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Large anthropogenic 14C datasets are widely used to generate summed prob-
ability distributions (SPDs) as a proxy for past human population levels.
However, SPDs are a poor proxy when datasets are small, bearing little
relationship to true population dynamics. Instead, more robust inferences
can be achieved by directly modelling the population and assessing the
model likelihood given the data. We introduce the R package ADMUR
which uses a continuous piecewise linear (CPL) model of population
change, calculates the model likelihood given a 14C dataset, estimates credible
intervals using Markov chain Monte Carlo, applies a goodness-of-fit test, and
uses the Schwarz Criterion to compare CPL models. We demonstrate the
efficacy of this method using toy data, showing that spurious dynamics are
avoided when sample sizes are small, and true population dynamics are
recovered as sample sizes increase. Finally, we use an improved 14C dataset
for the South American Arid Diagonal to compare CPL modelling to current
simulation methods, and identify three Holocene phases when population
trajectory estimates changed from rapid initial growth of 4.15% per generation
to a decline of 0.05% per generation between 10 821 and 7055 yr BP, then gently
grew at 0.58% per generation until 2500 yr BP.

This article is part of the theme issue ‘Cross-disciplinary approaches to
prehistoric demography’.
1. Introduction
The varying frequencies of archaeological samples through time are commonly
represented using a summed probability distribution (SPD) of associated
calibrated 14C dates, and such distributions of anthropogenic dates are widely
used as a proxy to infer dynamics in human populations [1–8]. Prior to more
recent simulation approaches (see below), the SPD curvewas (and often continues
to be) misinterpreted as a faithful representation of population dynamics despite
its shape being influenced byother nuisance factors such as taphonomic loss, wig-
gles inherited from the calibration curve and ascertainment biases. Curves from
very small datasets are dominated by the sporadic nature of small sample sizes,
and the inevitable gaps between individual calibrated dates cannot be interpreted
as population hiatuses [9–11]. In this paper, we use an available extended radio-
carbon database [12] for the South American Arid Diagonal (SAAD) and develop
an improved method to extract demographic signatures from archaeological data
by combining continuous piecewise linearmodels and formalmodel comparison.
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(a) The archaeological hypothesis: population troughs
in the South American Arid Diagonal

The SAAD is a major climatic and biogeographic NW–SE band
extending from northwestern Peru to southeastern Argentina,
encompassing most of the arid and semiarid ecosystems of
SouthAmerica [13,14].While spatially and temporally variable,
the mid Holocene (8.2–4.2 kyr BP [15]) has been characterized
as a period of enhanced aridity in these deserts [16,17]. Volcanic
eruptions have also been suggested to have affected human
occupations at local and regional scales in parts of the SAAD
[18]. Based on this palaeoecological framework, there has
been a growing archaeological debate on the possible existence
of gaps in the archaeological record in different regions which
may signal a demographic discontinuity during the mid-
Holocene [2,19–24]. Previous analyses by some authors of this
paper (R.B. and C.M.) used SPDs of radiocarbon dates to
explore population dynamics and found evidence of synchroni-
city in fluctuations at different latitudes, allowing the formation
of a hypothesis that there may have been two short population
troughs in the SAADdriven by increasing aridification between
7.6–7.2 kyr BP and 6.8–6.4 kyr BP [2,24]. Here, we build on
this previous work and apply a rigorous model comparison
framework to test this hypothesis.
2. Current inferential methods
(a) Directly interpreting a summed probability

distribution
As a thought experiment, we can consider a curve comprising
just a single (calibrated) date of an organic sample. The
sample has a single (point) true date of death, and the curve
tells us how believable each possible date is. Neither the
sample’s existence nor the true date of its death waxes and
wanes through time. Likewise, we cannot interpret the SPD of
a small dataset across a narrow time period as representing
the fluctuations of a population through time—instead, it rep-
resents how believable each year is, as possible point estimates
for sample 1 or sample 2 or sample 3, etc. It is this ‘or’ component
(the summing) that restricts the interpretation of the curve—the
SPD is not the single best explanation of the data, nor even a
single explanation of the data, but rather a conflation of many
possible explanations simultaneously, each of which is mired
by the artefacts inherited from the calibration wiggles.

