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C A N C E R

The nuclear DICER–circular RNA complex drives 
the deregulation of the glioblastoma cell microRNAome
A. Bronisz1,2*†, A. K. Rooj1†, K. Krawczyński2, P. Peruzzi1, E. Salińska2, I. Nakano3, B. Purow4, 
E. A. Chiocca1, J. Godlewski1,2*

The assortment of cellular microRNAs (“microRNAome”) is a vital readout of cellular homeostasis, but the mecha-
nisms that regulate the microRNAome are poorly understood. The microRNAome of glioblastoma is substantially 
down-regulated in comparison to the normal brain. Here, we find malfunction of the posttranscriptional matura-
tion of the glioblastoma microRNAome and link it to aberrant nuclear localization of DICER, the major enzymatic 
complex responsible for microRNA maturation. Analysis of DICER’s nuclear interactome reveals the presence of an 
RNA binding protein, RBM3, and of a circular RNA, circ2082, within the complex. Targeting of this complex by 
knockdown of circ2082 results in the restoration of cytosolic localization of DICER and widespread derepression 
of the microRNAome, leading to transcriptome-wide rearrangements that mitigate the tumorigenicity of glioblas-
toma cells in vitro and in vivo with correlation to favorable outcomes in patients with glioblastoma. These findings 
uncover the mechanistic foundation of microRNAome deregulation in malignant cells.

INTRODUCTION
MicroRNAs, short noncoding RNA (ncRNA) molecules that con-
trol the expression/activity of a multitude of protein-coding genes, 
populate the human genome with high frequency. Despite the 
ever-growing number of putative microRNAs, the number of high- 
confidence, validated loci has been recently approximated to be 
~2300 (1). The number of putative protein-coding mRNAs that can 
be targeted via microRNA complementarity has been estimated at 
~18,000, a number that approximates that of the protein-coding 
transcriptome (2). Quantitatively, this would imply that most of the 
cell transcriptome, and thus its proteome, are under microRNA 
surveillance.

The biogenesis and maturation of microRNAs have been thor-
oughly investigated since their discovery in the 1990s. MicroRNA 
genes embedded either within introns of protein-coding genes (in-
tronic) or between them (intergenic) are transcribed first into long 
primary transcripts (pri-microRNAs) that are then processed in 
the nucleus into ~80-nucleotide (nt) precursors (pre-microRNAs) 
forming hairpin-like structures. Pre-microRNAs are transported 
into the cytoplasm where an enzymatic complex consisting of 
Endoribonuclease Dicer (DICER, encoded by the gene DICER1) 
and its cofactors cleave them further into short ~20-nt mature 
microRNAs. These mature microRNAs can then regulate mRNA 
expression by loading onto the RNA-induced silencing complex 
(RISC) protein complex that serves as an mRNA target seeker based 
on the complementarity between a 6- and 8-nt-long sequence within 
the microRNA known as the “seed” and its target site located usually 
within the 3′ untranslated region of mRNA (3). This interaction re-
sults in the cleavage of mRNA by RISC and/or less efficient transla-
tion at ribosomes, resulting in suppressed expression of the targeted 
gene. Although DICER-independent microRNAs exist (4), the vast 

majority of microRNAs rely on DICER for their processing, thus 
making the entire pathway vulnerable to malfunction if DICER ac-
tivity is targeted.

The assortment of microRNAs expressed in the cell at any given 
time, the microRNAome, varies considerably between tissues, cell 
types, developmental and pathological stages, and upon response to 
stressors or stimuli. microRNAs, because of their ability to fine-tune 
scores of genes, have been recognized as master guardians of cell 
fate decisions and terminal differentiation (5). As malignant trans-
formation can be perceived as a faulty execution of cell fate choices 
or as dedifferentiation that went awry at cellular backstops, the dis-
covery that the microRNAome of the cancer cell is very much dif-
ferent than that of its cell-of-origin counterpart (6) was, perhaps 
with the benefit of hindsight, not particularly unexpected.

