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Abstract

Automated quantification of behavior is increasingly prevalent in neuroscience research.

Human judgments can influence machine-learning-based behavior classification at multiple

steps in the process, for both supervised and unsupervised approaches. Such steps include

the design of the algorithm for machine learning, the methods used for animal tracking, the

choice of training images, and the benchmarking of classification outcomes. However, how

these design choices contribute to the interpretation of automated behavioral classifications

has not been extensively characterized. Here, we quantify the effects of experimenter

choices on the outputs of automated classifiers of Drosophila social behaviors. Drosophila

behaviors contain a considerable degree of variability, which was reflected in the confidence

levels associated with both human and computer classifications. We found that a diversity of

sex combinations and tracking features was important for robust performance of the auto-

mated classifiers. In particular, features concerning the relative position of flies contained

useful information for training a machine-learning algorithm. These observations shed light

on the importance of human influence on tracking algorithms, the selection of training

images, and the quality of annotated sample images used to benchmark the performance

of a classifier (the ‘ground truth’). Evaluation of these factors is necessary for researchers to

accurately interpret behavioral data quantified by a machine-learning algorithm and to fur-

ther improve automated classifications.

Introduction

Behavior is the ultimate output of the nervous system [1, 2]. Accurate and quantitative mea-

surements of behavior are vital for evaluating the effects of genetic, neuronal, pharmacological,

or environmental perturbations on animals. Traditionally, measurement of behaviors per-

formed by freely moving animals has relied on human observations. Recent advances in

computational approaches have transformed this process by replacing human observations

with automated computational processes that parameterize animal motions in a high-dimen-

sional space. This information can be then used to classify specific actions through either a
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supervised or an unsupervised machine-learning algorithm (reviewed in [1, 3–7]. The obvious

strengths of automated behavioral classification are the enormous data-processing capacity

and the reproducibility of the results. A computer can apply the exact same criteria to every

image file, in theory eliminating the variability that may exist within a human observer or

among multiple observers. Moreover, an unsupervised machine-learning algorithm may iden-

tify new types of behavior that have escaped human attention.

However, computational measurements of behavior invite an inevitable question: how should

we evaluate the performance of automated classification? The importance of this question is

sometimes overlooked because it is rather trivial if the classification task is unambiguously binary.

For example, a face recognition task answers a binary question (‘is this person A or not A?’). Most

behavioral classification tasks implicitly assume that the answer is likewise binary. However, com-

parison of the behavioral classifications among multiple observers reveals a considerable level of

discrepancy [8–12] that challenges this assumption. This inter-observer variability is often used to

promote the superiority of computer-based classification over human observation [4, 6]. How-

ever, the performance of every machine-learning-based algorithm must be benchmarked against

a “ground truth”, which is the annotation by human observers [4]. This means that the human

selection of training and ground truth images inherently impact the performance of a computer-

based classifier [9, 13]; however, these factors have rarely been assessed systematically. The chal-

lenges become more significant as the scale of behavioral data continues to expand. The amount

of actual behavioral data one observer can evaluate imposes limitations on the quality of the

ground truth data used for performance evaluation and (especially for supervised learning) on the

number of training images, which need to be sufficiently diverse to create a reasonably generaliz-

able classifier [9, 14]. It is therefore important to quantitatively assess the relationship between

human factors and computational measurements under a variety of situations, especially for

behaviors that are variably annotated by human observers.

In this study, we aim to understand how factors controlled by humans, both during training

and in the evaluation process, influence the performance of computer classifiers for animal behav-

iors (Fig 1A). To this end, we first quantified the variability of human observations of three types

of social behavior exhibited by pairs of fruit flies (Drosophila melanogaster) in multiple sex combi-

nations. In parallel, we developed a series of supervised automated classifiers for these behaviors

using a collection of training movies and then quantitatively compared the results of human and

computer classification of another dataset. Our results show that the probability that a given

behavior bout is detected as a particular behavior by the classifier correlates with the aggregated

confidence levels of the human annotators. The performance of the classifiers improved as the

diversity of the training files increased, mainly by reducing misclassification of types of behavior

that were only present in a subset of movies. Each of the motion-related features curated by the

creator of the tracking program assumed different levels of importance for each classifier; features

concerning the relative position of the two flies helped improve the classification accuracy for

social behaviors. These results suggest that the variability of human observations in fact reflects

the variability inherent in animal behaviors, which can be quantified objectively by the confidence

levels of well-trained automated classifiers. However, the noticeable impact of training file diver-

sity on classifier performance indicates that it is vital for classifier creators to disclose the nature of

the training files before applying the classifier to novel experimental paradigms.

Materials and methods

Experimental animals

The complete genotypes of Drosophila are listed in Table 1 and S1 Table. Tk-GAL41 [15], P1a

split GAL4 [16] (R15A01-p65AD:Zp (in attP40) (RRID:BDSC_68837); R71G01-Zp:GAL4DBD
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Fig 1. Variability of human annotation of Drosophila social behaviors. (A). Schematic of workflow and evaluations performed in this study. Movies

of a pair of Drosophila adults were annotated both by human observers and by machine-learning-based automated classifiers. Inter-observer variability

was quantified (B-D) and the performance of human and machine annotations were subsequently compared (Fig 3). The effects of the diversity of

training movies (Fig 4) and features (Fig 5) were also quantified. (B-D). Summary of human annotations for wing-extension (B), lunge (C), and

headbutt (D) behaviors. The total number of annotated behavioral bouts and frequency are categorized according to interaction type in (B1-D1). The

distributions of human score combinations are shown in 4-by-4 grids with pseudocolor representing relative abundance (scale bars on the right of each

grid) (B2-D2), and are also broken down according to whether bouts were counted by one or two observers (B3-D3) and by combined score (B4-D4).

https://doi.org/10.1371/journal.pone.0241696.g001
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(in attP2) (RRID:BDSC_69507)), Otd-nls:FLP [15], UAS-dTRPA1 [17], and 20XUAS-FRT-
dSTOP-FRT-CsChrimson:mVenus (in attP2) [18] are gifts from David Anderson (California

Institute of Technology). 20XUAS-CsChrimson:tdTomato (in VK00022) and 20XUAS-FRT-
myr:TopHAT2-FRT-CsChrimson:tdTomato (in VK00022 or in attP2) were created by Barret

Pfeiffer in the lab of Gerald Rubin (HHMI Janelia Research Campus) and kindly shared by

David Anderson. NP2631 [19] is a gift from Daisuke Yamamoto (Tohoku University). fruM,

(RRID:BDSC_66874) and fruF (RRID:BDSC_66873) [20] are gifts from Barry Dickson (HHMI

Janelia Research Campus). dsxFLP [21] is a gift from Stephen Goodwin (University of Oxford).

TRH-GAL4 (RRID:BDSC_ 38389) is a gift from Matthew Kayser (University of Pennsylvania).

NPF-GAL4 (RRID:BDSC_25682), TRH-GAL4 (RRID:BDSC_38388), 20XUAS-CsChrimson:

mVenus (in attP40) (RRID:BDSC_55135), and fru4-40 (RRID:BDSC_66692) were obtained

from Bloomington Drosophila Resource Center in the University of Indiana.

All flies were collected as virgins and were maintained at 25˚C, 60% relative humidity. Vir-

gin males and females were reared in a vial with standard Drosophila cornmeal media for 6

days, except flies that carry dsxFLP (see S1 Table for details), which were reared for 14 days. For

optogenetic experiments, the tester flies were reared on food containing 0.2 mM all-trans reti-

nal (MilliporeSigma, Cat#R2500, 20 mM stock solution prepared in 95% ethanol), and vials

were covered with aluminum foil to shield light. Mated wild-type (Canton-S) females were

prepared by allowing wild-type males to mate with 4-day old virgin females for 2 days. Flies

were transferred to vials containing fresh food media every 3 days until the day of the

experiment.

Table 1. Complete descriptions of the movies annotated by human observers.

Movie names Length Well # used

for training

Genotypes of flies Genotypes of target

flies (wing clipped), if

different

Sex

combination

033015_NPF3-CsChrimsonattP40MG-2.avi 8 min.