We deliberately used the word explanation, since the SPD
is merely a convolution of two datasets: the raw 14C/12C
ratios with their errors, and the calibration curve with its
error ribbon. Therefore, the SPD provides an excellent graphi-
cal representation of the data by compressing a large amount
of information into a single plot, and its value in data
representation should not be disparaged. However, the SPD
is not a model and cannot be directly interpreted to draw
reliable inferences about the population dynamics.

(b) Simulation methods to reject a null model
Recognizing the need for a more robust inferential frame-
work, by 2013 methods were developed that moved away
from mere data representation, and instead focused on
directly modelling the population. An exponential (or any
other hypothesized shape) null model could be proposed,
and many thousands of simulated datasets could then be
generated under this model and compared to the observed.
The SPD was no longer the end product; instead, it was used
to generate a summary statistic. The summary statistics from
each simulated SPD (and the observed SPD) could then be com-
pared, a p-value calculated and (if deemed significant) the
hypothesized model could be rejected [25,26]. This approach
was successful in directly testing a single hypothesized popu-
lation history and was widely adopted [12,27–33] as the field
moved towards a model-based inferential framework.

(c) Other approaches to directly modelling the
population

The inferential limits of the SPD and the importance of directly
modelling population fluctuations have been approached with
various underlying model structures. The Oxcal program
offers Kernel Density Models [34], while the R package
Bchron [35] employs Bayesian Gaussian mixture models.
Both approaches can provide models of the underlying
population by performing parameter searches and are based
on sound model likelihood approaches. However, Gaussian-
based models (both mixture models and kernels) are by
nature complex curves with constantly changing gradients.
No doubt real population levels also fluctuate through time
with complex and relentless change, but this leaves us with a
model that can only be described graphically and cannot be
easily summarized in terms of dating key demographic events.

Furthermore, these methods do not address how reason-
able the model structure is in the first place. There are two
approaches to achieve this. Firstly, a goodness-of-fit (GOF)
test can establish if the observed data could have been reason-
ably produced by the model. This is essentially the approach
taken by the simulation methods mentioned above where the
p-value provides this GOF, and allows the model to be rejected
if it is a poor explanation of the data. Secondly, a model selec-
tion process can be used to ensure unjustifiably complex
models are rejected in favour of the simplest plausible model
with the greatest explanatory power.

Goldberg et al. [36] and de Pablo et al. [32] also modelled
population dynamics directly. They both used a piecewise
model comprising various phases of logistic and/or exponen-
tial growth. However, neither study used a continuous model
(the phases did not join) nor were the authors able to calculate
likelihoods. As a result, Goldberg et al. misappropriate the
Schwarz criterion (Bayesian information criterion: BIC) for
use with their ‘proxy likelihoods’ and contradict their own
modelling results that indicate a stable population size
during the mid Holocene in favour of overinterpreting existing
SPD simulation methods to infer oscillations of peaks and
troughs. In the case of de Pablo et al. [32] and others [30], the
modelling is even more problematic since they apply
regression directly to the SPD. The graphical points on the
SPD, however, correspond to the number of calendar years in
the study period and are not the independent samples that
formed it, i.e. the 14C dates (or more conservatively, the smaller
number of phases can be considered independent samples).
This renders their standard regression outputs (likelihoods,
Akaike’s information criterion - AIC - and BIC) meaningless.

Nevertheless, Goldberg et al. innovated an important contri-
bution in two key respects. Firstly, their piecewise model is
defined by a small number of discrete phases or periods. This
brings the advantage of directlymodelling the timing and inten-
sity of population events (the date at which the model changed
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from one phase to the other), and a simple description of the
population behaviour in each phase. Secondly and most impor-
tantly, the authors raised the point that a model comparison is
required. They test various models, both simpler (one phase)
and more complex (up to six phases) in various permutations
of logistic and exponential phases. We build on this approach
and overcome their shortcomings. We construct a continuous
piecewise model, calculate likelihoods and use the BIC to
select the most appropriate number of phases. Finally, we use
a GOF test to show the data are plausible under the best model.
rnal/rstb
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3. Continuous piecewise linear modelling
The goal in population modelling is usually to identify specific
demographic events. Typically, the objective is to estimate the
date of some event that marks a change in the trajectory of the
population levels, such as the start of a rapid decline or increase
inpopulation levels (perhaps fromdisease,migrationorchanges
in carrying capacity) and provide a simple description of the
population behaviour between these events, such as a growth
rate. A CPL model lends itself well to these objectives since its
parameters are the coordinates of the hinge points, which are
the relative population size (y) and timing (x) of these events.
3