Cancer-specific signatures exist in most, if not nearly all, molec-
ular readouts (transcriptomes, proteomes, metabolomes, etc.) of 
the cell. What makes the cancer microRNAome unique when com-
pared to other classes of molecules (including other ncRNAs) is the 
persistent pattern of the deregulation. In essence, most microRNAs 
are suppressed, while relatively few are overexpressed (6). One 
possible explanation is that most microRNAs impose programs of 
terminal differentiation, and tumor cells evade these programs by 
microRNAome suppression (6).

Possible mechanistic explanations for this observation of cancer- 
specific global suppression of the microRNAome are few. Chromo-
somal anomalies and altered epigenetic landscapes, both common 
in malignancies, would result in changes that would be more local-
ized across the genome or would affect other players of the tran-
scriptome similarly. Transcriptional deregulation (again, frequent 
in transformed cells), on the other hand, functions mainly on a 
“case-by-case” fashion and thus cannot adequately explain this 
sweeping suppression of microRNAs. These considerations winnow 
the field of potential mechanistic culprits. Could disorders in the 
processing/maturation of microRNAs, primarily controlled by a 
single canonical pathway, be the wrongdoer in the observed cancer- 
specific transcriptome-wide quelling of the microRNAome?

Cancer stem-like cells (CSCs) that have characteristics associated 
with normal stem cells (e.g., expression of stem cell markers, the 
capacity for self-renewal, and long-term proliferation), but can form 
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tumors (are tumorigenic), have now been described in most tumors. 
Their tumorigenic functions are especially relevant in the case of 
aggressive, poorly differentiated, and CSC-rich brain tumors, such 
as glioblastomas. These tumors are highly heterogeneous in their 
diverse transcriptomes of cell subpopulations and the whole spectrum 
of driver mutations, epigenomes, transcriptomes, and phenotypes 
(7). The current classification of glioblastoma heterogeneity is de-
fined on the basis of the transcriptome of protein-coding genes and 
consists of three major subtypes: classical, proneural, and mesenchy-
mal (or four in other classification) (8). Tumor-derived, glioblastoma 
CSCs (GSCs) can also be classified into the same three broad cat-
egories in the in vitro culture (9). This picture is muddled, although, 
by the temporal evolution of tumors, the coexistence of multiple 
subtypes within individual tumors, and the multidirectional subtype 
transitions that happen in response to therapy (8, 10–12). Also, micro-
environmental factors (hypoxia, acidity, and nutrient flux) and 
intercellular communication (e.g., by the exchange of extracellular 
vesicles) further confound glioblastoma’s subtype classification (11, 13).

The activation of transcription, although indispensable, is one of 
many steps during which cells control the processing of genetic in-
formation into functional RNAs. Other well-studied steps in the 
processing of genetic information comprise alternative promoter 
choice, splicing, editing, and 3′ end formation—all of which end up 
generating the astonishingly diverse transcriptomes that include the 
well-regulated and complex output of ncRNAs from genic and 
intergenic regions of the genome. The role of these ncRNAs in nu-
merous physiological and pathological processes has been well doc-
umented. Numerous classes of functional ncRNAs have been found, 
including microRNAs, long ncRNAs (lncRNAs), and, most recently, 
circular RNAs (circRNAs) (14, 15).

Over the years, circRNAs have mostly been disregarded as either 
transcriptional noise caused by malfunctioning splicing or rare 
curiosities with no meaningful footprint. A relatively recent demon-
stration of their widespread and persistent presence within eukary-
otic transcriptomes along with numerous examples of cell type– or 
developmental stage–specific expression patterns suggestive of reg-
ulation has opened new insights into the intricacies of the ncRNA 
universe, including those of circRNAs that are particularly abun-
dant in the human brain (15, 16). CircRNAs originate from linear 
transcripts via various mechanisms (15), and their hallmarks are a 
unique splice junction site, which mediates circularization, result-
ing in a covalently closed “head-to-tail” structure, along with the 
lack of 5′-3′ polarity and polyadenylated tail, as well as a low prob-
ability for encoding protein. CircRNAs have been shown to be long 
lived in vivo when compared to their linear counterparts, given that 
the bulk of RNA turnover involves exonucleases (17). CircRNAs 
have been shown to act as microRNA sponges (15, 18), but their 
function remains largely unknown because only a handful contain 
microRNA target sites. Increasingly, circRNAs are being implicated 
in numerous cancers; however, the functional relevance of the vast 
majority is yet to be found (19).

