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Abstract

The generative approach to social science, in which agent-based simulations (or other complex 

systems models) are executed to reproduce a known social phenomenon, is an important tool for 

realist explanation. However, a generative model, when suitably calibrated and validated using 

empirical data, represents just one viable candidate set of entities and mechanisms. The model 

only partially addresses the needs of an abductive reasoning process - specifically it does not 

provide insight into other viable sets of entities or mechanisms, nor suggest which of these are 

fundamentally constitutive for the phenomenon to exist. In this paper, we propose a new model 

discovery framework that more fully captures the needs of realist explanation. The framework 

exploits the implicit ontology of an existing human-built generative model to propose and test a 

plurality of new candidate model structures. Genetic programming is used to automate this search 

process. A multi-objective approach is used, which enables multiple perspectives on the value of 

any particular generative model - such as goodness-of-fit, parsimony, and interpretability - to be 

represented simultaneously. We demonstrate this new framework using a complex systems 

modeling case study of change and stasis in societal alcohol use patterns in the US over the period 

1980–2010. The framework is successful in identifying three competing explanations of these 

alcohol use patterns, using novel integrations of social role theory not previously considered by the 

human modeler. Practitioners in complex systems modeling should use model discovery to 

improve the explanatory utility of the generative approach to realist social science.
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1. Introduction

Agent based simulation (ABS) is a well-established tool for understanding complex systems 

using the generative social science approach. The goal of generative social science is to 

explain and understand a social phenomenon as the result of actions of autonomous entities 

acting according to causal mechanisms, or rules as encoded in an agent-based model [1]. If a 

modeler encodes a model that produces a known empirical pattern, the so-called “generative 

test” is met, and the postulated mechanisms form a candidate explanation for the 

phenomenon. Many social phenomena may be explained by a multiplicity of theories, each 

of which could pass the generative test when encoded as an ABS, leaving us to wonder: 

which theory is correct; how can theories be combined; what is missing from our theories? 

Here, we propose a novel method of discovering new models and extending the explanatory 

capabilities of theory-driven generative models using multi-objective genetic programming - 

a process of knowledge discovery. Elements of a generative theory or several generative 

theories are codified in a common grammar, evolved through genetic programming, 

evaluated for empirical fit, complexity and interpretability, and interpreted by subject matter 

experts to bring new insight to the social phenomenon.

In this paper we set out the following aims: (1) to explain the role of complex systems 

models for realist explanation; (2) to define the structural calibration method: a retroductive 

model discovery framework; (3) to demonstrate the application of the model discovery 

framework to a specific mechanism-based social systems model; (4) to discuss the 

implications of computer aided model discovery in light of the case study results.

2. Methods

2.1 The role of abductive reasoning in mechanism-based explanation

The context for our methods is the generative [1] or mechanism-based [2] approach to the 

study of complex social systems. In this approach, we assume that any concrete 

phenomenon (which may be empirically observable to a greater or lesser degree) emerges 

from the dynamic interplay of real entities and mechanisms that exist independently of our 

ability to detect them [3]. In this context, the role of complex systems modeling is 

principally explanatory, in helping to gain insights into theorised entities and mechanisms by 

representing them in a dynamic simulation model.

Abductive reasoning plays a key role in mechanism-based explanations and can be 

conceived of in two parts [4]:

• Redescription - situating the concrete phenomenon as a case which emerges 

from the hypothesised interacting components (i.e., entities and mechanisms) of 

one or more theories;

• Retroduction - identifying which of the components in the redescription are 

fundamentally constitutive to the emergence of the phenomenon (i.e., entities and 

mechanisms whose inexistence would preclude the phenomenon).

The development of a complex systems model by a human modeler is principally a 

redescription activity - the modeler uses existing theory (and potentially develops new 
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theory) to construct a set of equations and rules that, when executed as a simulation, produce 

emergent outcomes that are in some sense comparable to the phenomenon under 

investigation. As part of the model building process, the modeler defines - either explicitly 

or implicitly - an ontology of real entities, the agents of agent-based simulations, and 

mechanisms, the rules that determine action and interaction.

The generative approach commits the modeler to at least a limited form of retroduction - the 

simulation, as redescription, is scrutinised for its ability to reproduce the concrete 

phenomenon, in so far as the latter is observable in empirical data. The simulation 

parameters often have to be manipulated in order to achieve good similarity; in the 

computational modeling community, this process is known as calibration [5] and is 

commonly identified as belonging to best practice programs for analytical sociological 

research [6]. If a simulation can be calibrated successfully then the redescription it encodes 

is said to pass the generative sufficiency test – it remains a candidate explanation for the 

phenomenon [1]. However as a retroductive process, the generative approach, when applied 

to a single simulation model, has two fundamental shortcomings: (1) it does not allow the 

entities and mechanisms to be accepted as fundamentally constitutive since to do so would 

be to commit the fallacy of affirming the consequent; (2) neither does it allow the entities 

and mechanisms to be rejected as fundamentally constitutive, only that their present 

configuration or representation in the simulation model is non-constitutive.

Together, these limitations form the basis for many of the concerns about complex systems 

modeling raised within the sociological community (see, for example, [7]). We argue that 

the limitations arise from the focus of the modeling on a single redescription – i.e., a single 

ABS. To improve our explanatory capability, we need to increase the number of 

redescriptions considered within the overall modeling process – i.e., by building multiple 

ABS that either interpret a single theory in different ways, or represent multiple different 

theories, or both. By subjecting a plurality of redescriptions to retroduction, we can seek to 

identify commonalities in the theory components that survive the generative sufficiency test; 

we can also seek to increase the robustness of the test outcome to potential issues with the 

configuration or representation of a theory within the simulation. Within the context of 

model calibration activities, this concept is operationalized as interrogating model structure 

(i.e., the selection and configuration of entities and mechanisms) in addition to model 

parameters – we call this structural calibration. Perhaps surprisingly, given its key role in the 

abductive reasoning process, the complex systems modeling community has yet to pay 

significant attention to the issue of structural calibration. Below we review the handful of 

existing works on this topic.