4. Model selection using the Schwarz criterion
Wechoose thenumberof linearphases (ornumberofhingepoints
joining these phases) systematically as part of a model selection
process. Given a 14C dataset, we find the maximum-likelihood
(ML) continuous one-piece (or one phase) linear model (1-CPL),
then the ML 2-CPL, etc. Although the likelihood increases with
the number of parameters (the greater freedom allows the
model to fit more closely to the data), we calculate the Schwarz
criterion [37], otherwise commonly misnamed [38] the BIC, to
naturally penalize for this increasing complexity. We favour this
criterion over AIC [39] since the BIC provides a greater penalty
for model complexity than does the AIC, ensuring conservative
selection that avoids an overfit model. Indeed, we find the AIC
typically favours an unjustifiably complex model, for example,
when using toy datawhere the ‘truemodel’ is known. Therefore,
we select themodelwith the lowest BIC as the bestmodel.Model
complexitybeyond thisprovides incrementallyworseBICvalues,
and as a result, the turning point in model complexity can be
easily found, and superfluous computation for unnecessarily
complex CPL models is thus avoided.

While a large database provides greater information
content to justify a CPL model with many hinge points, it
is worth considering the extreme case of fitting a CPL
model to a tiny dataset. Figure 2 illustrates that the lack of
information content naturally guards against overfitting,
and a uniform distribution is always selected (a model with
no demographic events and no population fluctuations)
where sample sizes are low. This should make intuitive
sense—in the light of such sparse evidence we should not
infer anything more complex than a constant population.

Large 14C databases covering long time periods often exhi-
bit a general long-term background increase through time,
attributable to some combination of long-term population
growth and some unknown rate of taphonomic loss of dateable
material through time. Such a dataset may be better explained
by a model of exponential growth (requiring just a single
lambda parameter) than a CPL model. Therefore, for real
datasets, the model selection procedure should also consider
other non-CPL models such as an exponential model.
5. Calculating likelihoods
Theoretically, a calibrated date should be a continuous prob-
ability density function (PDF); however, in practice a date is
represented as a discrete vector of probabilities correspond-
ing to each calendar year, and is therefore a probability
mass function (PMF). This discretization (of both a proposed
model probability distribution and a calibrated date prob-
ability distribution) provides the advantage that numerical
methods can be used to calculate likelihoods.

Hypothetically, if a calibrated date was available with such
precision that it could be attributed with certainty to just a
single calendar year the model likelihood would trivially be
the model probability at that date. Similarly, if the data com-
prised just two such point estimates (at calendar time points
A and B), the model’s relative likelihood would trivially
be the model probability at date A multiplied by the model
probability at date B.

However, a single calibrated 14C date is not a point
estimate, but rather a complex multimodal probability distri-
bution, representing the probability of each possible year
being the true date. Therefore, the probability of a single cali-
brated date given the model can be calculated as the model
probability at year A, or the model probability at year B etc.,
for all possible years, weighted by how probable the calibrated
14C date is at each of those years. This can be calculated using
the scalar product between model probabilities and calibrated
date probabilities, and gives the probability of a single cali-
brated date under the model. This is repeated for every
calibrated date, and the overall product gives the relative
likelihood of the model, given the whole dataset.