30 sec.

1, 2, 12 w/Y; 20XUAS-CsChrimson:mVenus in attP40/+;

NPF-GAL4/+

♂ vs.♂

041815_1_m_g_Otd-

FLPoChrimsonmvenusattP2_f2a20.avi

8 min.

30 sec.

4, 9 w, Tk-GAL41/Y; Otd-nls:FLPo in attP40/+;

20XUAS>stop>CsChrimson:mVenus in attP2/+

♂ vs.♂

042015_12_m_g_Otd-FLPo

ChrimsonmvenusattP2_f10a10.avi

8 min.

30 sec.

3, 10, 11 w, Tk-GAL41/Y; Otd-nls:FLPo in attP40/+;

20XUAS>stop>CsChrimson:mVenus in attP2/+

♂ vs.♂

042415_4_m_g_Otd-FLPoChrimson

TdTomattP2_CsHeis_F2a20.avi

8 min.

30 sec.

1, 4, 9 w, Tk-GAL41/Y; Otd-nls:FLPo in attP40/+;

20XUAS>myr:TopHAT2>CsChrimson:tdTomato
in attP2/+

Wild-type (Canton-S)

♂
♂ vs.♂

042815_assay1.avi 30 min. 6, 7, 9, 12 Wild-type (Canton-S)♂ ♂ vs.♂
042815_assay4.avi 30 min. 1, 5, 7 Wild-type (Canton-S)♂ Wild-type (Canton-S)

♀
♂ vs. ♀

050815_assay9.avi 30 min. 9, 11 Wild-type (Canton-S)♀ Wild-type (Canton-S)

♀
♀ vs. ♀

082615_CSMH_SF.avi 30 min. 1, 3, 5, 7 Wild-type (Canton-S)♀ Wild-type (Canton-S)

♀
♀ vs. ♀

100815_4.avi 10 min. 1, 4, 10, 12 w, Tk-GAL41/w; Otd-nls:FLPo in attP40/+;

20XUAS>myr:TopHAT2>CsChrimson:tdTomato
in attP2, fru4-40/fruM

+/Y; +; fruF/fru4-40 Other (fruM ♀
vs fruF♂)

2016_02_15_CsMH_M_SH2.avi 5 min. 1 Wild-type (Canton-S)♂ Wild-type (Canton-S)

♂
♂ vs.♂

2016_02_15_CsMH_M_SH3.avi 5 min. 2 Wild-type (Canton-S)♂ Wild-type (Canton-S)

♂
♂ vs.♂

• Well # was counted from left to right, top to bottom.

• A fly that carries 2 X chromosomes and fruM/fru4-40 alleles at the fru locus is called “fruM female”. A fly that carries 1 X chromosome and 1 Y chromosome, and fruF/

fru4-40 alleles at the fru locus, is called “fruF male”. These nomenclatures are adapted from [22, 24].

https://doi.org/10.1371/journal.pone.0241696.t001
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Behavioral assays

Behavioral assays were conducted as described elsewhere [22], although the optogenetic stimula-

tion paradigms differed between movies. Thermogenetic neuronal manipulations were conducted

as described in [15]. Briefly, vials that contain testing flies were incubated in a water bath at 28˚C

for 20 minutes, and were transferred to a behavioral arena. Recording was started 5 minutes after

the transfer to allow flies to acclimate. All movies were recorded in .AVI format at 60fps.

As explained in more detail in the following section, recorded fly pairs were separated into

“training” pairs and “evaluation” pairs. Training pairs were used for developing JAABA-based

behavior-specific classifiers, while evaluation pairs were used for both behavior annotations by

human observers and for the evaluation of JAABA classifier performances in comparison to

human annotations. A fly pair used for one purpose was never used for another. The separa-

tion of training and evaluation pairs is necessary to prevent “over-fitting” of the learning

algorithm.

See S1 Table for details of experimental conditions for each movie. All movies (in .avi for-

mat) are available as described in Data Availability Statement.

Tracking of flies

Acquired movies were first processed by the FlyTracker package version 1.0.5 [23] (http://

www.vision.caltech.edu/Tools/FlyTracker/), which runs on MATLAB (The Mathworks, Inc.).

The regions of interest were manually defined as circles or rectangles that correspond to the

chamber of each arena. Foreground and body thresholds were adjusted for each movie for

optimal segmentation of body and wing across at least 30 random frames. Note that segmenta-

tion is prone to error when two flies are in proximity or overlapping, or a fly is climbing a wall.

Some of these cases were discussed in Result section. All tracking parameters can be found in

the ‘calibration.mat’ file associated with each movie.

The identities of flies were confirmed for the following cases: 1) a male-female pair, in

which case the sex was identified by the body size and morphology of the posterior end of the

abdomen, 2) a male-male pair in which a wing of one of the flies was clipped for identification.

The switching of two flies (‘identity swap’) was manually corrected using the ‘Identity correc-

tion’ function of the “visualizer” program in the FlyTracker package.

FlyTracker output files for all movies used in this study are available as described in Data

Availability Statement.

Human behavioral annotations

Each observer annotated wing extensions, lunges, and headbutts using the “Behavior annota-

tion” function of the “visualizer” program. An observer first determined start and end frames

for a given behavioral bout. Then, an observer used the “Certainty” section to specify how

confident the annotation for each bout was with three levels: ‘maybe’ (1), ‘probably’ (2), and ‘def-

initely’ (3). This annotation process created a behavior-specific data structure in which a human

confidence score of 0 (no label), 1, 2, or 3 is given to each frame for each fly of every evaluation

pair. A single confidence score is assigned to a bout. In rare cases in which the fly of interest per-

formed a behavior continuously with a changing degree of perceived certainty, an observer split

the given bout into multiple “bouts”, and gave different values of confidence to each bout. While

all observers used all three confidence levels for all three annotated behaviors, the relative fre-

quency of use of these confidence levels was discretionary to each observer. Prior to annotating,

observers watched select frames of training pair movies together to form a general consensus on

target behaviors. Each observer completed annotation independent of each other. See S2–S4

Tables for the complete information of human annotations used in this study.
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A movie of an evaluation pair was annotated by two observers. To create combined human

annotated bouts, Bout-based combined human annotation was created by merging overlap-

ping annotations via the union operation. For any given bout, start or end frames annotated

by the two observers may be shifted, due to subjective judgement regarding which frame the

start or end of the behavior is called. For wing extensions, we sometimes found cases in which

two annotators segmented bouts differently, and a bout defined by one observer was divided

into 2 or more bouts by another observer. These cases were considered as separate bouts, even

though the union operation creates one combined human annotation in such cases. We

declared that a bout is annotated by two observers if the bouts from the two observers over-

lapped for one frame (17 ms) or more. For a bout that was annotated by one observer, start

and end frames recorded by the observer become the combined human annotation.

The confidence scores given by the two observers to a bout were summed to produce the

human combined score for this bout (resulting in a 1-to-6 confidence scale). When more than

one bout annotated by the first observer corresponded to one bout annotated by the second

observer, we recorded the human combined score for each of the separate bouts. As is detailed

below, the highest confidence score among the multiple bouts was used as a representative

score of the first observer when a single human combined score is needed for this type of

situation.

Frame-based combined human annotation was created by calculating the sum of confi-

dence scores by the two observers for every frame.

Training of automated classifiers

Frame-by-frame classifiers for wing extensions, lunges, and headbutts were created using the

machine learning algorithm JAABA [9, 22, 24]. As stated above, we only used training pairs

for classifier development. For each movie, a JAABA folder was created after the identity cor-

rection was complete. An .xml file that allows the FlyTracker output to be read in the JAABA

platform (‘featureConfigEyrun.xml’) and JAABA folders with output files for all movies used

in this study are available as described in Data Availability Statement.

Details of all training frames for or against each behavior for all training pair movies are

available in S1 Table. These frames were accumulated through iterative improvements of clas-

sifiers. First, a few dozen bouts of clear behaviors and a similar number of obvious non-behav-

ior frames were labeled as the true behavior and “none”, respectively. After initial training,

training pairs were classified, and obvious sources of false positives were marked as “none”,

while a behavior of interest which did not receive high confidence values by the interim classi-

fier was labeled as a “true” behavior. These processes were repeated until we did not observe

noticeable improvements of performance, at which point the classifier was considered fully

trained. This definition is operational for this study, and it is not meant that the “fully trained”

classifier was expected to perform under any experimental conditions or for any genotypes.