2.2 Existing works on structural calibration of simulation models

A very small literature exists on the structural calibration (described variously as “theory 

discovery” [8], “model discovery” [9] and “inverse generative social science” [10]) of 

mechanism-based models, all of which use evolutionary computing (EC) methods to steer 

the search for good model structures. In the earliest known study, Smith [11] used a genetic 

algorithm to identify simplified representations of behavior that could reproduce the 

observed social assortativity of birds. Later, with a focus on reproducing observed human 
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crowd dynamics, Zhong et al. [12] used gene expression programming to identify the 

structure of a reward function representing individual decision-making in a “sense-think-act” 

framework. Gunaratne & Garibay [8] used genetic programming to revise agents’ farm 

selection rules for the ‘Artificial Anasazi’ model, in order to more accurately reproduce the 

archeological population demography of Long House Valley, Arizona. Most interestingly, 

again within the context of the Artificial Anasazi, the same authors then used genetic 

programming to identify components for Epstein’s Agent_Zero model of human behavior as 

the basis of farm selection decisions [9]. Finally, in work that forms a prelude to the present 

study, Vu et al. [10] used multi-objective genetic programming to identify alternative 

situational mechanisms for a social norms model of alcohol use, aimed at both improved 

representation of observed drinking patterns in the USA over a 15 year period, and 

theoretical interpretability (operationalized as the number of terms in the situational 

mechanism).

There exist a number of issues and limitations with these early techniques. Whilst the studies 

have demonstrated success at improving the goodness of fit to empirical data, they have all 

been limited in scale – focusing on specific aspects of larger models. Further, the studies 

focusing on human behavior have also struggled with the issue of theoretical meaningfulness 

of the structures that have been identified. Whilst minimizing or constraining the number of 

terms in the candidate behavioral rules is clearly helpful at improving interpretability, it is 

often the case that the new structures remain challenging to interpret in terms of the original 

theory, with this crucial activity deferred to future work.

2.3 Proposed approach to structural calibration

Here, we describe a new framework for structural calibration and position it explicitly as a 

tool for realist explanation that can be used alongside more traditional approaches within the 

realist tradition [3]. Our approach is grounded in the recognition that the human modeler 

uses a creative process of redescription that results in the construction of an ontology for 

entities and mechanisms that may be implicated in the generation of a complex 

phenomenon. The starting point for our framework is this ontology. We exploit the ontology 

to: (a) construct new candidate redescriptions (i.e., simulation model structures) that can be 

realised via the ontology; (b) test the candidate redescriptions in terms of their explanatory 

value, where ‘value’ can be a plurality of considerations, such as empirical goodness-of-fit, 

structural parsimony, interpretability, and theoretical credibility.

The ontology developed by the modeler can be considered as a set of basic building blocks 

of entities and mechanisms. Whilst we could, as humans, use the building blocks to 

construct an exhaustive set of possible alternative simulation model structures (by 

assembling the building blocks in different ways), even a relatively small set of building 

blocks can result in a very large number of alternatives that cannot be practically explored 

by hand. An alternative is to use machine learning approaches, where we make intelligent 

use of computational resources to automatically search through the space of possible model 

structures. In the vein of the existing literature, we regard the family of evolutionary 

computing approaches known as genetic programming (GP) as a highly promising 

workhorse for structural calibration [13]. Multi-objective genetic programming is 
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particularly beneficial because it allows researchers to evaluate candidate model structures 

according to a set of explicitly stated considerations of explanatory value [14]. In our present 

framework we concentrate on two aspects of value: (i) the ability of the model structure, 

with suitably calibrated parameters, to reproduce the phenomenon so far as we understand it 

from our beliefs and empirical data; (ii) the meaningful interpretability of the model 

structure in terms of theory.

2.4 Generating candidate model structures: Grammar-based Genetic Programming

Evolutionary computing is a field that applies the principles of natural evolution in 

computing. In EC, a population of candidates is evolved over many generations based on a 

fitness function. A typical process starts with a random population of candidates. The 

candidates with high fitness are then probabilistically chosen to breed and produce the 

candidates for the next generation. Two common genetic operators for breeding are 

crossover (combining random parts from two selected candidates) and mutation (altering a 

random part of a selected candidate). Genetic programming applies this idea of evolution for 

computer programs [13,15].

The basic genetic operators (i.e., crossover and mutation) are entirely random and can result 

in the construction of illegal programs (e.g., that breach requirements for legal expressions 

or type restrictions of the programming language). For this reason alone, it is often 

appropriate to constrain the structure of programs in advance of the evolutionary process. An 

approach to enforcing particular structures is using a grammar [16]. GP approaches that use 

a grammar to express constraints are called Grammar-based Genetic Programming (GGP). 

For example, the expression f(x,y) = x*x + y, is one of many possible specific structures that 

could be generated with the following grammar:

E: : = var | E op E
op: : = + | − | *

var: : = x |y|z

Each line in the grammar is a production rule. The elements on the left-hand-side can be 

rewritten and are called non-terminal symbols. On the other hand, elements that cannot be 

rewritten are terminals. The first production rule is an expression (E) which can equal either 

a variable (var) or a combination of two expressions (E) by an operator (op). The second rule 

allows three operators: plus, minus, multiply. The last production rule specifies three 

variables: x, y, z.

Each structure produced by the grammar is represented by a tree. The tree representation 

allows researchers to measure the structural complexity of models by counting the number 

of nodes (terminal and non-terminal symbols) in the tree. Even the simple expression f(x,y) 

= x*x + y, shown in Figure 1, has a node count of 15. Crossover is operationalized by cutting 

a branch of the tree and replacing it with a branch from another tree. Mutation is 

operationalized by replacing a node with a randomly generated tree.
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2. 5 Description of the model discovery process

This section describes the proposed model discovery process, depicted by the flow chart of 

Figure 2. The process is a variant of a recent approach described by Vu et al. [10]. There are 

three roles in the model discovery process: modeler, analyst, and domain expert. The 

modeler designs, implements, and tests agent-based models. The analyst analyses the model 

structure and abstracts a set of basic building blocks of entities and mechanisms. The 

domain expert possesses the knowledge and understanding about the social science that 

underpins the model and can assess the model’s theoretical credibility.

In Step 1 of the model discovery process, a human modeler develops a mechanism-based 

model to explain the phenomenon in a complex social system (the baseline model). This 

redescription process is undertaken by the modeler based on existing knowledge captured in 

social theories. In Step 2, the model is evaluated for its theoretical credibility by a human 

expert in the social theories that underpin the model (i.e., a domain expert). Redevelopment 

of the model may occur following this step (representing a return to Step 1). Once the 

human expert is satisfied with the baseline model, in Step 3 a human analyst abstracts a set 

of primitives, i.e., “building blocks”, from the model. This set of primitives are the entities 

and mechanisms to be exposed and modified in the evolutionary step (Step 6). In addition, a 

grammar is defined to guide the search. Since the grammar is a set of production rules for 

combining the primitives, the analyst can enforce certain structures based on the modeler’s 

knowledge of the system; non-credible operations can be prohibited. In Step 4, the model 

parameters are calibrated using the baseline model structure against the empirical calibration 

targets. In Step 5, the model built by human modeler, along with the best calibrated 

parameters, is cloned to fill the initial population of model structures.