This approach assumes each date is a fair and random
sample, but where many dates are available from a single
site-phase, it is sensible to first bin dates into phases. This is
an important step in modelling population dynamics to
adjust for the data ascertainment bias of some archaeological
finds having more dates by virtue of a larger research inter-
est/budget. This is achieved by first generating an SPD for
each phase and normalizing. These phase-SPDs are then com-
bined and normalized to create a final SPD. This procedure
ensures phases with multiple dates are weighted to contribute
the same overall pm as a phase with a single date. The prob-
ability of each phase-SPD can then be calculated in exactly the
same way as the probability of a single calibrated date.
6. Avoiding edge effects
It is common for a research question to be targeted at a specific
time range that spans only part of the overall calibrated date
range of the 14C dataset being used. This is of no consequence
if merely generating an SPD, as regions outside the range
of interest can be ignored or truncated. Indeed, simulation
approaches benefit from considering a slightly wider range by
pushing any potential edge effects outside the target range. By
contrast, any modelling approach that calculates likelihoods
will be influenced by the entire dataset provided, including
dates that fallwell outside themodelled date range. These exter-
nal dates must be excluded, since they can have a substantial
and mischievous influence on the parameter search.
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This influence can be attributed to the interesting behav-
iour of the tails of a Gaussian distribution, from which a
calibrated date is derived. A calibrated date has a non-zero
probability at all calendar dates, and as a consequence, a
mostly external date still has a tiny tail within the model’s
date boundaries. However, despite the absolute probability
values of this tail being extremely small, surprisingly the
relative value increases hugely towards the model boundary
(approximately exponentially). As a result, given a dataset
where all/most dates are external to the date range of inter-
est, the most likely model shape will have massive upticks
at the boundaries. Overall, the likelihood of such a model
will be extremely small, but it will be the best explanation
given so much data are outside the date range.

Similarly, modelling population dynamics across a range
wider than the available dates would be making the incorrect
assumption that the absence of evidence at these edges pro-
vides evidence of absence, and this will influence the shape
of the fitted model. There may be rare occasions where this
is reasonable, for example, where humans are known to be
absent from an island prior to (or after) some date, or
where the archaeological sampling is so substantial that
there is confidence that dates would have been recovered if
there was a human presence.

Therefore, it is important to ensure the date range of the
data and model are appropriate for each other, and to exclude
dates from the dataset that do not reasonably fall within the
modelled range. We achieve this with our real datasets by
only including a date if more than 50% of its probability falls
within the modelled date range—i.e. it is more probable that
its true date is internal than external. Similarly, we achieve
this with our extremely small toy dataset (N = 6) by constrain-
ing the modelled date range to exclude the negligible tails
outside the calibrated dates.

7. Search algorithm for parameters
The CPL model is a PMF such that the probability outside the
date range equals 0, and the total probability within the date
range equals 1. The exact shape of this PMF is defined by the
(x, y) coordinates of the hinge points. Therefore, there are var-
ious constraints on parameters required to define such a
curve. For example, if we consider a 2-CPL model, only the
middle hinge has a free x-coordinate parameter, since the start
and end date are already specified by the date range. Of the
three y-coordinates (left, middle, right hinges), only two are
free parameters, since the total probability must equal 1. There-
fore, a 2-CPL model has three free parameters (one x-coordinate
and two y-coordinates) and an n-phase CPL model has 2n−1
free parameters.

We perform the search for the ML parameters (given a 14C
dataset and calibration curve) using the differential evolution
optimization algorithm DEoptimR [40]. A naive approach to
this search would propose a set of values for all parameters
in an iteration simultaneously, and reject the set if it does not
satisfy the above constraints. However, this approach would
result in the rejection of many parameter sets. Instead, our
objective function considers the parameters in order, such
that the next parameter is searched for in a reduced parameter
space, conditional on the previous parameters. We achieve this
by adapting the ‘stick breaking’ Dirichlet process to apply in
two dimensions by sampling stick breaks on the x-axis using
the beta distribution and y-coordinates using the gamma
distribution. At each hinge, the length of the stick is constrained
by calculating the total area so far between the first and
previous hinge.
8. Estimating credible intervals using Markov
chain Monte Carlo

Having constructed a likelihood function that calculates the
relative likelihood of any parameter combination, it can be
used as the objective function in a parameter search to find
the ML parameter estimates. However, we also use the likeli-
hood function in a Markov chain Monte Carlo (MCMC)
framework to estimate credible intervals of our parameter
estimates.We achieve this using theMetropolis–Hastings algor-
ithm [41] using a single chain of 100 000 iterations, discarding
the first 2000 for burn-in, and thinning to every fifth iteration.
The resulting joint posterior distribution can then be graphically
represented in several ways, such as histograms of themarginal
distributions (figure 6) or directly plotting the joint parameter
estimates on a two-dimensional plot (figure 7).
9. Goodness-of-fit test
Once the best CPL model has been selected, its parameters
found and the likelihood calculated, we generate 1000 simu-
lated 14C datasets under this CPL model by ‘uncalibrating’
calendar dates randomly sampled under the model, taking
care to ensure sample sizes exactly match the number of
phases in the observed dataset. We then calculate the pro-
portion of each calibrated simulated dataset outside the
95% CI, giving a distribution of summary statistics under
our best CPL model. The p-value is then calculated as the
proportion of these simulated summary statistics that are
smaller or equal to the observed summary statistic. Concep-
tually, this is similar to the method of calculating p-values
under existing simulation methods for testing a null model
[12,25–33].
10. Demonstration of methods with toy data
(a) Testing continuous piecewise linear model for a