While rearrangements of microRNAome in pathologies, includ-
ing cancer, were observed almost two decades ago, unexpectedly, 
little is known on their mechanistic nature. Numerous deregulations 
of microRNA expression have been linked to genetic and epigenetic 
irregularities, altered transcriptional activity, and some missteps in 
the maturation process. However, the overarching explanations of 
widespread suppression of microRNAome in cancer cells are still 
lacking. This gap has prompted us to analyze these processes, using 

a panel of patient-derived, subtype-characterized GSCs that are 
particularly tumorigenic and therapy-resistant as a model, and led 
to uncovering faulty precursor-to-mature microRNA transition as 
a widespread circumstance brought about by unusual subcellular 
distribution of DICER complex in the nucleus in these cells. Follow- 
up scrutiny of nuclear DICER interactome revealed the presence of 
RNA-protein complex formed by DICER with RNA binding motif pro-
tein 3 (RBM3) and circRNA denoted as circ2082. The knowledge 
about the role of circRNAs in shaping phenotypes of glioblastoma is 
virtually nonexistent. Thus, we performed the analysis of the cir-
cRNAome, which revealed subtype-specific signatures and pointed 
out to circ2082 as one of the most up-regulated circRNAs in GSCs. 
The disruption of the found complex by circ2082 antisense oligonu-
cleotide (ASO) led to the cytosolic release of DICER, the resumption 
of microRNA processing resulting in the restoration of premalig-
nant microRNAome, and, in consequence, mitigated tumorigenicity 
in vitro and in vivo. Close inspection of ensuing transcriptome sig-
natures uncovered circRNA/microRNA-dependent effectors that 
can predict the outcomes of patients with glioblastoma. These find-
ings thus revealed the mechanistic foundation of microRNAome 
deregulation in the malignant cell and provided new insight into 
the intricacies of the ncRNA universe.

RESULTS
The expression of the glioblastoma microRNAome  
is suppressed
Our efforts initially focused on assessing the extent of microRNAome 
rearrangements in several settings relevant to glioblastoma. These 
included analysis of (i) The Cancer Genome Atlas (TCGA) database, 
(ii) collected tumor tissue paired with matching (i.e., collected from 
the same individual) adjacent brain tissue devoid of gross patholo-
gy, and (iii) the selection of subtype-characterized GSCs and non-
malignant neural progenitor/stem cells (NPCs). As an additional 
dimension of this global analysis, we selected several microRNAs 
that have been identified in glioblastoma as either well-known tu-
mor suppressors and oncogenes or are subtype-predictive and scru-
tinized the expression of both their precursor and mature forms. 
These include miR-124 and miR-1 [low expression in all GSCs 
(20, 21)] and miR-128 [particularly low expression in the mesen-
chymal (M) GSC subtype (11), as well as pan-glioblastoma highly 
expressed miR-21 (22), and miR-10b highly expressed in the pro-
neural (P) GSC subtype (23), and the M GSC–specific miR-31 (24)]. 
These microRNAs are well characterized on the transcriptional level, the 
phenotypic consequences of their deregulation are well defined, and 
their mRNA targets are convincingly verified; thus, they can serve as 
indices for levels of expression in glioblastoma.

Analysis of all these datasets revealed vastly different but con-
sistently suppressed expression of the mature microRNAome in 
glioblastoma tissue/GSCs when compared to brain/NPCs, with some 
subtype-specific distribution in GSCs (Fig. 1, A to C, and table S1). 
Also, as expected, the expression of tumor suppressor microRNAs 
was low and oncogenic microRNA high in tumor/tumor-derived 
cells, with some distinct subtype characteristics [e.g., miR-128 was 
particularly low in the M GSCs, while miR-10b and miR-31 were 
elevated in the P GSCs and M GSCs, respectively] (Fig. 1, D to F, 
and fig. S1, A to F). However, levels of selected precursors did 
not display notably different patterns between malignant and 
nonmalignant material (Fig. 1, G to I, and fig. S1, A to F). Global 
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principal components analysis (PCA) in the TCGA glioblastoma 
dataset confirmed the clear separation between groups using 
mature microRNAs but not their precursors (Fig. 1, J and K). 
These findings were thus the first clue that the deregulation of 
microRNA processing/maturation machinery may be the primary 
culprit for the observed widespread suppression of the glioblastoma 
microRNAome.