Step 6 is the heart of the evolutionary approach. Parent structures are selected from the 

population of model structures (Step 6a). After applying the genetic operators (crossover and 

mutation), new child structures are generated (Step 6b). Ideally, the parameters of the new 

child structures are re-calibrated to see if the model error can be minimized further (Step 

6c). However such a nested approach to calibration is very computationally intensive, and so 

we necessarily omitted this step due to limits on the available computing resources. Instead 

we allowed the GP to select constants from not only a general set of constants but also 

values of calibrated parameters generated at Step 4. Next (in Step 6d), the new structures are 

evaluated for their fitness (such as model error compared to empirical data). After 

evaluation, the new population is selected based on the objectives (Step 6e). These 

evolutionary steps are performed until convergence is achieved or when a maximum number 

of iterations is reached (Step 6f).

In Step 7, through deliberative discussion with the analyst and the modeler, the domain 

expert assesses the set of new structures with the highest fitness values in terms of 

theoretical credibility. If the new structures lack sufficient credibility, the domain expert, the 

modeler, and the analyst return to Step 3 to discuss changes to the grammar to improve the 

meaningfulness of the operations that can be selected by the evolutionary algorithm. Further 

iterations of Steps 3 to 7 are carried out until credible structures are generated or resources 

are exhausted. In Step 8, credible model structures are interpreted for knowledge discovery 
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purposes, promoting discussion about the underlying social theories used in the model and, 

potentially, further theory development or empirical data gathering.

3 Application

We applied the new framework to a specific mechanism-based social systems model. Here, 

we interpreted the causal mechanisms derived from social role theory as drivers of alcohol 

consumption to build a complex systems model of population-level alcohol use patterns in 

the US since the 1980s (Figure 3). Social role theory is a collective term used to describe a 

diverse range of mechanism-based explanations for individual and collective behaviors and 

practices from the fields of social psychology, sociology and anthropology [17]. Particular 

conceptualizations of role theory have been used within the alcohol research community to 

explain observed trends in alcohol use – specifically relating to the interplay between 

alcohol use and positional roles such as parent, partner and paid employee [18]. Our aim in 

this application is to test the extent to which credible conceptualizations of role theory can 

reproduce historical trends in population alcohol use (as measured via survey data).

In this application, different roles in the model discovery process were undertaken by 

different authors. The modeler role was principally undertaken by Bai, Brennan and 

Purshouse. The analyst role was undertaken by Buckley and Vu. The domain expert was 

Shuper.

3.1 Social roles as a mechanism-based explanation of alcohol use: the human built 
model as it relates to role theory

The concept of role strain is central to many of the studies relating positional roles to alcohol 

use. Biddle [17] defines role strain as the “experience of stress associated with positions or 

expected role”. Role strain is hypothesized to arise through a number of pathways where 

alcohol can act as cause, consequence, or both. Alcohol can be used by individuals as a 

means of coping with role strain arising from role overload (holding a role set that is too 

complex), role deprivation (lacking roles that provide meaning to life), or role incongruence 

(holding roles which are non-normative with respect to status or identity) [19,20]. Alcohol 

use can also induce or exacerbate role strain, where use is incompatible with the demands of 

performing the role [21]. In the model, role strain is the arithmetic mean of role 

incongruence and role overload (Equation 1 in Table 1). Role overload (Equation 2) is 

determined by the roles an agent holds, their levels of involvement in these roles, and four 

calibrated parameters representing the effect of holding each role on experiencing role 

overload. Role incongruence (Equation 3) is the arithmetic mean of the difference between 

each role holding status and the prevalence of that role in society (i.e., the percentage of 

people holding that role).

In the mechanism known as role selection, individuals may act (consciously or otherwise) to 

prevent or reduce role strain by avoiding or escaping from roles that are incompatible with 

their existing alcohol use [21]. This mechanism is implemented by adjusting the probability 

of transitioning between roles based on the heavy drinking status of the agent (where heavy 

drinking is defined as having consumed 5+ standard drinks in the previous month) 

(Equations 4 and 5). In a contrasting role socialization mechanism, individuals gradually 
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adopt and internalize drinking practices that are compatible with the roles they hold [21–23]. 

A difference in drinking disposition is calculated when individuals gain or lose roles 

(Equation 6 and 7). The new disposition to drink (Equation 8) is a function of this difference 

in disposition and a modifier (Equation 9), calculated using the number of days the new role 

has been held and the speed of socialisation.

Knibbe et al. (1987) suggest that the set of positional roles held by an individual can affect 

the ability of that person to participate in drinking situations, depending on the extent to 

which drinking is integrated into the structure of everyday life within society. In this sense, 

social roles act as mechanisms that regulate the daily opportunities for using alcohol. 

Individuals in the model have a different opportunity to drink outside and inside the home, 

which depends on the roles they hold. The opportunity to drink out and in are each 

calculated as a log odds (Equations 10 and 11) then converted to probabilities (Equations 12 

and 13). The log odds for drinking outside the home is based on an agent’s role load, 

employment status, and two calibrated parameters to describe the unknown effect sizes of 

these factors on opportunity to drink out. Role load, and a combination of marital and 

parenthood status, determine the log odds of drinking opportunity inside the home. Again, 

this equation contains parameters describing the unknown effect of these factors on the 

opportunity to drink in.

The conditional probability of agent i consuming a jth drink (Equations 14 and 15) is 

governed by each agent’s long-term disposition to drink, their probability of drinking in and 

outside the home, and role strain.

3.2 Data

3.2.1 Model initialisation—To initialise the models, data from the National Survey on 

Drug Use and Health (NSDUH) 1979–2010 [24], Panel Study of Income Dynamics (PSID) 

1979–2010 [25] and the US Census 1980–2010 [26] was used. A micro-synthesis [27] was 

generated for a demographically representative population of 1000 individuals aged 12–80 

in the USA, 1980. The model was initialized with these 1000 agents on the first day of 1980. 