typical sample size
To demonstrate our approach, we first generate a true (toy)
population curve, which comprises a 3-CPL model PDF
between 5.5 and 7.5 kyr BP. We then randomly sample
N = 1500 dates under this true (toy) population curve, ‘unca-
librate’ these dates, apply an arbitrary 14C error of 25 years,
then calibrate. We then conduct a parameter search for the
best fitting 1-CPL, 2-CPL, 3-CPL, 4-CPL and 5-CPL models.
The BIC is calculated using: ln(n) k− 2 ln(L), where k is the
number of parameters (k = 2p− 1, where p is the number of
phases), n is the number of 14C dates and L is the ML [37].
Table 1 gives the results of this model comparison and
shows that the model fits closer to the data as its complexity
increases. However, the BIC shows that the model is over-
fitted beyond a 3-CPL model. Therefore, the model
selection process successfully recovered the 3-CPL model
from which the data were generated.

We then assess the accuracy of the parameter estimates by
generating five more random datasets under our true (toy)
population curve and apply a parameter search to each
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dataset. Figure 1 illustrates the best 3-CPL model for each
dataset, which are all qualitatively similar to the true popu-
lation curve. Each is the most likely model given the
differences between their respective datasets, which are rep-
resented with SPDs.
(b) Testing continuous piecewise linear model with
small sample size

We continue with the same true (toy) population curve and
test the behaviour of both the model selection and parameter
estimation with smaller sample sizes. As before, N dates are
randomly sampled under the population curve, ‘uncalibrated’,
assigned an error and calibrated. Figure 2 shows that for N =
329 and N = 454 the 3-CPL model is successfully selected,
and its shape is similar to the true population. For N = 154,
the lack of information content favours a 1-CPL model
which successfully avoids overfitting, and forN = 47 and smal-
ler, the even simpler uniform model is selected. Fo N = 6, the
modelled date range is reduced to only encompass the range
of the data (see ‘Avoiding edge effects’). These results success-
fully demonstrate that this approach provides robust
inferences of the underlying population dynamics, avoids
the misinterpretation inherent in small datasets and
approaches the true population dynamics as sample sizes
increase.
11. R package ADMUR
To enable full transparency of our methods and aid other
researchers in applying and further developing thesemethods,
we provide an accompanying package in R [42] called
ADMUR: Ancient Demography Modelling Using Radiocar-
bon (https://CRAN.R-project.org/package=ADMUR) and
refer users to the vignette ‘guide’ which provides details of
installation and use. All analysis and plots in this paper can
be exactly replicated using the vignette ‘replicating-timpson-
rstb.2020’.

https://CRAN.R-project.org/package=ADMUR)
https://CRAN.R-project.org/package=ADMUR)
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Table 1. The 3-CPL model is selected as the best, since it has the lowest
BIC (italics). As the number of parameters in the model increases, the
likelihood of the model given the data increases. However, the BIC shows
that this improvement is only justified up to the 3-CPL model, after which
the more complex models are overfit to the data.

model parameters
maximum log
likelihood BIC

uniform 0 −9976.29 19952.58

1-CPL 1 −9862.86 19732.90

2-CPL 3 −9833.87 19689.26

3-CPL 5 −9792.05 19619.97

4-CPL 7 −9790.87 19631.97

5-CPL 9 −9790.40 19645.38
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12. Modelling population dynamics in the South
American Arid Diagonal

(a) Data overview
For this analysis, we used a subset of the radiocarbon data-
base compiled by Riris & Arroyo-Kalin [12] incorporating
sites that fall within the geographically contiguous ‘Arid’ cli-
matic categories of the SAAD as described in the World
Köppen climate classification (figure 3) [44]. This provides a
more relevant dataset to directly test previous hypotheses
of demographic fluctuations in arid ecosystems [2,20–24] by
not averaging widely diverse ecological settings (e.g. [12,36]).
(b) Summed probability distribution simulation method
testing exponential model