DICER localizes to the nucleus in glioblastoma cells instead 
of the cytosol
To explore this further, we analyzed the expression of genes/
proteins forming the major enzymatic complexes responsible for 
the transition between primary, precursor, and mature forms of 
microRNA, DROSHA and DICER. Several proteins compose the 
enzymatic core of DICER complex, with the most crucial cofactor 

Fig. 1. Mature, but not precursor, microRNAome is suppressed in glioblastomas and GSCs. (A) Mature microRNAome in patients with glioblastoma (n = 490) versus 
healthy individuals (n = 11), based on 535 microRNAs in the TCGA database. The subtype identity: red, mesenchymal; blue, classical; green, proneural. (B and C) Mature 
microRNAome in glioblastoma tissue versus adjacent, nonpathological brain (n = 5 each) (B), and in GSCs (n = 5 per subtype) versus NPCs (n = 5) (C) based on 581 and 605 
of 799 microRNAs by nCounter NanoString platform. GSC’s subtype identity is shown (red, mesenchymal; green, proneural). (D) Selected mature microRNAs in patients 
with glioblastoma (n = 490) versus healthy individuals (n = 11), based on the TCGA database. For the subtype identity, see (A). (E and F) Selected mature microRNAs in 
glioblastoma tissue versus adjacent, nonpathological brain (n = 5 each) (E), and in GSCs (n = 5 per subtype) versus NPCs (n = 5) (F), based on nCounter NanoString plat-
form. For GSC’s subtype identity, see (B) and (C). (G) Selected microRNA precursors in patients with glioblastoma (n = 195) versus healthy individuals (n = 10), based on the 
TCGA database. For the subtype identity, see (A). (H and I) Selected microRNA precursors in glioblastoma tissue versus adjacent, nonpathological brain (n = 5 each) (H), 
and in GSCs (n = 5 per subtype) versus NPCs (n = 5) (I), based on custom NanoString precursor platform. For GSC’s subtype identity, see (B) and (C). (J and K) Mature 
microRNAome but not microRNA precursors distinguish between patients with glioblastoma and healthy individuals. PCA of mature (J) and precursors (K) microRNA in 
patients with glioblastoma (red dots, n = 490 and n = 205) versus healthy individuals (blue dots, n = 10) [(J) and (K), respectively].
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of DICER being RISC-loading complex subunit TAR (HIV) RNA 
binding protein 2 (TARBP2), which increases the rate of RNA sub-
strate recognition by DICER and the stability of DICER/RNA sub-
strate complexes (25). Analysis of the TCGA database showed no 
significant difference in the expression of DROSHA and DICER 
between a normal brain and glioblastoma, but the expression of 
TARBP2 was markedly elevated in tumor tissue (fig. S2A). However, 
none of these genes/proteins correlated with the survival of patients 
with glioblastoma, suggesting that differences in their expression 
levels are unlikely to be that relevant to glioblastoma outcome (fig. 
S2B). However, database querying (https://subcellbarcode.org) sug-
gested that in cancer cell lines (including glioblastoma), DICER and 
TARBP2 are mostly nuclear (fig. S2C), while the canonical DICER 
step involving the maturation of microRNA takes place in the cytosol. 
When we compared the distribution of DICER across the cellular 
compartments of GSCs and NPCs, the difference became apparent: 
While in NPCs, DICER was, as expected, predominantly cytosolic 
(less than 20% in the nucleus), in M and P GSCs, it was decidedly 
nuclear (70 to 80% based on densitometry analysis) (Fig. 2A). To 
confirm this distribution difference in vivo, we analyzed the subcel-
lular distribution of DICER in GSC-originated xenografts in mice 
brains. As shown in Fig. 2B, DICER was predominantly nuclear in 
GSCs [green fluorescent protein (GFP)–positive], while in cells 
from surrounding tissue (GFP-negative), it was primarily cytosolic. 
These results clearly demonstrated that the change in subcellular 
localization of DICER is particular to GSCs.