The socio-demographic attributes of agents were initialized from the micro-synthesis: age, 

sex, ethnicity, employment status, marital status, and parenthood status. Additionally, the 

micro-synthesis initialized agents with alcohol use attributes: a 12-month drinking status, 

usual number of drinking days per month, usual quantity of drinks per month, and number of 

days more than five drinks are consumed per month.

3.2.2 Simulation—During each simulated year, individuals enter the model as new 12-

year-old adolescents and new migrants. Individuals also leave the model due to death and 

outward migration. Total counts of new migrants to enter in each year were estimated using 

the American Community Survey 1980–2010 [28] and were micro-synthesised to data from 

the nearest NSDUH year to give a representative migrant population with corresponding 

baseline drinking behaviour. “Mortality rates for the microsimulation were derived from the 

Center for Disease Control and Prevention (CDC) all-cause mortality data for the USA 

between 1979–1998 [29] and 1999–2010 [30].
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Transition probabilities for moving between each of the eight unique combinations of social 

roles variables (marriage, employment and parenthood) are applied annually during the 

simulation. These probabilities were derived from multi-state Markov models fitted to 

marriage, parenting and employment trends from a representative USA study, the Panel 

Study of Income Dynamics 1979–2000 [25].

At initialisation, each agent is allocated a vector which represents their long term disposition 

to drink. These are initialised from the mean and standard deviation of their drinking 

frequency and quantity at baseline.

3.2.3 Calibration targets—Calibration targets for alcohol use were derived from 

empirical data from NSDUH for the years 1979–2010. Four alcohol use targets per year 

were used for calibration: (1) prevalence – the proportion of individuals reporting consuming 

an alcoholic beverage during the previous year; (2) frequency – among drinkers, the average 

number of drinking days per month; (3) quantity – among drinkers, the average grams of 

alcohol consumed per day; (4) heavy episodic drinking – among drinkers, the average 

number of occasions where 5+ drinks were consumed, per month. The targets are split by 

sub-group, with four sub-groups defined by the number of roles held (0–3 roles). We chose 

to categorized by the number of roles (n=4) instead of the combination of roles (n=8) for 

two reasons: firstly, this is an indicator commonly used in the social roles literature [19]; 

secondly, the eight role decomposition is too great for the standard error of the targets to be 

informative from a calibration perspective. In summary, there are 16 targets (4 alcohol use 

targets by 4 different number of roles) for each year between 1979–2010.

3.2.4 Implementation—The model was implemented in C++ using the RepastHPC 

2.2.0 toolkit [31]. The model is run forward in time for 20 years for calibration (1980–1999) 

and 10 years for validation (2000–2009). Each model tick represents one day in the 

simulation. On each day of the simulation, the probability of drinking is calculated for each 

agent. Once per year in the simulation, transition probabilities for role transitions are applied 

and role expectancies are updated.

3.3 Parameter calibration

The model contains 31 parameters for calibration, which are highlighted in bold text in 

Table 1. For this paper, a Latin hypercube space-filling design was employed to sample 

5,000 parameter sets from the joint prior distribution using the lhs package in R [32]. The 

Latin hypercube was optimized by maximizing the minimum distance between samples 

[33]. These parameter sets are evaluated using an error metric that compares the simulated 

results against the calibration targets (Equation 16).

error = 1
NM ∑n = 1

N ∑m = 1
M ym* n − ym n

sm n 2 + dm
2 (16)

where N is the number of observations, M is the number of outputs, ym* n  is the simulated 

data for output m at time n, ym n  is the mean of empirical target data for output m at time n, 

sm n  is the standard error of the empirical target data for output m at time n, dm
2 is the 
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variance of the model discrepancy for output m, which is 10% of the possible range for each 

output. Model discrepancy captures the fact that model is not a perfect representation of 

reality.

As described in Section 3.2.3, there are 16 targets (prevalence, frequency, quantity, heavy 

episodic drinking, each split by the number of roles held, 0–3), thus M is 16. N is different 

for each output because some years are missing in the empirical data. The parameterization 

that provided the minimum error in Equation 16 was selected as the result of the calibration 

process. The human-built model along with the best parameterization was selected as the 

reference model for the structural calibration process.

3.4 Grammar-based Genetic Programming: Design and Implementation

This section describes a GGP system designed to perform the model discovery process. For 

the grammar that guided the GP process, the popular context-free grammar was used. The 

full grammar written in Backus-Naur form [34] is available in Figure 4. Considering the 

representation of the GGP candidates, each candidate is represented by a tree that is 

generated following the production rules of the grammar. Each GGP candidate (a program 

<p>) contains 9 expressions for the 9 role-related terms used in the roles model: role 

selection mechanism, role socialisation mechanism, role load, role incongruence, role strain, 

log-odds-out modifier, log-odds-in modifier, first-drink disposition, and next-drink 

disposition. Several groups of variables, along with constants and calibrated parameters, 

were defined. Each can be formed only by a defined combination of variables, operators, and 

constants. Some role-related terms use the same expression because they have the same 

structure and the same constraints, e.g., probFirstDrink and probNextDrink both use 

expression <e5>. This grammar provides a hierarchical structure that can capture the layers 

of role-related concepts in the reference model.

For the initialisation of the GGP, we decided to start with an initial population filled with the 

same structure. The structure used as the starting point is the reference model, i.e., the 

structure designed by human modelers with the best fitted parameterization. Additionally, a 

multi-objective GGP was employed to simultaneously minimize both model error and 

complexity. These two objectives address the two aspects of value we discussed in Section 

2.3: (i) the ability of the model to reproduce the phenomenon so far as we understand it from 

our beliefs and empirical data; (ii) the meaningful interpretability in terms of theory.

The first objective, model error, is captured by comparing the simulated data from the model 

with the empirical data from the real world. The model error is described in Equation 16 

(Section 3.3). The second objective, complexity, is a proxy for interpretability and 

parsimony. Minimizing the complexity during model discovery also constrains the model 

discovery process from discovering too complex structures that overfit the empirical data 

and are not interpretable by domain experts. The complexity is defined by the number of 

nodes in the GGP candidate, with a special case that node ON is counted as 2 in contrast to 

node OFF being counted as 1. The drawback when using complexity as a proxy is that it 

does not guarantee meaningful interpretability, i.e., low complexity can also result in 

meaningless model structures. Therefore, at the end of every iteration of the model discovery 

process, we worked with the domain expert to verify the interpretability of all structures in 
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terms of theoretical meaningfulness. We asked the expert to classify model structures using a 

crisp binary definition of credible or non-credible. Whilst the judgment was holistic, the 

classification process was a deliberative discussion between the expert, the modeler and the 

analyst. This discussion was recorded and used subsequently to produce a set of qualitative 

criteria for judging model credibility.