We generate an SPD from the dataset and test for significance
using methods described in Shennan et al. [25]. Individual
dates from a single site within 200 years of each other were
first binned into site-phases, calibrated using SHCal20 [45],
and summed and normalized to unity, to account for site-
specific ascertainment bias. These distributions in each of
the 708 phases were then summed and normalized to
unity. Fluctuations in this observed SPD were tested for sig-
nificance by generating 20 000 random datasets, each
sampling 708 dates from a fitted exponential distribution.
Dates were ‘uncalibrated’, assigned a random error and cali-
brated. p-values were calculated using a summary statistic of
each SPD calculated as the proportion outside the 95% CI.

The highly significant p-value of 0.002 is the result of only
35 of the 20 000 simulated SPDs having more periods outside
the 95% CI than the observed SPD. However, there are impor-
tant interpretive limits to be respected. This p-value permits us
to confidently reject the hypothesis that these data can be
explained by an exponential model, but this does not offer us
an alternative plausible population model. While we can inter-
pret the sections outside the CI (highlighted red in figure 4) as
possible periods where the population may have been unu-
sually high or low relative to the null exponential, we cannot
misappropriate this p-value to confidently validate these
interpretations as genuine population dynamics, for two
reasons. Firstly, due to random fluctuations, we can expect
approximately 5% of each simulated SPD to sit outside the
CI, so there is no way to identify which local sections are
attributable to this random behaviour. Secondly, we still have
the fundamental problem that the SPD is not a model of the
population dynamics—it is merely a representation of the
data being used as a proxy for the population dynamics.
Nevertheless, we can successfully reject the simple exponential
model, which permits us to explore alternative population
models to better explain the data.

(c) Continuous piecewise linear modelling
We apply our CPL modelling methods to the same SAAD
dataset. As before, the data are binned into 796 discrete site-
phase bins, and this is reduced to 708 bins after the exclusion
of dates mostly outside the date range (see ‘Avoiding edge
effects’).We thenapply fourprocedures. Firstly,model selection
using the BIC establishes the 3-CPL model as best (figure 5a).
Secondly, the ML parameters of this model are found using
the parameter search (figures 6 and 7). Thirdly, the joint
posteriors are estimated using MCMC. Fourthly, we apply the
GOF test to this model, giving a p-value of 0.235, which
establishes the dataset as a typical outcome of the model.
13. Discussion
The three phases identified in table 2 can be contextually
informed by the archaeological record from dry regions in
South America. While there is recent debate surrounding
some earlier human occupations in the Americas [30,46–49],
15/14 kyrBPrepresents awidelyaccepted range for the success-
ful human exploration of the South American continent and of
the SAAD in particular [50–52], based on both archaeological
evidence and genomic data [30,53]. In the SAAD, the period



SPD (200 yr rolling mean)
SPD

0.00030

0.00025

0.00020

0.00015

0.00010

0.00005

0

null model
50% CI
75% CI
95% CI
outside 95% CI

14 kyr 13 kyr 12 kyr 11 kyr 10 kyr 9 kyr 8 kyr 7 kyr 6 kyr 5 kyr 4 kyr 3 kyr

cal BP

PD
samples N = 1340, bins N = 708,  p = 0.002

Figure 4. SPD simulation approach illustrating the null hypothesis of steady exponential growth can be rejected. (Online version in colour.)

345678
kyr cal BP

91011121314

SPD
3-CPL

6-
C

PL

5-
C

PL

4-
C

PL

3-
C

PL

2-
C

PL

1-
C

PL

ex
po

ne
nt

ia
l

B
IC PD

13065

13070

13080 0.00030

0.00025

0.00020

0.00015

0.00010

0.00005

0

13075

(a) (b)

Figure 5. (a) Model comparison between an exponential model and n-CPL models of varying complexity using the BIC establishes the 3-CPL model as best; (b) red
line shows the shape of the best 3-CPL model estimated using the ML parameters; blue polygon shows the calibrated dataset as an SPD. (Online version in colour.)