RBM3 is an interacting partner of nuclear but not  
cytosolic DICER
The above finding prompted us to elucidate the mechanism for this 
change in subcellular localization by analyzing the interactome of 
nuclear DICER. Immunoprecipitation (IP) of DICER from the nu-
clear fraction of GSCs allowed the identification of interacting pro-
teins and RNAs. Among proteins in the immunoprecipitate, we 
identified, predictably, DICER and its canonical interaction partner 
TARBP2 (25). In addition, RBM3 was found to be the most promi-
nent nuclear DICER-interacting protein, but no binding was detected 
between cytosolic DICER and RBM3 or TARBP2 (Fig. 2, C and D, 
and table S2). RBM3 is a highly conserved protein engaged in the 
biosynthesis of different RNA species [including microRNAs (26)], 
and it is believed to function as a proto-oncogene associated with 
tumor progression and metastasis (27). Although RBM3 is strongly 
expressed in glioblastoma, its expression does not correlate with pa-
tient survival (fig. S2, A, B, and D). All these interactions were fur-
ther confirmed by IP and Western blotting (Fig. 2E). In addition, 
the subcellular distribution of TARBP2 mirrors that of DICER, and 
RBM3 is strictly nuclear as expected from the data query (Fig. 2F 
and fig. S2C). These findings thus suggested that RBM3 is a pre-
viously identified protein interacting partner of the nuclear but 
not cytosolic DICER complex.

Circ2082, a circRNA that is highly expressed in cancer, binds 
to RMB3 and is part of the nuclear DICER complex
Having found RBM3 as a protein binding to nuclear DICER, we 
then analyzed nuclear DICER’s RNA interactome. We detected a 
population of small RNAs whose size corresponded to that of pre-
cursor microRNAs and one prominent, specific band (fig. S3A). 
Sequencing of the complementary DNA (cDNA) obtained from the 
immunoprecipitate revealed that it was a fragment located close to 

the 3′-end of MALAT1, an lncRNA with well-recognized protum-
origenic function in multiple malignancies, including glioblastoma 
(28). Although quantitative polymerase chain reaction (qPCR) con-
firmed the enrichment of identified fragment in a nuclear immuno-
precipitate of DICER, this approach failed to detect a larger fragment 
corresponding to MALAT1 (Fig. 3A). This and the fact that the PCR 
product did not disappear upon ribonuclease (RNase) treatment 
(Fig. 3A) led us to the hypothesis that this fragment may be a cir-
cRNA originating from the MALAT1 transcript. Circularization- 
predicting software (http://circbase.org) revealed that there was a 
high probability for a circRNA arising from this region of linear 
MALAT1 (fig. S3B, top). On the basis of this, we designed both di-
vergent and convergent primers to distinguish between linear and 
circular forms of this transcript and to detect the junction site 
(Fig. 3B and fig. S3B, bottom). CircBase annotated this circRNA as 
hsa_circ_0002082 (chr11:65271199-65272066), and we abbreviated 
it as circ2082. Using circular-specific primers, we demonstrated 
enrichment of circ2082 in the nuclear DICER immunoprecipitate 
(Fig. 3C). To test the interaction between circ2082 and its protein 
partners, we used RNA antisense purification (RAP) assay followed 
by mass spectrometry and confirmed the presence of RBM3 in 
the circ2082 complex (Fig. 3, D to F, and table S2). In a set of recip-
rocal approach experiments, we used a fusion GFP-RBM3 protein 
to circumvent the lack of IP-grade RBM3 antibodies (Fig. 3G), and we 
detected circ2082 in the GFP immunoprecipitate (Fig. 3, H and I). 
Last, we performed a series of circ2082 protein partner knock-
down experiments (fig. S3, C and D) followed by RAP assay to 
assess the interdependency of proteins as binding partners to circ2082. 
The knockdown of neither protein affected the levels of circ2082 
(fig. S3E). While RBM3 was readily detectable in pull-down ma-
terial regardless of the presence of DICER, the DICER itself was 
present only with RBM3 intact (fig. S3F), suggesting that only RBM3 
binds directly to circ2082. These results provided proof for the 
existence of nuclear RNA/protein complex consisting of proteins 
indispensable in microRNA maturation (DICER), RNA biogenesis/
processing (RBM3), and a noncoding circRNA (circ2082) originating 
from a notorious noncoding oncogene, MALAT1.

