migration at an unprecedented rate. Resource avail-
ability played a role in enabling this growth, and our
palaeodietary model (figure 3) suggests the gradual adoption
of marine resources was key. Important too was a longer-
term trend towards greater settlement density that can be
traced over the preceding three millennia (figure 24), and prob-
ably had a direct impact on the regional social organization.
Crucially, all this occurred before the colonization of the
region by Neolithic incomers. Elsewhere on the Atlantic
fagade, there are numerous other examples of intensification
in the use of marine and aquatic resources during the closing
centuries of the Mesolithic period. These include northern
Iberia [31], Brittany [32], northern Britain [33] and Scandinavia
[34], all of which saw intensive occupation and the develop-
ment of shell middens before the introduction of agriculture.
This raises the question of whether the Neolithic economy,
rapidly expanding across Europe at this time [35], was influen-
cing these fringes via edge effects. In our case study, it seems
the Iberian intensification in the use of marine and estuarine
resources could have been an endogenous, density-dependent
process, although the mechanism of such external pressures
remains to be formally modelled.

The recurring theme in this analysis has been the inter-
play between environmental instability and the resulting
effects on human population levels. The YD in particular
was constraining, but Late Glacial phases of warmer and
less arid conditions correlate with increases to the population.
The relative stability of Holocene conditions allowed people

to move into closer proximity with one another, lowering

the cost of forming kinship networks and ultimately enabling
more children to be born. Such patterns of behaviour can be
detected in many other prehistoric settings and the social
consequences of increased prehistoric settlement density
could have been profound.

All the data analysed and the R code designed for this
study are supplied as the electronic supplementary material in an
external repository: http://doi.org/10.5281/zenodo.3626791.
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