Classifiers trained by a subset of training pairs were generated by first removing training

frame labels from the fully trained classifier for the given behavior. The classifier was then re-

trained anew using only the frames from the specific type of training pairs. Classifiers trained

without specific features or rules were generated from the fully trained classifiers in the follow-

ing steps, except for classifiers trained without relative features. First, features or rules were

removed by unchecking the target features or rules in the “Select Features” function in

JAABA. The classifier was then re-trained using the same training frames and settings, and

saved as a new classifier.

A classifier that did not use relative features was created in the following steps. First, a new

JAABA project, in which relative features were removed a priori using the “Choose perframe
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features” function at the opening window, was created. Movies that contain all training pairs

along with all training labels were then imported from the corresponding fully trained classi-

fier using the “Import Exp and Labels from Jab” function. The classifier was then re-trained,

and saved as a new classifier.

For downsampling of the training frames, the number of training frames for each fly, for

each label (‘behavior’ or ‘non-behavior’), was reduced according to the downsampling ratio by

randomly choosing the training frames. The precise downsampling rate slightly deviates from

the labeled rate in figure panels, as downsampling seldom generates integer frame numbers,

and at least one frame was chosen from each fly for each label regardless of the downsampling

rate. Ten independent downsampling and training iterations were applied for each downsam-

pling rate to calculate the average and 95% confidence intervals of precision, false positive

rates, and recall.

All classifiers used in this study is available as described in Data Availability Statement.

Comparison of human annotation and JAABA classification

JAABA classifies a behavior by returning a confidence score for each frame. For bout-based

evaluation, we first defined a JAABA bout as a series of continuous frames that has a JAABA

confidence score higher than the threshold value. Since this is a frame-by-frame classification,

fragmentation of a seemingly single behavioral bout can happen when a bout is relatively short

(often the case for lunges or headbutts), or at the edge of a JAABA-defined bout. As was dis-

cussed in the main text, we applied a maximum gap filling filter and minimum bout length fil-

ter to smooth the fragmented JAABA bouts. We first converted the non-JAABA bout frames

(with a JAABA score below the threshold) that are sandwiched by frames with a JAABA score

higher than the threshold to JAABA bout frames, while keeping the JAABA score intact. Then,

we searched for bouts that had a duration of or above the minimum bout length of choice.

After this smoothing process, we recorded the start and end frames of each of the corrected

JAABA bouts. The average JAABA score for a given JAABA bout was calculated as (sum of

frame-by-frame JAABA score within the JAABA bout)/(total number of JAABA bout frames).

To compare human annotation and JAABA classification on a per-bout-basis, we matched

JAABA bouts to combined human annotated bouts using the following procedure. A com-

bined human annotated bout was declared “matched” if a JAABA bout overlapped with the

combined human annotated bout for one or more frames (over 17ms). Such a human anno-

tated bout is called a true positive bout. In reality, human annotated bouts and JAABA bouts

do not always match one-to-one. For bout-based evaluation, a human annotated bout was

used as a reference. Specifically, when one human annotated bout overlapped with multiple

JAABA bouts, the JAABA bouts were collectively counted as 1 matched bout. When more

than one human annotated bout overlapped with a single JAABA bout, the number of human

annotated bouts was the number of matched bouts. To put it the other way, a true positive

bout is a category based upon a combined human annotated bout, and not on a JAABA bout.

A false negative bout was defined as a human annotated bout that did not match to any

JAABA bout. A false positive bout was defined as a JAABA bout that did not match to any

combined human annotation. For a false negative bout, we created a virtual JAABA bout, with

length equal to the length of the human annotation intersection. The average JAABA score for

these false negative bouts were calculated for the duration of this virtual JAABA bout. For a

false positive bout, we created a virtual “human annotated” bout with its human combined

score of 0. The average JAABA score for combined human annotated bouts was first calculated

using all frames in matching JAABA bouts, which was then associated to a corresponding

combined human annotated bout. We chose to do this because (1) it is difficult to split a
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combined human annotation when an annotation by one observer overlapped with multiple

annotations by another observer, and (2) this operation is consistent with our calculation of

the average JAABA score for false positive bouts. In the case (1), we used the highest combined

human score as the representative value for the bout. This means that the total number of

bouts present in these figure panels are slightly less than the total number of the combined

human annotated bouts used elsewhere (such as for calculation of precision and recall). When

a single combined human annotated bout was matched by multiple JAABA bouts, the average

JAABA score was calculated as an average of all the matched JAABA bouts. When multiple

combined human annotated bouts were matched by a single JAABA bout, the single average

JAABA score was assigned to each of the matched combined human annotated bouts.

A precision rate represents the ratio of true positive bouts among all positive bouts (true or

false), and was calculated as follows:

number of positive bouts
ðnumber of true positive boutsÞ þ ðnumber of false positive boutsÞ

A recall rate represents the ratio of true positive bouts among the total human annotated

bouts, and was calculated as follows:

number of true positive bouts
ðnumber of true positive boutsÞ þ ðnumber of false negative boutsÞ

For frame-based comparison, each frame is declared “matched” if the frame has simulta-

neously 1) a JAABA score that is above threshold, and 2) a combined human score of 1 or

higher. A frame that has a combined human score of 1 or higher, but a JAABA score below

threshold is declared false negative, and a frame that has an above-threshold JAABA score but

no human annotation is declared a false positive. Precision and recall rates were calculated in

the same manner as for bout-based comparison.

Generation of shuffled dataset

To address whether the perceived correlation between human combined scores and the aver-

age JAABA scores could be observed by chance, we created a series of shuffled data sets from

our experimental data set by randomizing a confidence score between 1 and 6 for each human

annotated bout, at the same time preserving the percentage of each score category as in the

original data. The false positive bouts were kept as false positives. We created 50 such shuffled

data sets to evaluate the parameter distributions for statistical analyses.

Statistical analysis

The details of results of all statistical tests are shown in S1 Datasets. Kruskal-Wallis one-way

ANOVA test was used to address whether distributions of average JAABA scores for human

annotated bouts are correlated with combined human scores. When the p-value was below the

critical value of 0.01, the pairwise 2-sided Mann-Whitney U-test was used to ask whether the

median of average JAABA scores for bouts with neighboring combined human scores was

significantly different. For this test, we combined both true positive bouts and false negative

bouts that had the given combined human scores. Bonferroni correction was applied to the

critical p-value for multiple comparisons.

For comparison of shuffled data sets and the experimental data set, the null hypothesis was

that there was no correlation between human combined scores and the average JAABA score

for a given human annotated bout. If the null hypothesis was correct, we would expect that 1)

the observed distribution of average JAABA scores for human annotated bouts would be
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within a variation reasonably expected by the randomized data set, and 2) the observed recall

rate for each human combined score would fall within the range of fluctuations reasonably

expected from the randomized data sets. To test the first possibility, we performed the Krus-

kal-Wallis test for each of 50 shuffled data sets. To test the second possibility, we calculated

“recall” rates for bouts that belong to each combined human score in each shuffled data set.

We then calculated the 95% confidence intervals of the “recall” rates for shuffled data sets, for

each combined human score, and asked whether the observed recall rate was within the

interval.

A violin plot (created by Bastian Bechtold; https://github.com/bastibe/Violinplot-Matlab)

was used to represent relative abundance of the number of JAABA bouts or frames that have

each of the 7 human combined scores (including false positives, which has a score of 0). For a

combined human annotation that had multiple overlaps, the highest human combined score

among those separate bouts was taken as the representative human combined score. Violins

were created separately for true positives and false negatives. The width of a violins represents

the kernel density estimate of the JAABA score statistics for all bouts or frames within the vio-

lin. Subsequently, the width of violins for a given behavior was scaled by the ratio relative to

the category with the largest number of bouts or frames. Violins for training bouts or frames

were created separately, and their width were adjusted according to the relative abundance

between positive and negative training bouts or frames.