This discovery prompted us to take a closer look at the circRNAome 
of GSCs and NPCs. To this end, we used the human circRNA array. 
We detected 12,659 of 13,617 probes on Arraystar human circRNA 
array [confirming their abundance in the human brain (16)] in both 
types of cells. Of these, 478 were significantly down-regulated in GSCs, 
while almost twice as many, 792, were significantly up-regulated 
(Fig. 3J). Circ2082 was among the top circRNAs up-regulated in 
GSCs (Fig. 3K). The analysis of the expression of circ2082 and its 
transcript of origin, MALAT1, revealed several interesting details. 
First, although both transcripts were high in GSCs and neither of 
them was subtype specific, circ2082 was more profoundly up- 
regulated in GSCs than its linear parental transcript (Fig. 3L, ~50- 
to 100-fold versus ~3-fold). Second, the degree of overexpression of 
circ2082 in glioblastoma in comparison to adjacent matched brain 
tissue was again higher than that of linear MALAT1 (Fig. 3M). Last, 
both transcripts were elevated to various degrees in cancers other 
than glioblastoma, again more strongly in the case of circ2082 
(Fig. 3N).

As glioblastoma is notorious for its invasiveness, we cannot ex-
clude the possibility that seemingly healthy tissue can contain a 
fraction of tumor cells. However, the compromised purity of the 
sample can be perceived as somewhat ambiguous as the stromal 

https://subcellbarcode.org
http://circbase.org
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component often infiltrates a bulk tumor tissue. Also, notably, the 
matching pairs of samples were harvested from the same individual, 
effectively nullifying high patient-to-patient heterogeneity. Last, as 
both circ2082 and MALAT1 are notably lower in the normal brain, 
it implies that the significance we detected would only become stron-
ger if we have dealt with pure populations. Cell assays using cancer 
and nonmalignant cells substantiated our bulk tissue findings. These 
results strongly suggested that while both MALAT1 and its circular-
ized fragment, circ2082, are overexpressed in malignant cells, the 
circular form is, in most cases, present at higher levels.

Circ2082 knockdown leads to normalization of DICER 
localization to the cytosol with reestablishment 
of microRNAome homeostasis
Circularization generates a unique sequence with no homology in 
the entire human genome, allowing precise targeting of circ2082 via 

ASO, which leaves the linear parental transcript intact (Fig. 4, A 
and B). Conversely, small interfering RNA (siRNA)–mediated 
knockdown of MALAT1 effectively removes both linear and cir-
cular transcripts, as the former is the source of origin for the latter 
(fig. S4A). Both transcripts are almost exclusively nuclear (fig. S4B), 
which we already demonstrated for linear MALAT1 (13). Having 
the ability to silence circ2082 effectively and specifically, we at-
tempted to characterize the molecular and phenotypic footprint of 
the knockdown. To this end, we analyzed changes to the protein- 
coding transcriptome and microRNAome in circ2082 knockdown 
GSCs. Notably, the effect of circ2082 knockdown on the protein- 
coding transcriptome, albeit substantial, was cell type–dependent 
(Fig. 4C and fig. S4C). Conversely, the impact of circ2082 expression 
on the microRNAome was so potent that knockdown cells from 
both subtypes clustered together, apart from their parental cells 
(Fig. 4D and table S1). Detailed analysis of microRNAome effect 