For the selection process, the popular NSGA-II optimizer [35] was used to develop an even 

representation of the Pareto front that shows the trade-off between model error and 

complexity. During the evaluation, the corresponding expressions in the simulation’s source 

code were edited based on a candidate structure; then the simulation was re-compiled and 

run in order to collect the simulated results for calculating the model error.

The described GGP system was implemented using the PonyGE2 toolkit [34] and set up 

with the following parameters:

• 500 GGP candidates per generation;

• Initialisation: 500 copies of the reference structure;

• GP operators: 75% subtree crossover, 25% subtree mutation;

• Maximum tree depth: 17;

• 2 objectives (goodness-of-fit and complexity) with NSGA-II replacement and 

selection operators.

The GGP process was run on an Intel i9 9980XE processor with 36 cores. The source code 

of the simulation with the best calibrated parameters (RepastHPC) and the GGP system 

(PonyGE2) is available at bitbucket.org/r01cascade/roles_ggp_complexity and is licensed 

under the GNU General Public License version 3.

4 Results

4.1 GGP Results and the Pareto Front

In the case study, three iterations of the model discovery process were required to produce 

any structures that the domain expert deemed as credible. Modifications were made to the 

grammar between each iteration in an attempt to improve the effectiveness of the discovery 

process. This was an open-ended trial and error iterative process involving the modeler and 

the analyst. We stopped the process once credible structures had been discovered. The 

evolution of the grammar is documented in the Supplementary Material A. The final 

grammar is shown in Figure 4.

In the final iteration of the process, both model error and model complexity objectives 

reduced over generations and converged at the 20th generation, after which no change to the 

Pareto front was observed. Figure 5 shows the final population of 14 non-dominated 

structures and also includes the reference structure for comparison. These models are 

indexed by their complexity, e.g., model 24 is the model on the Pareto front with complexity 

24. All the structures discovered by the GGP are less complex than the reference structure. 
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Six of them are worse that the reference model in terms of model error, while the remaining 

eight offer improved fit over the calibration window.

4.2 Theoretical credibility of the discovered models

We worked with a domain specialist to examine the non-dominated model structures 

generated by the GGP in terms of their theoretical credibility and coherency with respect to 

social role theory. Table 2 compares the structures of the reference model and selected GGP 

models. In Table 2, elements not affecting agent drinking (probFirstDrink and 

probNextDrink variables, Equation 14 and 15) are shaded in gray.

Through analysis of the deliberative discussions held between the expert, analyst, and 

modeler, it was possible to generate three qualitative criteria that enable a consistent 

assessment of credibility for this example case study. In what follows, we provide a narrative 

discussion of credibility across the Pareto front in Figure 5. However, a complete 

documentation of all GGP models and corresponding justifications of credibility is also 

included in the Supplementary Material B. The three identified criteria for theoretical 

credibility are:

1. At least one of the theory constructs must be implicated in the model dynamics. 

In a mechanism-based model of alcohol use, the mechanisms need to be used to 

generate drinking behavior. For models based on role theory, this means that the 

models must use at least one of the core theory constructs of role strain, role 

load, role incongruence, or opportunity. For example, in the absence of a role 

socialization process, using solely a variable that describes drinking history 

(Disposition) does not generate a credible mechanism-based model in terms of 

role theory.

2. The theory constructs must be used to represent mechanisms, rather than being 

proxies for black-box variable-centric explanation. In some of the identified 

models, we observed that theory constructs could be replaced directly by 

observable socio-demographic properties of the agents. These cases indicate that 

the mechanism-based explanation is being avoided in favor of a black-box 

variable-centric ‘determinants’ approach to understanding drinking behaviors 

that is more conventional in the literature [36]. For example, in a mechanism-

based model, marital status should not directly define opportunity, where 

opportunity then directly determines disposition to drink.

3. The model equations that describe the mechanisms must be compatible with the 

causal logic and evidence base for the theory. In a mechanism-based model, 

some of the encoded causal relationships between core theory constructs are only 

meaningful when constrained in terms of direction, sign, and/or magnitude. For 

example, role load must either not affect or cause a decrease in opportunity to 

drink – it is inconceivable, in role theory terms, that role load could cause an 

increase in opportunity (since load implies time use by agents that cannot be 

combined with drinking).
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Focusing now on the Pareto front, the model with lowest complexity on the front (on the far 

right of Figure 5) is model 24 - this model includes a single term for each production rule, 

with both role selection and role socialisation processes switched off (Table 2). When 

parsed, all but two of the production rules are inactive - probFirstDrink and probNextDrink - 

with both set to the term Disposition. This term represents the initial dispositions to drink 

endowed to the agents based on observed drinking patterns in NSDUH data, so essentially 

model 24 encodes the heuristic “past behavior predicts future behavior” with no aspect of 

role theory present. This heuristic is clearly sufficient to reproduce target data at the start of 

the simulation but the fit to targets becomes progressively poor over time.

As we begin to traverse the Pareto front in the direction of increasing complexity (from right 

to left in Figure 5), elements relating to role theory begin to be introduced into the 

production rules; however these elements do not necessarily survive the parsing process. For 

example, model 25 switches on role selection, but - as with model 24 - no components 

relating to roles are present in the final probFirstDrink and probNextDrink production rules. 

We can conclude that the very small improvement observed for model 25 in comparison to 

model 24 is due to low level stochasticity in the simulation.

In the next model, model 29, role selection and socialisation processes are switched off but 

production rule probFirstDrink is now set to Disposition*ProbOppIn - i.e., the probability of 

engaging in a drinking occasion is scaled by the probability of having the opportunity to 

drink at home, whilst the number of drinks consumed in such an occasion continues to 

follow the heuristic “past behavior predicts future behavior”. Following the production rules 

upward, we identify that - as a result of the log-odds structure that is preserved in all models 

- ProbOppIn is increased by role load (RoleLoad) and decreased by holding an employment 

role (EmploymentStatus). Meanwhile role load is defined as level of involvement in a held 

marital role (InvolvedxMarital). From the perspective of role theory, this model is 

interpretable but not credible: (i) since only ProbOppIn is included, but the possibility of 

ProbOppOut=0 across all agents is not credible, then ProbOppIn is interpreted as simply a 

surrogate for any kind of drinking opportunity; (ii) opportunity is seen to increase as a result 

of role load - which is not credible, since opportunity should decrease with role load - and 

seen to decrease as a result of being employed - which is also not credible because, outside 

of role load considerations (for which employment is not present in the model), being 

employed should provide increased opportunities for drinking (e.g., due to income or 

exposure to social drinking situations). Model 29 also offers little improvement in model 

error compared to the overall “past behavior predicts future behavior”. Overall, it is very 

clear that this model is found wanting.