Ninety-five percent confidence intervals for shuffled datasets and classifiers with down-

sampled training frames were calculated using t distribution as follows:

m� t0:025 n � 1ð Þ �
s
ffiffiffi
n
p

Where n is the sample number (10 in this case), m is the sample mean, s is the standard error,

and t0.025(n-1) is the upper 0.05/2 = 0.025 critical value for the t-distribution with n-1 degrees

of freedom (9 in this case).

Results

Consistency and variability of human classifications

We first wished to quantify the variability in animal-behavior classifications made by human

observers. To this end, we recorded interactions between a number of Drosophila pairs and

had two trained observers independently annotate the behaviors. Both male and female flies

show a variety of stereotypical actions in the context of social interactions. We focused on

three types of actions: (1) unilateral wing extensions (henceforth referred to as wing exten-

sions), which are an important part of male-type courtship behavior toward a female [25, 26],

(2) lunges, which are a major component of attacks in inter-male aggressive behavior [27, 28],

and (3) headbutts, which are a major component of attacks in inter-female aggressive behavior

[29, 30]. These three types of actions were chosen because they are frequently observed in spe-

cific combinations of the sexes and their motions are relatively unambiguous. We asked the

observers to report not only the occurrence of these behaviors but also their subjective confi-

dence level for each annotation, from 1 (least confident) to 3 (most confident). These graded

annotations allowed us to quantify how conspicuous the given behavior appeared to human

observers.

In all, movies of 30 pairs of flies with a total length of ~534 minutes were independently

annotated by two human observers, who were assigned from a pool of four trained scientists

(see Table 1 and S1–S4 Tables for details). Each of the three behaviors was observed primarily

for a specific combination of sexes, consistent with previous reports. Wing extensions were
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performed primarily by males toward females (a low number of male-to-male wing extensions

were also observed; Fig 1B1). Lunges were performed exclusively among pairs of male flies (Fig

1C1), while headbutts were performed predominantly among pairs of female flies (Fig 1D1).

Although trained observers generally agreed on classification of behaviors, we found that a

noticeable number of bouts were annotated by only one of the two observers. For wing exten-

sions, 58.6% of the total annotated bouts received a combined confidence score of 4–6 from

the two observers (Fig 1B2,4). However, 30.1% of the bouts were annotated by only one of the

two observers (Fig 1B2,3). Likewise, 66.7% of the total annotated lunge bouts received a com-

bined score of 4–6 (Fig 1C2,4), but 27.6% of the bouts were annotated by only one observer

(Fig 1C2,3). Lastly, 34.0% of the headbutt bouts were annotated by only one observer (Fig 1D3).

The more subtle nature of headbutt motions possibly accounts for the lower proportion of

bouts that received a combined score of 4–6 (44.1%) (Fig 1D2,4). These data suggest that even

the “stereotypical” social behaviors of Drosophila contain a certain degree of perceived

variability.

Lunges and headbutts are “ballistic” behaviors of short and relatively constant duration

(median of 83 ms for lunges (S1A Fig) and 67 ms for headbutts (S1B Fig)). On the other hand,

the duration of wing extensions can vary greatly (S1C and S1D Fig). Interestingly, wing exten-

sions of longer duration tended to be scored higher by human observers than wing extensions

of shorter duration (S1E Fig), suggesting that bout-based analysis of scores may underestimate

the consistency of human annotations. Therefore, we analyzed the scores for wing extensions

frame by frame. This analysis revealed that 70.6% of the frames received a combined score of

4–6 and 23.4% of frames were annotated by only one observer (S2 Fig). These numbers suggest

that consistency among observers is indeed higher at the frame level than at the bout level. We

therefore perform both bout-based and frame-based analyses for wing extensions in the fol-

lowing sections. In general, we found that the difference between bout-based and frame-based

analyses was quantitative rather than qualitative.

Automated classifiers quantitatively reflect the confidence of human

judgments

Our observations above illuminate a noticeable degree of variability in the annotations of

human observers. Similar variability has been reported when more than one person annotates

the same movies of behaving nematodes [8], flies [9, 10], and mice [11, 12]. We wondered how

this seemingly variable “ground truth” for animal behaviors would be reflected when bench-

marking computer classification. To answer this question, we developed a set of well-trained

automated classifiers for the three above-mentioned behaviors [22, 24] using the machine-

learning-based platform JAABA [9]. In each frame, parts of the fly body were labeled and

parameterized using FlyTracker [23], which computes 13 basic feature values related to fly

position and motion. The program then generates the first and second derivatives for each

feature, creating 39 features in total that are subsequently utilized by JAABA. Compared with

unannotated frames, frames annotated by human observers had distinct z-score distributions

(Fig 2A1, 2B1 and 2C1) and variances (which likely result in distinct derivatives) (Fig 2A2, 2B2

and 2C2). This suggests that FlyTracker features contain information that JAABA can use to

differentiate annotated frames from non-behavior frames.

We aimed to develop JAABA classifiers that perform robustly. As training with a diverse

set of movies is important for developing reliable JAABA classifiers [9, 24], we trained a wing-

extension classifier with 78,482 frames (1,308 seconds in total), a lunge classifier with 11,360

frames (189 seconds in total), and a headbutt classifier with 10,351 frames (173 seconds in

total) (see S1 Table for a complete description of the training movies). Note that the fly pairs in
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the training frames were different from the fly pairs in the frames used for testing (i.e., the

frames annotated by human observers). We also smoothed raw JAABA-detected bouts by

eliminating bouts that were shorter than at least 98% of manually annotated bouts (S1A, S1B

and S1D Fig), and by filling short gaps sandwiched by frames that received JAABA scores

above the detection threshold value. These filters corrected for fragmentation of behavioral

bouts that were sometimes generated by frame-based classification in JAABA (see Materials

Fig 2. Frame-based z-score distributions and their variances according to behavior labels. Distribution of frame-based feature z-scores (A1, B1, C1)

and variances (A2, B2, C2) according to human annotations for wing extension (A), lunge (B), and headbutt (C). Z-score distributions are plotted in

boxplot, where a thick bar represents median, a box represents 25 and 75 percentiles, and whiskers represents 0.5 and 99.5 percentiles. Features

calculated from relative positions of the 2 flies (relative features) are shown in brown.

https://doi.org/10.1371/journal.pone.0241696.g002

PLOS ONE Comparison between human and computer annotations of fly behavior

PLOS ONE | https://doi.org/10.1371/journal.pone.0241696 December 16, 2020 11 / 27

https://doi.org/10.1371/journal.pone.0241696.g002
https://doi.org/10.1371/journal.pone.0241696


and methods for details). We used recall (the ratio of human annotations detected by the clas-

sifier to all human annotations) and precision (the ratio of human annotations detected by the

classifier to all classifier annotations) to evaluate the performance of the classifiers. The set of

smoothing parameters that resulted in the optimal trade-off between recall and precision with

a detection threshold of 0.1 was used for subsequent analyses unless otherwise noted (S3 Fig).

We then quantitatively compared the classification results from human observers and the

JAABA classifiers by calculating recall and precision. We found that the JAABA classifiers

reliably detected behavioral bouts that received high human confidence scores. For bouts that

received a score of 4 or higher (Fig 1B4–1D4), recall was 96.0% for the wing-extension classifier,

95.3% for the lunge classifier, and 87.9% for the headbutt classifier. All three JAABA classifiers

had almost perfect recall for behavioral bouts that received a score of 6 (Fig 3B, 3E and 3H).

As expected, the detection threshold was positively correlated with precision (Fig 3A, 3D

and 3G, S6A Fig) and inversely correlated with recall (Fig 3B, 3E and 3H, S6B Fig) for all three

behaviors. Interestingly, recall steadily decreased for all classifiers as the combined confidence

scores dropped (Fig 3C, 3F and 3I, S6C Fig). For bouts that received scores of 3 or lower (Fig

1B4–1D4), recall fell to 31.5% for wing extensions, 73.7% for lunges, and 64.3% for headbutts.