Fig. 2. DICER is retained in the nucleus of GSCs, forming a complex with RBM3 protein. (A) Representative Western blotting of DICER in cytosolic (C) and nuclear (N) 
fractions from NPCs and GSCs. (B) Representative images of GFP-positive M GSC–originated intracranial xenograft sections 10 days after implantation with DAPI (blue), 
GFP (green), and DICER immunohistochemistry (red) are shown, and white dashed line denotes approximate boundary between xenograft and the brain. (C and D) Rep-
resentative Coomassie blue staining (C) and mass spectroscopy peaks of DICER-associated proteins (D) using GSC nuclear (top) and cytosolic (bottom) extract IP with either 
IgG (black peaks) or DICER antibodies (red peaks) (n = 3). Molecular weight (MWT) in kDa is indicated. (E) Representative Western blots of nuclear lysate inputs and IP 
obtained by IgG and DICER antibodies. (F) Representative Western blotting of cytosolic (C) and nuclear (N) fractions from NPCs and GSCs. Loading and fraction purity 
controls are shown in (A).
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Fig. 3. DICER/RBM3 forms complex with circ2082. (A) RIP of nuclear lysates with DICER antibodies followed by RNA isolation, RNase treatment, and qPCR (n = 3) using indicated 
primers. (B) Agarose gel of PCR products using cDNA or genomic DNA (gDNA) and indicated primers. (C) RIP of nuclear extracts from GSC using IgG and DICER antibodies, qPCR 
analysis with means ± SD. (D to F) Coomassie blue staining (D), mass spectroscopy peaks of circ2082-associated proteins (E), and Western blot (F) using GSC protein 
extracts upon RAP with control or anti-circ2082 probes (n = 3). (G to I) RIP of lysates from GSC transfected with GFP or GFP-RBM3 vector. Protein inputs analyzed by Western 
blot (G), RNA profile by Agilent Bioanalyzer (H), and circ2082 enrichment in RIP by qPCR with means ± SD (I). (J) Heatmap with a hierarchical clustering for NPCs (n = 3) and GSCs 
(n = 4 per subtype), (n = 1270 of 12,659 detectable, P < 0.05). Subtype identity: red, mesenchymal; green, proneural. (K) Volcano plot for NPCs (n = 3) and GSCs (n = 10) 
and the top five most up-regulated circRNAs. Dashed lines indicate P value and fold cutoffs. (L to N) qPCR analysis of circ2082 (top) and linear MALAT1 (bottom) with means ± SD 
in NPCs versus M GSCs (50.1- and 2.5-fold, respectively) and NPCs versus P GSCs (150.2- and 3.8-fold, respectively) (n = 4 per group) (L); adjacent brain versus glioblastoma 
(2.3- and 1.4-fold paired, respectively), matching lines identify pairs (n = 5) (M); and NPCs versus GSCs (12.8- and 3.9-fold, respectively), and NPC versus other cancers 
(27.1- and 4.6-fold, respectively) (nonmalignant cells, n = 6; GSCs, n = 3 per subtype; other cancers, n = 9) (N); P values: *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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Fig. 4. The knockdown of circ2082 results in a widespread derepression of GSC microRNAome. (A) qPCR analysis for circ2082 or linear MALAT1 in GSCs with 
means ± SD. GSC (green, proneural; red, mesenchymal; n = 3 per subtype) were transfected with ASO control or circ2082. (B) Representative FISH images of the 
circ2082 in GSC transfected with ASO control or circ2082 with a fluorescently labeled junction probe and nuclei stained with DAPI (n = 4). (C) Heatmap with a hier-
archical clustering for GSCs transfected with ASO control or circ2082 (n = 3 each subtype) based on the most variable mRNA transcripts (n = 3740 of 31,555, P < 0.05). 
GSC’s subtype identity: red, mesenchymal; green, proneural. (D) Heatmap with an unsupervised hierarchical clustering for GSCs transfected with ASO control or 
circ2082 (n = 3 per subtype) based on levels of 756 mature microRNAs. GSC’s subtype identity: red, mesenchymal; green, proneural. (E) Scatterplots for GSCs (M GSC: 
red, left; P GSC: green, right) transfected with ASO control or circ2082 (n = 3 each) based on levels of 756 mature microRNAs. (F) Scatterplots for GSCs (M GSC: red, left; 
P GSC: green, right) transfected with ASO control or circ2082 (n = 3 each) based on levels of 22 precursor. (G) Representative Western blotting of cytosolic (C) and nuclear 
(N) fractions of GSCs (n = 4) transfected with ASO control or circ2082. (H) Representative images of cultured GSC (n = 3) transfected with ASO control or circ2082. DAPI 
staining (blue) and DICER immunohistochemistry staining (red) analysis were performed.
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revealed the pattern that was common for both subtypes: wide-
spread derepression of numerous weakly expressed microRNAs 
and inhibition of a relatively few that were strongly expressed 
in control GSCs (Fig. 4E and table S1). The analysis of specific 
microRNAs with known function or subtype-predictive ones (same 
as in Fig. 1 and fig. S1) confirmed this—the expression of tumor- 
suppressive miR-128, miR-124, and miR-1 was unblocked regardless 
of subtype. Simultaneously, the expression of oncogenic miR-21, 
P GSC–specific oncogenic miR-10b, and M GSC–specific miR-31 
were suppressed (fig. S4D). The levels of their precursors were not 
altered upon circ2082 knockdown (Fig. 4F, fig. S4E, and table S1), 
suggesting again that unblocked processing rather than transcrip-
tional change was responsible for the observed phenomenon. Last, 
we were able to demonstrate that knockdown of circ2082 resulted in 
cytosolic relocalization of the DICER complex, while RBM3 was 
and remained strictly nuclear (Fig. 4, G and H, and fig. S4F). These 
results showed that nuclear retention of the DICER complex, a mo-
lecular consequence of high levels of circ2082 in GSCs, leads to the 
blockade of mature microRNAome.