Continuing to traverse the Pareto front from right to left, we find that the first model to offer 

a credible interpretation in terms of role theory is model 38. This model also offers a 

substantial improvement over the less complex “past behavior predicts future behavior” 

model in terms of model error. In model 38, the frequency of drinking occasions 

(probFirstDrink) is increased by the probability of an at-home drinking opportunity (where, 

as for model 29, this should be interpreted as a surrogate for any kind of drinking 

opportunity). Some attempt by the GGP at parameter calibration is also seen here - with 

nonlinear scaling of Disposition. Opportunity is increased by holding an employment role 
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and decreased by role load (the latter defined as level of involvement in a marital role). 

Despite reservations about the limited extent of the definition of role load, this opportunity 

mechanism appears plausible. Role holding is also influenced by drinking behavior in this 

model, since role selection is switched on - feedback is therefore in action and we can claim 

at this point that the GGP has discovered a true dynamical model that involves roles.

The second model that can be regarded as credible in terms of role theory is model 59 - this 

model suggests that experiencing role strain increases the likelihood of a drinking occasion 

(due to the RoleStrain multiplier on Disposition in the probFirstDrink production rule). Role 

strain is defined purely as role incongruence, where the latter concept is preserved intact 

from the reference model (i.e., role incongruence is the average deviation of an agent’s role 

holding from normative roles). Both role selection and socialisation are also active in this 

model, but no opportunity mechanisms are present.

The third model offering credibility in terms of role theory is model 79. In the model, role 

strain increases both frequency of drinking occasions and per-occasion quantity (via positive 

modifiers on probFirstDrink and probNextDrink respectively). Role strain arises as a 

weighted combination of role load and role incongruence, where load arises from high levels 

of involvement in an employment role and incongruence arises through non-normative 

employment status (e.g., being working age unemployed). Opportunity also influences 

drinking frequency (via the PropOppIn shift in the probFirstDrink production rule) - again, 

to be credible, PropOppIn must be interpreted as a general opportunity, rather than having 

any locational context. Opportunity is reduced through the interaction of role load with 

parenting (via the InMod production rule) and also reduced by role load in isolation (via 

OutMod). In this model, neither role selection nor socialisation are active.

4.3 Calibrated goodness-of-fit

The reference model has an error of 0.54 against the time series of targets used for 

calibration (covering the period 1980–2000). The time series plot for the reference model is 

shown by the pink line in Figure 6. Fit to drinking prevalence is good, except for the one-

role sub-group. Fit to frequency, quantity and heavy episodic drinking is generally poor, 

particularly for the zero-role sub-group. Models lying on the Pareto front represent a range 

of errors, including both better and worse than the reference model. The credible models are 

quite considerably better, as seen from the time series plots in Figure 6. The issue with 

drinking prevalence in the one-role sub-group and issues with frequency and quantity are 

largely eliminated–with remaining problems largely confined to underestimation of heavy 

episodic drinking in the three-roles subgroup.

It should be noted that the goodness-of-fit of the reference model is weak in comparison to 

other models. This issue could have been caused by either an inadequate parameter 

calibration process or fundamental inability of the structures initially designed by the 

modeler to capture the target dynamics. To seek an improvement in the goodness-of-fit of 

the reference model, we could have run a more extensive parameter calibration or 

undertaken handcrafting of the structure. However, we decided the calibrated model was 

adequate for the GGP process to work with and intentionally did not try to improve the 
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goodness-of-fit further. It is clear here, from a model development lifecycle perspective, that 

the boundary between the reference model and the GGP can be blurred.

4.4 Validated goodness-of-fit

Target time series data used for validation covers the period 2000–2010.This period covers 

an increase in drinking prevalence, frequency and heavy episodic consumption that contrasts 

with the gentle declines seen over the calibration window. All three theoretically credible 

models exhibit a substantial relative decline in performance over the validation period (see 

Table 3). The calibration and validation errors are inversely correlated, suggestive of 

overfitting to noise in the calibration targets. However the decline in even the lowest 

complexity credible model (model 38) suggests that the retroduction fundamentally lacks 

generalizability to an adjacent temporal period - i.e., the real entities and mechanisms 

identified are invalid or incomplete. Looking in more detail at the validation issues, models 

38 and 59 generate continuing declines in drinking for two-role and three-role groups that 

are trending in the opposite direction in the empirical data. The models also generate a 

collapse in heavy episodic drinking amongst the three-role sub-group that is not supported 

by the data. The most complex of the credible models - model 79 - does capture the trend 

reversal (if slightly lagged) for most two-role and three-role outcomes, but underestimates 

frequency and quantity for the no-roles group.

5 Discussion

5.1 Model discovery case study findings

5.1.1 Insights into mechanisms—Our model discovery framework offers three 

alternative perspectives (corresponding to three credible models 38, 59, and 79) that all offer 

a substantially better fit to the calibration window data compared to the reference model. In 

perspective (i), the retroducted mechanisms influencing alcohol use are opportunity and role 

selection; roles affect drinking frequency only, but not quantity. The relevant roles are 

employment (which drives opportunity) and being strongly involved in a marital role (which 

reduces opportunity via the role load it creates). Role strain is not important, nor is role 

socialisation. Perspective (ii) suggests that role strain drives increased drinking frequency 

but not quantity. Role strain is due to holding non-normative roles, with all three roles 

implicated. Both role selection and socialisation are important, but drinking opportunity is 

not important. Finally in perspective (iii), role strain drives both increased frequency and 

increased quantity. Opportunity drives frequency only. Role selection and socialisation are 

not important. Parenting and employment are implicated for role strain, but marriage is not. 

A universal caveat on these perspectives, which were driven by data over 1980–2000 is that 

validation issues were identified over the period 2000–2010.