Moreover, the median JAABA score tended to be lower for bouts with lower combined human

scores (Fig 3C, 3F and 3I, S6C Fig); this accounts for the lower recall for bouts that received

lower confidence scores from human observers. These observations indicate that benchmark-

ing values (such as recall) can be quantitatively influenced by the ground truth annotation of

human observers.

The apparent correlation between human confidence levels and JAABA scores is intriguing

given that the JAABA classifiers were trained with binary labels (“true” or “false”) instead of

graded weights. JAABA scores of true and false for the training frames were largely, if not

completely, separated (Fig 3C, 3F and 3I, S6C Fig), suggesting that the behaviors included in

the training frames were mostly unambiguous. Recall would have no correlation with the com-

bined confidence score if human confidence levels were randomly assigned subjective values

that had no relationship with either the other observer’s confidence levels or JAABA scores,

which are objective “confidence” levels determined by the algorithm. Indeed, a permutation

test confirmed that this correlation is highly unlikely to be generated by chance. When we ran-

domized the human confidence scores to the bouts that JAABA detected in a size-matched

manner, the probability of an uneven distribution of JAABA scores across human confidence

scores was very small (p< 0.01 by Kruskal-Wallis test; Fig 3J). The p-values from our experi-

mental data were also many orders of magnitude smaller than the smallest p-values obtained

with randomized samples (Fig 3J). In addition, the 95% confidence intervals of the expected

average recall for permutated datasets were lower than the observed values for bouts with high

combined confidence scores and higher for bouts with low scores (Fig 3K). These results sug-

gest that the confidence level of the human observers can be predicted to a certain extent by

the JAABA classifiers.

We also noticed that false-positive bouts for all three behaviors had low JAABA confidence

values (Fig 3C, 3F and 3I, S6C Fig), indicating that most false positives barely passed the detec-

tion threshold. To address whether these false positives stemmed from misclassification of

certain types of motions, we manually inspected all the false-positive bouts (Tables 2–4). Inter-

estingly, we found that a noticeable number of “false positives” appeared similar to true behav-

iors. These actions likely escaped the observers’ attention. For the wing-extension classifier,

22% of “false positive” bouts appeared to be actual wing extensions (Table 2). For the lunge

classifier, 25% appeared to be actual lunges or lunge-like motions that were not completed,

and another 20% were lunge-like striking actions during high-intensity tussling (Table 3). For

the headbutt classifier, 7% appeared to be actual headbutts, and another 20% were ambiguous
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Fig 3. Human confidence and JAABA confidence are correlated. (A-I) Precision (A, D, G) and recall (B, E, H) of fully trained classifiers for

wing extensions (A, B), lunges (D, E), and headbutts (G, H) are shown for varied JAABA score thresholds, as indicated at the top of the figure.

For recall, detected bouts were binned according to human combined scores of 1 to 6. In (C) (wing extensions), (F) (lunges), and (I) (headbutts),

the distributions of average JAABA scores for true-positive (green), false-negative (pink), and false-positive (gray) bouts are shown as both

violin plots (see Materials and methods for definitions) and box plots. As references, distributions of positive (light green) and negative

(crimson) training bouts are shown at right, and the median values for positive and negative training bouts are shown by even and uneven

broken lines, respectively. n.s. p> 0.05, � p< 0.05, �� p< 0.01, ��� p< 0.001 by Kruskal-Wallis one-way ANOVA and post-hoc Mann-Whitney

U-test. (J). Kruskal-Wallis p-value distributions of shuffled (open circles) and observed (filled circles) data sets across human combined scores.

(K). Recall rates across human combined scores for shuffled and observed data sets at a JAABA score threshold = 0.1 (observed data sets are

replotted from (B), (E), and (H)). Average and 95% confidence intervals for shuffled data are shown in light colors.

https://doi.org/10.1371/journal.pone.0241696.g003
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Table 2. Annotations of false positives by the wing extension classifier.

Types of motions False positive counts

♂ vs.

♂
♂ vs.

♀
♀ vs.

♀
Other (fruM ♀ vs

fruF♂)

Total

(%)

Actual wing extensions 5 0 0 6 11

(22.4)

Wing glooming 6 0 2 4 12

(24.5)

Incomplete wing closure 8 0 1 3 12

(24.5)

Wing tracking error (including actions when flies are

on or near the wall)

7 1 0 1 9 (18.4)

Wing threats 2 0 0 1 3 (6.1)

Others 1 1 0 0 2 (4.1)

• Green categories indicate motions that are similar to actual behaviors.

https://doi.org/10.1371/journal.pone.0241696.t002

Table 3. Annotations of false positives by the lunge classifier.

Types of motions False positive counts

♂ vs.

♂
♂ vs.

♀
♀ vs.

♀
Other (fruM ♀ vs

fruF♂)

Total

(%)

Actual or incomplete lunges 24 0 0 1 25 (25.3)

Lunge-like actions during tussling 20 0 0 0 20 (20.2)

Actions when flies are on or near the wall (ex. falling

from the wall)

17 1 2 20 (20.2)

Receiving lunge or headbutt 13 0 2 0 15 (15.2)

Fast autonomous motions (jumping, rolling on floor,

etc.)

14 1 0 0 15 (15.2)

Copulation attempt 0 2 0 0 2 (2.0)

Reaction to other fly’s fast autonomous motions 0 0 2 0 2 (2.0)

https://doi.org/10.1371/journal.pone.0241696.t003

Table 4. Annotations of false positives by the headbutt classifier.

Types of motions False positive counts

♂ vs.

♂
♂ vs.

♀
♀ vs.

♀
Other (fruM ♀ vs

fruF♂)

Total

(%)

Actual headbutt 0 1 7 1 8 (6.6)

Jerking toward the other fly 1 0 23 0 24 (19.8)

Walking toward the other fly while extending a leg

(‘reaching’)

0 0 24 0 24 (19.8)

Receiving lunge or headbutt 0 0 22 0 22 (18.2)

Fast autonomous motions (jumping, rolling on floor,

etc.)

0 0 21 0 21 (17.4)

Reaction to other fly’s fast autonomous motions 1 0 7 1 9 (7.4)

Pushing the other fly 0 0 8 0 8 (6.6)

Actions when flies are on or near the wall (ex. falling

from the wall)

1 0 2 0 3 (2.5)

Lunge 1 0 0 0 1 (0.8)

Wing threat with fast motion toward the other fly

(‘charge’)

1 0 0 0 1 (0.8)

https://doi.org/10.1371/journal.pone.0241696.t004
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“jerking” motions which were difficult to clearly distinguish from headbutts (Table 4). Exclud-

ing such incidents, the common false positives for the wing-extension classifier involved wing

motions, such as grooming (Table 2). For the lunge and headbutt classifiers, short, quick

motions (such as when a fly received a lunge or headbutt, or when a fly fell from the wall) were

often misclassified (Tables 3 and 4).

These false positives can be at least partially explained by the types of feature-value devia-

tions associated with a given behavior (Fig 2). For instance, wing-extension frames annotated

by human observers had high z-scores for maximum wing angle and high variance for mini-

mum wing angle. Annotated lunge and headbutt frames had high z-scores and low variance

for velocity. Together, these observations suggest that the source of the false positives was not

necessarily random “noise”. Although we made rigorous efforts to minimize common types of

false positives during training, it proved difficult to eliminate them without sacrificing recall

values (Fig 3A, 3B, 3D, 3E, 3G and 3H).

Overall, these quantitative analyses suggest that the perceived variability in Drosophila
behaviors is not solely due to subjective human artefacts, but is at least partially attributable to

variability in the motion of the flies themselves. Deviations from “stereotyped” actions can be

represented by lower confidence both in human observers and in automated behavioral classi-

fiers. Inherent variability in animal behaviors that have historically been regarded as “stereo-

typical” is consistent with an emerging view that animal behaviors can be represented as a

probability distribution in a continuous parameter space [6, 7, 31].

Diversity of training samples affects the robustness of automated classifiers

Whether supervised or unsupervised, automated animal-behavior classifiers are developed

with training samples, which are usually chosen by humans. These samples likely cover only a

portion of the behavioral repertoire that a given animal species can exhibit. We next addressed

how the choice of training movies affected the performance of our classifiers.