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

376:20190723

7

extending between 14 000 and 10 821 yr BP is characterized bya
remarkably high growth rate of 4.15% per 25 year generation.
While current global population growth rates average ca 30%
per generation ( just over 1% per annum), this is a consequence
of modern technological advances, and recent estimates on the
prehistoric growth for human populations indicate a much
smaller growth rate of 1% per generation (0.04% per annum)
[54–56]. Therefore, the magnitude of population growth in this
first phase is unusually high, and far greater than during any
subsequent phase. This is likely due to the successful explora-
tion and colonization of diverse and uncontested niches by
early human societies [36,52,57] resulting in typical spread
dynamics [56]. At 14.6 kyr BP, the Antarctic Cold Reversal
(ACR) began, resulting in colder conditions that were similar
to those attributed to the North Atlantic Younger Dryas (YD)
stadial [58–61]. This colder climate was accompanied by glacial
advances throughout South America and higher lake levels in
the Altiplano, which, based on palynological and glacial geo-
logical studies, appear to be a result of precipitation increase
over the Altiplano [62,63]. The amelioration of different ecologi-
cal niches and richness in resident species such as megafauna
would have increased the carrying capacity of the SAAD, lead-
ing to rapid human population growth and exploration of new
landscapes. This population expansion would have had a sig-
nificant ecological impact. In addition to climatic changes
(discussed below), the increase in predation rates and niche dis-
placement would ultimately have contributed to the extinction
of the American megafauna [50,64]. The regional pace of this
anthropogenic impact onmegafauna extinction remainsunclear
in the SAAD given its sparse evidence in some areas, such as in
north-central Chile [65].

The second phase covers almost four millennia between
10 821 and 7055 yr BP and is associated with a slight popu-
lation decrease (−0.05% per generation, table 2). It has
previously been hypothesized that human populations experi-
enced periodic fluctuations during the mid Holocene in
response to climatic forces [2,36]. However, our analysis,
using a refined dataset and improved method, does not sup-
port this hypothesis for the SAAD. Instead, the best model
suggests a population that was failing to grow, despite the esti-
mated population size relative to occupiable land still being
very low (ca 200 000 people in South America) [36]. While eth-
nographic and theoretical studies demonstrate howaprocess of
alternating growth and decline offers one possible mechanism
that can give the long-term appearance of a stable plateau-like
population trend [66,67], we are unable to identify these
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Table 2. Summary of the best 3-CPL model represented as ML dates of hinge points, and the growth rates of the three phases. 95% CI calculated using quantiles.

linear phase
between hinges

start yrs BP
(95% CI)

end yrs BP
(95% CI)

gradient (×10−9 per year)
(95% CI)

relative growth rate
per 25 yr generation
(95% CI)

1 (A–B) 14 000 10 821 (11 887 to 8265) 23.3 (15.4 to 28) 4.15% (1.12 to 5.32)

2 (B–C) 10 821 (11 887 to 8265) 7055 (8013 to 5421) −1.3 (−61.3 to 7.3) −0.05% (−1.96 to 0.25)
3 (C–D) 7055 (8013 to 5421) 2500 28.7 (20.1 to 42.5) 0.58% (0.42 to 0.81)
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hypothesized fluctuations. Indeed, neither did the modelling
results presented byGoldberg et al. [36], which, like our results,
indicate little or no change in the population size ca 9–7 kyr BP.
The question, therefore, remains as to what prompted such a
significant shift from a rapidly growing population to one
that was stagnating. Using the broader South American radio-
carbondataset, Riris&Arroyo-Kalin [12] propose three periods
(8.4, 8.2 and 8.1 kyr BP) with exceptionally high frequency of
climatic anomalies, which they correlate with an initial drop
in relative population at and after 8.6 kyr BP and lasting until
at least 6 kyr BP. Likewise, Goldberg et al. [36] identified two
mid-Holocene dips from additional SPD simulation analysis.
Indeed, a relatively abrupt onset of aridity is recorded in a
number of continental and marine records across South Amer-
ica [58,68], and specifically the SAAD [17,31,69–71]. This
landscape was, therefore, remarkably different from the one
experienced by the first colonizers. Almost all the megafaunal
specieswere either extinct or going extinct [72], forest cover sig-
nificantly decreased, surface water availability decreased and
temperatures were higher [57]. Importantly, a recent analysis
at the scale of South America has identified demographic
declines associated with climate change [12], thus substantiat-
ing the case for diverse demographic trajectories behind
continent-wide patterns.
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Finally, the third phase extends between 7055 and 2500 yr
BP (table 2) and is characterized by a 0.58% increase per gen-
eration. It has been proposed that the mid-Holocene increase
in population growth rates may have been driven by the
development of regional intensification [73]. However,
except for the central coast of Peru, most centres of New
World crop development were outside the SAAD, such as
in the lowlands of central America and the interior of the
Amazon [74–76]. Furthermore, the timing of the introduction
of domestic species in the SAAD is inconsistent with the start
of this third phase. Large parts of the drylands incorporated
domesticated plant species as staples only after 4 kyr BP
[77,78]. Similarly, llamas appear to have been initially dom-
esticated around 4.5–4 kyr BP in the South-Central Andes,
although the full process of camelid domestication would
have occurred independently at different times and places
within the Andes [79,80]. Therefore, the shift from slight
population decline to an upward growth rate of 0.58%
per generation occurs 2.5–3 kyr prior to domestication in
the SAAD so does not appear to be associated with the
development of agropastoral economies.