5.1.2 How do these retroducted insights compare to empirical findings?—In 

the first perspective (i), holding an employment role increases opportunity to drink, whilst 

high levels of involvement in a marital role reduces opportunity to drink, with no other role-

based pathways activated. These retroducted mechanisms are both supported by empirical 

research. Using data from a large birth cohort in the UK, Staff et al. [37] demonstrated that 

the employment role in isolation was associated with increased alcohol consumption, and 
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both marital and parental roles were associated with a decrease in consumption. Further, the 

authors suggest that these effects may be caused by differences in opportunities to drink 

associated with the marital role - for example by reducing the number of occasions an 

individual will engage in socialising which could impact alcohol use. This potential 

mechanism is reflected in perspective (i), whereby an individual has less opportunity to 

drink, and therefore less frequent drinking occasions if they are married (and highly involved 

in their marital role). This is also supported by Bachman’s analysis [22], which found that 

the association between the marital role and reductions in alcohol consumption was strongly 

moderated by reductions in evenings out, and increased disapproval for use.

In perspective (ii) role incongruence is suggested to be a driver of role strain, which 

influences the frequency of drinking. This is supported by Biddle [17] who suggests that 

individuals can experience role strain due to experiencing roles outside the normative 

timings, for example transitioning into a parent role as an unmarried teenager. Role strain as 

a driver of alcohol use has also been empirically observed [19], which suggests that 

individuals may use alcohol to cope with stress. Additionally in perspective (ii), both role 

socialisation and selection mechanisms are active. The importance of role socialisation 

mechanisms as a driver of alcohol use is supported by Lee et al. [23] who found that heavy 

drinking occasions were reduced after individuals had become married. Additionally, 

Bachman [22] conducted a review of the literature linking marriage and alcohol use, and 

suggested that the majority of studies find socialisation effects for the marriage role - i.e., 

gaining the marriage role leads to reductions in alcohol use. The involvement of role 

selection mechanisms in alcohol use behaviour is also supported by the wider literature on 

role theory and alcohol use. Specifically, Lee et al. [38] provided evidence for role selection 

mechanisms, finding that earlier alcohol misuse reduces the likelihood of transitioning into 

social roles. This could be interpreted in a role selection context - if an individual is a heavy 

drinker they are less likely to transition into a role which would be incompatible with their 

drinking.

An increase in alcohol consumption due to role strain is also implicated as a mechanism in 

perspective (iii). Here, role strain arises due to a combination of role load and role 

incongruence, which are determined by high levels of involvement in an employment role, 

or a non-normative employment status, respectively. Role strain as a driver of both alcohol 

consumption frequency and quantity is supported by Cooper [39], who found in a study of 

adolescents in the USA that drinking as a means of coping (with role strain or otherwise) 

was associated with heavier drinking patterns. Additionally in this model, having an 

opportunity to drink affects frequency of alcohol consumption, and is reduced if the 

parenting role is held. This is supported by Kuntsche and colleagues [19] who found that in 

a large study of westernised countries, holding a greater number of roles, including 

parenthood, was associated with a reduction in alcohol consumption, via a decrease in 

opportunities to drink.

5.2 Benefits of the framework

Our approach represents a novel and promising technique for knowledge discovery which is 

able to generate models with theoretically interpretable mechanisms, and can fit historical 
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patterns of data in complex dynamic representations of social systems. The model discovery 

framework offers a substantial improvement compared to the reference model, in terms of 

both lowered complexity for interpretability and improved fit to historically observed 

alcohol consumption trends. However, it is important that in the last step, domain experts are 

involved to interpret the options generated by the model. Our technique can therefore 

provide new approaches for developing theories to explain complex social systems.

A further advantage of this approach is that it is both theory and data-driven. We use 

formalised theories of behaviour, and several large empirical datasets to inform both the 

initial settings of the model (agent population characteristics) and the phenomenon to be 

explained - population level alcohol use is derived from a large nationally representative 

survey.

This method is also very flexible. Firstly, the grammar can be easily modified to redefine 

search directions, introduce new building blocks, restrict or relax constraints, or introduce 

different ways to combine the building blocks. This can be done within the grammar without 

changing the whole model discovery process. Additionally, although we present a case study 

modeling alcohol consumption, the framework could also be utilised to explain and 

understand a variety of complex models of social systems. Our method is easily adapted to 

look at alternative theories of behaviour, and even to search across multiple theories to give 

novel combinations which provide a better explanation of empirical data trends.

5.3 Limitations

One limitation of this approach is that the GGP works with the primitives and the grammar 

that the modeler provides it with. It is therefore possible that theoretically meaningful and 

adequately explanatory models could be missed, because the modeler does not allow for it. 

In our case study, deliberative discussions during GGP identified that the concept of 

opportunity encapsulated both time and money resources, which are impacted differently by 

role theory mechanisms; including these aspects explicitly might arguably have improved 

the model’s explanatory capability. Model discovery is an iterative, problem-specific 

process. To design the primitives, modelers have to decide which elements in their models 

are interesting and relevant to their research questions. The level of abstraction is also 

important: lower levels of abstraction usually have more elements and possible 

combinations. As for the grammar design, good practices can be found in the work of 

Nicolau and Agapitos [40].

Additionally, not all aspects of the model were exposed to the GGP process; for example 

socialisation and selection mechanisms could be either switched on or off, but the equations 

could not be modified. If socialisation is switched on, the new disposition to drink is always 

determined by the same calculation, however exposing this to the GGP could offer 

alternative candidate mechanisms for the effects of transitioning roles on underlying desire 

to drink. This would also allow us to investigate in future model iterations whether 

socialisation effects vary for different roles, as suggested by Bachman et al. [22].

The GGP method can produce complicated models in terms of theories, which require 

interpreting by a domain expert. In this paper, out of 14 non-dominated structures discovered 
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in the final iteration of the GGP, three were deemed to be theoretically meaningful. For a 

more efficient search, it would be beneficial if either the grammar allows only meaningful 

structures or the model discovery process can enforce the theoretical meaningfulness in 

other ways (such as during the crossover and mutation operators). However, the prior 

encoding of meaning is very challenging to achieve and there is also a risk of missing novel 

ideas due to over-constraining the search. Further, we stopped the discovery process once a 

small number of credible models had been identified. If we had continued to refine the 

grammar, further credible models may have been identified – including models that offered 

reduced complexity or increased goodness-of-fit over those existing models. In the context 

of retroduction, such models may have offered greater insight into the relationship between 

social roles and alcohol use. At present, it remains unclear what a good yield of interpretable 

theories would be from a model discovery process.