A male fly performs wing extensions vigorously toward female flies, and to a lesser extent

toward other males (see Fig 1B1). The recall of the wing-extension classifier trained only on

movies of male–female pairs (48,992 frames) was comparable to the recall of the fully trained

classifier (Fig 4C, red). However, the precision was only 64.5%, noticeably lower than that of

the fully trained classifier (Fig 4A, red). The lower precision was largely due to a high false-pos-

itive rate with male–male pair movies (Fig 4B, red). Manual inspection revealed that a large

number of false positives were fast flicking motions of wings that males often show when

paired with another male. Addition of female–female (Fig 4A and 4B, pink) and male–male

(Fig 4A and 4B, purple) training pairs steadily improved the precision. In contrast, the recall

remained largely unaltered by the increase in the diversity of the training movies (Fig 4C) (See

also S6D–S6F Fig for frame-based analyses).

Lunges are performed predominantly among males. When the lunge classifier was trained

only on movies of pairs of male flies (7,921 frames in total), its precision was 76.3%, again

lower than that of the fully trained classifier (Fig 4D). False-positive bouts from this classifier

largely occurred in movies of male–female pairs, while the false-positive rates in movies of

male–male pairs remained largely the same (Fig 4E). Manual inspection revealed that the

majority of false positives in male–female pair movies came from misclassification of copula-

tion attempts as lunges. The addition of male–female training pairs, which contained only neg-

ative training frames (1,927 frames, all labeled as “not lunge”), largely eliminated false positives

in this condition (Fig 4D, purple), but also decreased the recall for bouts with relatively low

combined human scores (1–4) (Fig 4F, purple). The addition of female–female training pairs

(395 frames) had little impact on precision (Fig 4D, green), but the addition of both male–
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Fig 4. Classifier performance improves as diversity of training frames increases. Precision (A, D, G), false-positive rates (B, E, H), and recall (C, F, I)

of classifiers for wing extensions (A-C), lunges (D-F), and headbutts (G-I) are plotted according to the types of training movies used (indicated by the

circles below A, D, G). False positive rates are shown separately for the evaluating movie types indicated on the right. “All other” movies include fruitless
mutants as indicated in S1 Table. Gray bars with broken outlines (A, B, D, E, G, H) and broken lines (C, F, I) represent the mean and 95% confidence

intervals of the classifiers trained with frames downsampled proportional to the ratio of the training frames from a single type of movie (left-most bars

on A, D, G) to the entire number of training frames. Note that the 95% confidence intervals are generally very small. Also, recall for wing-extension and

lunge classifiers with downsampled training frames are very similar to those for fully trained classifiers. Precision and recall for classifiers trained by “all

movies” (shown in gray) are replotted from Fig 3.

https://doi.org/10.1371/journal.pone.0241696.g004
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female and female–female training pairs improved the precision while limiting the decrease in

recall (Fig 4D–4F, brown).

Lastly, for the headbutt classifier, both precision (Fig 4G) and recall (Fig 4I) increased as

training movies of male–female pairs and male–male pairs were added. Unlike the wing-exten-

sion and lunge classifiers, the largest source of false positives was female–female pairs for all

versions of the headbutt classifier trained with an intermediate diversity of training movies

(Fig 4H). Nonetheless, the decrease in false positives when male–male and male–female train-

ing movies were added helped improve the precision (Fig 4G and 4H).

In the experiments above, more frames were added to the training set as the variety of train-

ing frames increased, raising the possibility that it was the increased number of training frames

that led to the improvements in classifier performance. To address this, we trained classifiers

on fewer training frames, while maintaining the training-frame diversity. We did this by ran-

domly selecting training frames across all training movies, with the ratio of frames propor-

tional to those used with the fully trained classifier (we call this process “downsampling” of the

training frames: see S5 Table for details of classifiers with downsampled training frames). We

found that a downsampling rate of 5% for the lunge classifier (S4D and S4E Fig), and 25% for

the wing-extension (S4A, S4B, S6G and S6E Figs) and headbutt (S4G and S4H Fig) classifiers,

was sufficient to achieve precision comparable to the fully trained counterparts. Male–female

pairs accounted for 62.3% of the entire training frames for the fully trained wing-extension

classifier, male–male pairs accounted for 69.7% of the entire training frames for the lunge clas-

sifier, and female–female pairs accounted for 51.7% of the entire training frames for the head-

butt classifier. When we adjusted the downsampling rate to these values, the precision of all

classifiers was, predictably, similar to the precision of the fully trained classifiers (Fig 4A, 4D

and 4G). Moreover, their 95% confidence intervals were well above those of classifiers trained

on a single type of fly pair. The results from the downsampled training indicate that the low

precision of classifiers trained on limited types of training movies is not simply due to the

reduction in the number of training frames relative to the fully trained classifiers.

For wing extension and lunges, classifiers trained on downsampled training frames and fully

trained classifiers showed largely comparable recall (Fig 4C and 4F, S6F Fig). By contrast, the

recall of the fully trained headbutt classifier was sometimes well above the 95% confidence inter-

vals for recall of the downsampled headbutt classifiers (Fig 4I). This could mean that the current

fully trained headbutt classifier may be further improved by adding more training frames. It is

also possible that the fully trained classifier might be over-fitted to the evaluation movies.

These results demonstrate that selecting a variety of training frames is critical for improving

the robustness of the behavior classifiers, even if some of the movies do not contain the behav-

ior of interest. Interestingly, classifiers trained solely with a specific type of movie appear com-

parable to the fully trained classifiers only when their performance was evaluated with the

same type of movie (male–male pair movies for lunges, male–female pair movies for wing

extensions, female–female pairs for headbutts). This suggests that a seemingly well-performing

behavior classifier that is validated only for a specific combination of sexes may not perform

well with other combinations.

Robustness of classifiers when tracking information is incomplete

In machine vision approaches that estimates an animal’s pose [13, 23, 32, 33], animal posture

is subdivided into a combination of parameters (features) that describe the position of each

body segment (such as head, limbs, etc.). As previously mentioned, JAABA creates a series of

rules that use feature and feature derivatives as inputs for its machine-learning algorithm [9].

Importantly, these features and rules are defined by the creator of a program. We next
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examined whether a small number of features can contain sufficient information for JAABA-

based behavior classifications, or whether a diversity of features and rules is collectively impor-

tant for robust performance of a classifier.

Differences in the z-score distributions and variance of particular features between anno-

tated and unannotated frames (Fig 2) suggest that classifiers may utilize these information-rich

features to distinguish behavior frames. Indeed, we found that each classifier used rules derived

from each feature with different weights (Table 5). We re-trained classifiers after removing 1

or 3 of the most highly weighted features, and compared their precision and recall with those

of the fully trained classifiers. The precision of these classifiers was noticeably lower than the

precision of the fully trained classifiers. In particular, the bout-based precision of the wing-

extension classifier without its most weighted feature, maximum wing angle, was only 44%,

and removal of the 3 most-weighted features further decreased the precision to 22% (Fig 5A,

dark purple; see also S6J Fig for frame-based statistics). The precision of the lunge and head-

butt classifiers showed qualitatively similar, but less exaggerated, trends (Fig 5D and 5G, dark

purple). By contrast, removal of the 3 least-weighted rules from the training process did not

noticeably affect either precision (Fig 5A, 5D and 5G, light gray bars) or recall (Fig 5C, 5F and

5I, broken gray lines). Interestingly, classifiers lacking the most-weighted features retained the

tendency to detect bouts with higher human confidence scores better than bouts with lower

human confidence scores (Fig 5C, 5F and 5I). Overall, these observations suggest that key fea-

tures have a large impact on the reliable detection of a behavior.

We wondered whether these highly weighted features alone contain sufficient information

to create reliable behavior classifiers. To test this possibility, we used only the three most highly

weighted features when training the classifiers. Wing-extension classifiers trained this way per-

formed surprisingly well, showing precision and recall very similar to the fully trained classifier

(Fig 5A–5C, light purple). By contrast, the lunge and headbutt classifiers that were trained this

way had 24% and 19% lower precision, respectively, than the corresponding fully trained clas-

sifiers (Fig 5D–5I, light purple). Together, these results show that information relevant for

behavior classification can be distributed across many features, even though some features

contribute more than others to the performance of a classifier. This underscores the value of

using a variety of features when developing a reliable classifier.