Increased sedentism has also been proposed as an expla-
nation for this late phase of growth [36], and while a decrease
in residential mobility has been proposed in the Atacama
desert of northern Chile around 7 kyr BP [81] coinciding
with our observed population growth at 7055 yr BP, there
also appears to be much regional heterogeneity in mobility
and, for instance, there is little to no evidence of increased
sedentism in large areas of the SAAD at this time, including
Patagonia [50,82].

In contrast with these possible explanations, we note that
a growth rate of 0.58% per generation (95% CI = 0.42–0.81) is
not unusually high, and is instead broadly consistent with
(indeed slightly lower than) the global estimates of 1% per
generation (0.04% per year) for broadscale background Holo-
cene population growth [54]. Zahid et al. [54] proposed that
this background growth rate is a global phenomenon occur-
ring irrespective of the local environment or subsistence
strategy and is, therefore, intrinsic to our species, arguing
that it is likely to be related to the global climate and/or
endogenous biological factors.
14. Conclusion
While current SPD simulation methods provide a robust stat-
istical framework to test a single null hypothesis, successfully
rejecting the null offers the researcher little in the way of
drawing an inference about true population dynamics, and
this inferential vacuum is often filled with overinterpretation
of peaks and troughs in SPDs. Furthermore, rejection of the
simple exponential model of constant background growth
has become so common that it is no longer tenable to use a
classical hypothesis test that heavily favours this null.
Instead, we argue that a model selection approach is more
appropriate. By including the exponential in the model
selection process, there is still the opportunity for this
model to be selected, but unlike current simulation methods
that can only reject (or fail to reject) an ‘assumed correct’
model, CPL modelling automatically provides a best expla-
nation. The structure of the CPL model provides
meaningful and useful date estimates of historic events, rela-
tive population levels and growth rates, avoids overfitting,
and the GOF test quantitively checks if the data are reason-
able, given the model. Together, these methods provide a
solid inferential framework for evaluating prehistoric popu-
lation dynamics from 14C datasets of any size, and
naturally avoids the overinterpretation that is common with
SPD analysis.

Our SAAD case study provides a demonstration of the
need for this more robust inferential methodology. A sub-
stantial body of literature has grown to support a claim of
mid-Holocene population fluctuations, based on the misinter-
pretation of the available 14C data and the misappropriation
of a significant p-value when using SPD simulation methods.
We show that based on the current data, this inference is
unjustified, and that a steady population trajectory during
this period is a better explanation of the data. Directly mod-
elling population dynamics provides robust, justified and
reasonable inferences. Our findings should not be misinter-
preted as a claim that, in reality, there were no population
fluctuations. Future larger datasets have the potential to sup-
port models of much greater complexity, and CPL modelling
provides the basis and flexibility of fitting any number of
hinges, offering detailed population histories of key events.

Data accessibility. To enable full transparency of our methods and aid
other researchers in applying and further developing these methods,
we provide an accompanying package in R [42] called ADMUR:
Ancient Demography Modelling Using Radiocarbon. We refer
users to the vignette ‘Guide’ from https://github.com/UCL/
ADMUR which provides details of installation and use. All analysis
and plots in this paper can be exactly replicated using the vignette
‘Replicating results'.
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