We identified three qualitative criteria for model credibility. These criteria arose from 

deliberative discussions in relation to the role theory case study and, as such, their 

generalizability remains untested. We worked with only a single domain expert, but multiple 

experts may have offered different criteria or interpreted the same criteria differently. Whilst 

we enforced a crisp binary categorization of model credibility in the search process, given 

the qualitative nature of the criteria it may be more appropriate to adopt multinomial and/or 

fuzzy measures of credibility in future work.

Lastly, our implementation of the proposed discovery process skipped the recalibration stage 

for parameters of the newly discovered structures (Step 6c) due to computational limitations. 

We addressed this issue by allowing calibrated constants as primitives, but this approach is 

not as rich as a full calibration for each new structure. This problem is actually present in 

many GP works, especially with computationally expensive programs. The potential solution 

is leveraging surrogate models to approximate the fitness evaluation in GP [41,42].

5.4 Implications for complex systems modeling practice

Retroduction - teasing out the complex interaction of real entities and mechanisms that 

brings about a concrete phenomenon – is challenging. Complex systems models (CSM) that 

attempt this are often charged with being arbitrary and/or absolutist in their conceptions of 

reality. Structural calibration avoids this by looking across a wide multiplicity of models that 

retain the base elements of mechanism-based theory. Complex systems modelers, who use 

formal models to help explain concrete phenomena, should use structural calibration as part 

of their standard modeling practices, in the same way that data-driven modelers, who use 

formal models to explain variance in patterns of data, consider term selection.

However, automated structural calibration is a major enterprise. It requires complex systems 

modelers to: (i) think more about ontology – what are the base elements of theory that are 

candidates for inclusion in any model? and (ii) formally describe entities and mechanisms in 

a consistent way that allows them to be recombined together in meaningful ways. To help, 

we have developed an open-source software architecture for CSM developers that forces an 

ontological focus and provides an underlying formal language that is amenable to automatic 

structural calibration.
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This work and the underlying model discovery process contribute to the needs for standards 

and modelling practices in the ABS community. Collins et al. [43] pointed out that as ABS 

matures, with many simulation software tools (like Netlogo [44], Repast Symphony[45]), 

potential standards and protocols will be needed and proposed. For example, Grimm et al. 

[46] designed the ODD (Overview, Design concepts, and Details) protocol as a generic and 

structured template to describe agent-based models for better communication and 

replicability. Another example is the UML (Unified Modeling Language) to develop and 

document agent-based models [47–49]. There are also many discussions and proposal about 

different aspects of the ABS development process. Following this line of thought, our model 

discovery process can be addressed as a protocol concerned with structural uncertainty. It is 

common to decide on a model structure, then calibrate the parameters within the model to 

capture parameter uncertainty. Our work takes this further and addresses the between-model 

uncertainty of structural assumptions. More importantly, we demonstrated the feasibility of 

automated model structure discovery by embracing both theory and empirical data. 

Exploring different model structures is not only valuable for theory testing but also can 

contribute to theory exploration.

6. Conclusion

Here we have presented a novel method which utilizes genetic programming techniques to 

discover new and adapted behavioral theories from models of complex social systems. Using 

a case study of a social role theory to inform mechanisms-based model of population level 

alcohol use, we have demonstrated that our approach can find new, theoretically meaningful 

and interpretable mechanisms which drive population alcohol use in a complex systems 

model. It would take a human modeller an infeasible amount of time to manually construct a 

multiplicity of different variations of the mechanisms. The GP method assists in efficient 

screening of mechanism variants. This screening process can be important, since different 

realisations of a mechanism can produce qualitatively different model outputs [50]. The 

novel models generated by the GP method offer a better fit to alcohol consumption data than 

a reference model, which was constructed by a human modeler representing one possible 

interpretation of the mechanisms of role theory. Our approach is flexible and can be easily 

extended to complex systems models that are seeking to explain other social phenomena. 

Our method also offers novel directions for future knowledge discovery and social theory 

development, based on the fusion of data-driven and theory-driven methods.

A key part of realist explanation is comparison and integration across multiple theories [4]. 

Whilst our existing example is limited to the building blocks defined in social role theory, 

there is no reason why building blocks relating to other theories cannot be defined. However, 

integration of these wider building blocks, such that they can be exploited by machine 

learning, will require a common language for expression of the theories. We see middle-

range theory [51] and its realization in the so-called Coleman Boat [52], or other micro-

macro schemes, as a potentially useful template for formal descriptions of theory and their 

translation, via a software architecture, into integrated simulation models. Future work will 

aim to incorporate additional theories, and to generate novel combinations of multiple 

theories.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
An example tree of an expression f(x,y) = x*x + y
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Figure 2. 
Model discovery framework. The dashed rectangle is the process that is not implemented in 

the present paper.
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Figure 3. 
Schematic of roles model
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Figure 4. 
Context-free grammar. Variables have the same name as in Table 1 but, for improved clarity, 

without the indexing notation. Shorthand notation is defined for the multiplication of role 

involvement and role status (e.g., InvolvedxMarital = MaritalInvolvement * MaritalStatus) 

and for the difference between the role status and role expectancy (e.g., 

DiffExpectancyMarital = MaritalStatus - sMaritalExpectancy)
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Figure 5. 
GGP structures on the Pareto front versus the reference structure (model error is the error 

when compared the simulated results against calibration targets; complexity is measured as 

the number of nodes in the tree of a GGP candidate).

Vu et al. Page 27

Complexity. Author manuscript; available in PMC 2020 December 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Time series of 16 outputs of the reference model, 3 credible GGP models, and the empirical 

target data (mean target data +/− 95% confidence interval). The horizontal axis is the 

simulated years and each graph has a dashed vertical line that separates 20 calibration years 

and 10 validation years. The vertical axis is the value for each target with different units for 

prevalence (of current drinking in the past 12 months), frequency (average number of 

drinking days in the past 30 days among current drinkers), quantity (average grams of pure 

alcohol consumed per day among current drinkers in the past 30 days), heavy episodic 
drinking (average number of days 5+ drinks consumed in the past 30 days among current 

drinkers).
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Table 3.

Goodness-of-fit errors for the reference model and the three credible GP models

Model Calibration error Validation error

The reference model 0.542 0.750

Model 38 0.236 0.340

Model 59 0.214 0.390

Model 79 0.211 0.444
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