Table 5. Weights given to features in each classifier (ascending order).

Wing extension classifier Lunge classifier Headbutt classifier

Feature Weight Feature Weight Feature Weight

log_max_wing_ang 5.678 norm_axis_ratio 3.416 log_vel 3.569

facing_angle 2.690 dist_to_other 1.948 dist_to_other 2.298

norm_mean_wing_length 2.249 norm_mean_wing_length 1.870 facing_angle 1.230

log_min_wing_ang 1.152 facing_angle 1.616 log_ang_vel 1.165

dist_to_wall 1.118 log_max_wing_ang 0.937 dist_to_wall 1.119

norm_axis_ratio 0.867 leg_dist 0.899 leg_dist 1.049

log_fg_body_ratio 0.661 dist_to_wall 0.697 norm_mean_wing_length 0.960

leg_dist 0.650 log_vel 0.625 log_max_wing_ang 0.853

log_vel 0.498 angle_between 0.539 log_fg_body_ratio 0.842

dist_to_other 0.342 log_min_wing_ang 0.459 norm_axis_ratio 0.816

log_ang_vel 0.228 log_fg_body_ratio 0.411 norm_contrast 0.774

norm_contrast 0.133 norm_contrast 0.406 log_min_wing_ang 0.380

angle_between 0.110 log_ang_vel 0.246 angle_between 0.334

• Features in brown indicate relative features

https://doi.org/10.1371/journal.pone.0241696.t005
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JAABA rules further increase the diversity of information that can be useful for behavior

classification. A list of the most-weighted rules for each classifier (S6 Table) indicates that all

three classifiers distribute weights to rules derived from a relatively large number of features,

suggesting that aggregates of diverse rules can collectively encode information relevant for

Fig 5. Performance of classifiers change when some rules or features are removed. Precision (A, D, G), false-positive rates (B, E, H), and recall (C, F,

I) of classifiers for wing extensions (A-C), lunges (D-F), and headbutts (G-I) are plotted according to the features not available for training on JAABA

(shown below A, D, G). False-positive rates are shown separately for the evaluating movie types indicated on the right. Precision and recall for classifiers

trained with all features (shown in gray) are replotted from Fig 3.

https://doi.org/10.1371/journal.pone.0241696.g005
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behavioral classification. Indeed, when we disabled usage of the 3, 5, or 10 most-weighted rules

for fully trained classifiers, both precision (S5A, S5B, S5D, S5E, S5G and S5H Fig) and recall

(S5C, S5F and S5I Fig) degraded only marginally. Upon removal of these rules, other rules that

derived from corresponding features often took over as the most-weighted rules (S6 Table),

suggesting that rules derived from the same feature may contain redundant information for

reliable behavioral classification.

Under natural conditions, social behaviors are expressed largely toward other animals and,

to a certain extent, are defined in relation to the other animals. This raises the possibility that

the accurate classification of a social behavior may require information about the relative posi-

tions of the participating animals, such as the distance between the two individuals, the orienta-

tion angle, and so on. We tested this possibility by training the classifier on the same set of

training frames but without using the features that concern the relative position of the two flies

(“relative features”). Among the 13 basic features, 9 features were defined solely by the autono-

mous properties of a single fly, whereas the remaining 4 were relative features (Fig 2) [23]. At

least one relative feature was among the 3 most-weighted features for all three fully trained clas-

sifiers (Table 4). We found that both the precision and recall of the classifiers trained without

relative features decreased modestly. The decrease in bout-based precision was 4.3% for the

wing-extension classifier, 8.5% for the lunge classifier, and 7.5% for the headbutt classifier (Fig

5A, 5D and 5G, S6J Fig, dark blue), and was due to an increase in false-positive rates across

movie types (Fig 5B, 5E and 5H, S6K Fig, dark blue). Bout-based recall across all human score

categories was −1.8% for the wing-extension classifier, and −2.7% for the lunge and headbutt

classifiers (Fig 5C, 5F and 5I, dark blue). These results indicate that classifier accuracy can bene-

fit from information about the relative position of the flies.

Discussion

With technological advances in recording and movement tracking, many types of auto-

mated approaches have been applied to quantify animal behaviors (reviewed in [6, 7, 34]).

However, even automated approaches involve human choices and judgments, from the

design of the algorithm to the choice of training and benchmarking samples. Relatively few

systematic efforts have been made to quantitatively evaluate the impact of human factors at

each step, or to reconcile automated results with results obtained from traditional human

observation. Here, we systematically compared the annotation of Drosophila social behav-

iors by a group of human observers and by JAABA-based automated classifiers under a

variety of perturbations. Our results lead to three important conclusions. First, the vari-

ability of human annotations is correlated with the “confidence” levels of automated classi-

fiers, suggesting that the animal behaviors themselves are the source of at least part of the

variability. Second, the use of diverse training samples is crucial to ensure robust perfor-

mance of automated classifiers. Lastly, information about the relative position of experi-

mental animals can improve the accuracy of automated classifiers.

Some classification tasks can assume an unambiguous ground truth. For instance, the goal

of a human face-recognition task is binary: does a given face belong to the target person or

not? Behavioral classification can involve more nuanced situations because a degree of vari-

ability may exist even in what is traditionally regarded as “stereotypical behavior” [7]. Animals

can abort ongoing behavior before completion [35], or can show variability in the execution of

a learning-dependent motor program during [36, 37] or even after [38] training. We found

that human observers gave different levels of confidence in their classification of Drosophila
social behaviors. It is possible to argue that such inter-observer variability would disappear

with perfectly trained observers. However, inconsistencies among human observers have been
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repeatedly noted across the behavior classification of multiple species [8–12]. In the absence of

a clear definition of a “perfectly trained observer”, these variable human classifications need to

be accepted as the “ground truth” when evaluating the performance of automated classifiers

[4]. It is therefore practically important to assess how the results of automated behavior classi-

fication should be benchmarked against a variable “ground truth”. We found that the level of

human confidence and JAABA confidence values correlated when behavioral bouts were

aggregated. Although we tried to avoid using frames with perceived ambiguous behaviors for

both positive and negative training), it is possible that some mislabeling of training frames

could have caused ambiguous classification [9]. However, because of the diversity of training

frames used in this study, we favor an alternative possibility: that the behaviors performed by

pairs of flies contain inherent variability. This conclusion implies that it may not be possible

to define the ground truth in a binary fashion. If a behavior–even one originally defined by

human observers–is distributed across confidence-level space, the boundaries defining the

behavior are ultimately decided by human judgment, much like a critical p-value in statistics.

At the same time, our observations reinforce the idea that “subjective” human confidence

levels can reflect statistically defined discriminability [39], and argue against the notion that

variability in human judgments is simply randomly generated noise. This is consistent with

our finding that “high-confidence” behavioral bouts are indeed clearly identified by both

humans and automated classifiers. As an operational variable, nomenclature for stereotypi-

cal behaviors [25, 28] remains useful for characterizing the nature of behavior and, impor-

tantly, necessary to bridge human observations from previous studies with data obtained

through automated systems. This is particularly relevant for unsupervised behavioral classi-

fication, because the resulting clusters of “behaviors” are named by a human observer [31,

40], sometimes without clear descriptions of the nature of the variability within the given

cluster. For specific purposes, eliminating low-confidence behavioral bouts from analyses

may be justified [9, 41]. However, these bouts may not be equivalent to non-behavior

frames. Instead, they may have biological consequences in the context of social interactions.

One possible solution is to weigh behavioral bouts according to the confidence value each

bout receives. This approach is analogous to the quantification by scoring for other biologi-

cal phenomena, such as dye-based feeding amount [42, 43] or aberrations of neuronal mor-

phologies [44, 45].

Diverse training images are important for developing a robust automated classifier

because machine-learning algorithms generally assume that the parameter space is the

same for the training samples and the testing samples [9, 46]. However, how automated

classifiers perform on types of movies that are not a part of the training images has not

previously been quantitatively analyzed. As expected, we found that classifiers trained with

movies that contained only one combination of the sexes had lower precision than the fully

trained classifier. Interestingly, the precision and recall of these partially trained classifiers

were comparable to the values of the fully trained classifiers when the training and evalua-

tion movies were of the same type. While these results are not surprising in light of the

nature of machine-learning algorithms, they illuminate a source of misinterpretation

that may go unnoticed. An experimenter may be satisfied with the performance of an

automated classifier on the basis of limited evaluation examples and overlook the errors

that the classifier may commit for types of movies that the experimenter did not include in

either the training or evaluation processes. This situation is analogous to gender- and race-

dependent classification bias by a face-recognition algorithm that was not trained on a

diverse dataset of faces. The bias became apparent only after diverse faces were used for

benchmarking [14]. Since we do not know a priori the parameter space of behavior under

different genetic and environmental manipulations, one possible interim solution is to
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fully disclose the nature of the training and evaluation images so that a new user can be

aware of possible limitations for generalization. In the long run, a common depository of

behavioral movies taken from a variety of genotypes under diverse conditions, much like a

large dataset for annotating objects [47] and human motions [48], may help in the develop-

ment of a universally applicable behavioral classifier.

Accurate tracking of animals is essential for successful automated classification [34]. The

tracking program we used in this study segments fly body parts in two-dimensional images

[23]. This means that the tracking becomes inaccurate when the fly changes body orienta-

tion along the z-axis. In fact, a certain portion of false positives in all three classifiers were

detected when a fly was on the wall, which violates the tracking program’s assumptions

about the appearance of the body. One solution is to force an animal to pose in largely

expected ways in a spatially restrictive arena [31, 32, 49], but it is possible that such environ-

mental constraints can put artificial limitations on animal behaviors. Multiple cameras with

different angles [50], or a depth-sensitive camera [51, 52], enable the three-dimensional

posture of animals to be visualized and provides more comprehensive information about

animal posture.

Each of our classifiers used different features with different weights, suggesting that certain

features are critical for accurate detection of behaviors [46]. At the same time, our finding that

even features and rules with relatively low weights contribute to improving the performance of

classifiers is noteworthy. One interesting question is how multiple pose-estimation packages

[13, 33] will perform for automated behavior classification and how animal behavioral classifi-

cation systems built on pose estimation compare against pixel-based behavioral classifications

that do not assume specific animal postures [31, 52].

We also found that the automated classifiers for social behaviors give considerable weight

to information related to the relative positions of the animals involved. Elimination of these

relative features modestly but noticeably deteriorates the performance of classifiers, suggesting

that these features are valuable for accurate behavior classification. Consistent with our obser-

vation, a recent report shows that relative features distribute distinctively between different

behaviors and states during male courtship behavior to females [53]. For a machine-vision sys-

tem that tracks animals, calculation of relative features can become computationally expensive

as the number of tracked animals increases. As interest in detecting and quantifying social

behavior grows, it may become necessary to identify a set of relative features that 1) has high

discriminability [53] and 2) a low computational burden [46].

Beyond standardizing behavioral quantification in a reproducible manner, automated

behavioral classification methods have the potential to reveal motion patterns and behavioral

dynamics that may escape human attention. It is important to note that it is ultimately human

intuition and judgment that allows interpretation of results from often multidimensional auto-

mated classification. Just like carefully curated expert annotations of select genomic regions

greatly facilitated automated annotation of the entire genome, detailed annotations of example

animal movies through synthesis of multiple experts’ observations will be foundational to

ensuring that automated behavioral classification is as informative and objective as possible.

Supporting information

S1 Fig. Bout duration distributions for each behavior. (A-D). Histograms of bout duration

for lunge (A), headbutt (B), and wing extension (C, D). Green is the distribution of human

annotated bouts, and gray is the distribution of JAABA bouts. For lunges and headbutts, bout

duration was binned for every 17 ms (duration of one frame). For (C), bins are indicated

below the plot. (D) is the magnified histogram for durations between 0 and 250 ms. Red shades

PLOS ONE Comparison between human and computer annotations of fly behavior

PLOS ONE | https://doi.org/10.1371/journal.pone.0241696 December 16, 2020 22 / 27

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0241696.s001
https://doi.org/10.1371/journal.pone.0241696


show the durations that are eliminated by the minimum bout length filter (see text and S3 Fig).

(E). Distribution of wing extension bout durations according to human combined score. Bins

are color-coded as shown on the right.

(TIF)

S2 Fig. Frame-based statistics of human-annotated wing extensions. Frame-based summary

of human annotations for wing extension (A1), categorized according to interaction types. Dis-

tribution of human score combinations are shown in 4-by-4 grid with pseudocolor (A2) that

represent relative abundance (scale bars on the right of the grid), and the breakdown according

to whether frames were counted by one or two observers (A3) and combined scores (A4) are

also shown. Source data is identical to that used in Fig 1B.

(TIF)

S3 Fig. Choice of filter parameters for JAABA bout smoothing. Recall-precision plot of fully

trained classifiers for wing extension (A), lunge (B), and headbutt (C) when average JAABA

score threshold, minimum bout length, and maximum gap to be filled are varied as indicated

below each plot. Green (arrows and rectangles) indicates the parameter combinations chosen

for fully annotated classifiers. Dotted lines are inverse proportion functions that pass the points

indicated by green arrows. These combinations have the near-maximum recall X precision val-

ues for each behavior.

(TIF)

S4 Fig. Performance of classifiers with downsampled training frames. Mean and 95% confi-

dence intervals (vertical lines) of precision (A, D, G), false positive rates (B, E, H) and recall (C,

F, I) of classifiers for wing extension (A-C), lunges (D-F), and headbutt (G-I) trained with

downsampled frames (indicated below precision plots and inside recall plots). False positive

rates are shown separately for types of movies classified as indicated on the right. Values for

classifiers trained at 100% downsampling rate (all frames used, shown in gray) are replots

from Fig 3.

(TIF)

S5 Fig. Classifier performs robustly when most weighted rules are removed. Precision (A,

D, G), false positive rates (B, E, H) and recall (C, F, I) of classifiers for wing extension (A-C),

lunges (D-F), and headbutt (G-I) trained without the most weighted JAABA rules (indicated

below precision plots). False positive rates are shown separately for classifying movie types as

indicated on the right. Values for classifiers trained with all rules (shown in gray) are replots

from Fig 3.

(TIF)

S6 Fig. Frame-based analyses of wing extensions classifiers. (A-C) Frame-based plots for

precision (A), recall (B), and average JAABA score distribution for each human combined

score (C) of the results from the fully trained wing extension classifier (corresponding to Fig

3A–3C). (D-F) Frame-based plots for precision (D), false positive rates (E), and recall (F) of

the results from the wing extension classifiers trained with the specific types of training movies

(shown below precision plots) (corresponding to Fig 4A–4C). (G-I) Frame-based plots for

mean and 95% confidence intervals (vertical lines) of precision (G), false positive rates (H) and

recall (I) of classifiers trained with downsampled frames (rates indicated below precision plots

and inside recall plots). False positive rates are shown separately for classifying movie types as

indicated on the right. Frame-based plots for precision (J), false positive rates (K), and recall

(L) of the results from the wing extension classifiers trained with subsets of features (as indi-

cated below precision plots). (corresponding to Fig 5A–5C). For (D-L), dark gray plots
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represent the value of the fully trained classifier (bars in (D), (G), (J) are replots of (A), and

lines in (F), (I), (L) are replots of (B), respectively, at JAABA score threshold of 0.1).

(TIF)

S1 Table. Detailed descriptions of the movies used for human annotation and classifier

training.

(XLSX)

S2 Table. Human annotations for wing extensions.

(XLSX)

S3 Table. Human annotations for lunges.

(XLSX)

S4 Table. Human annotations for headbutts.

(XLSX)

S5 Table. Details of classifiers with dowmsapled training frames.

(XLSX)

S6 Table. Most weighted JAABA rules for classifier.

(XLSX)

S1 Datasets.

(XLSX)
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