Circ2082 knockdown has anticancer effects
The efficient and specific knockdown of circ2082 allowed precise 
characterization of its phenotypic footprint in GSCs. In vitro, both 
limiting dilution assay and neurosphere formation assays demon-
strated the strong anti-GSC effect of circ2082 knockdown (Fig. 5, 
A and B, and fig. S5A), underlining pan-glioblastoma effects of 
circ2082, as its knockdown affected equally both tested GSC sub-
types, regardless of their very different transcriptomes. For testing 
in vivo effects of circ2082, GSCs were pretreated with ASOs and 
implanted into the brains of athymic mice. Similar to in vitro obser-
vations, ensuing tumors were significantly smaller when M GSCs 
were treated with ASO circ2082 compared to scrambled control ones 
(fig. S5, B and C). The analysis of tumor volume in P GSC–originated 
tumors was not feasible as these do not form nodular tumors but are 
very diffused, as we demonstrated previously (11). We also observed 
significant survival benefits of circ2082 knockdown. Mice bearing 
very aggressive M GSC–originated tumors showed an increase in 
median survival from 12 to 17 days, i.e., more than 40% of the 
post-implantation time, upon circ2082 knockdown. Implantation 
of P GSC–originated tumors pretreated with ASO circ2082 did not 
result in mortality up to 300 days, suggesting the inhibitory effect of 
the knockdown during the tumor initiation phase (Fig. 5, C and D). 
These results indicated that transcriptome deregulated by circ2082 
in both subtypes might be critical for the observed phenotypes. 
Thus, to discover the culprits, we analyzed the fraction of the tran-
scriptome deregulated in both subtypes (Fig. 5E). Although these 
377 genes were significantly deregulated in both subtypes, they had 
no power to overcome the clustering of knockdown cells with 
their parental counterparts (Fig. 5F). Thus, to set up a circ2082- 
dependent signature into a broader clinical context, we queried 
these genes with the TCGA glioblastoma patient dataset. It allowed 
us to filter out six genes annotated with hazard ratios from Cox 
analysis, which were sufficient to cluster patients’ samples accord-
ingly with either up- or down-regulation of these genes upon 
circ2082 knockdown (Fig. 5G). These clusters had significant power 
to predict the outcome using Kaplan-Meier estimator survival anal-
ysis (Fig. 5H). These results thus identified and described the action 
of the effectors of circ2082-dependent phenotype in GSCs; yet, the 
role of microRNAome deregulation in these processes remained 

unsubstantiated. So instead of further scrutiny of the transcriptome 
itself, we revisited microRNAome analysis to verify whether direct 
targets of selected microRNAs provide sufficient evidence for the 
explanation of a circ2082-dependent effect.

Fig. 5. The knockdown of circ2082 mitigates tumorigenicity of GSCs. (A and 
B) Representative sphere frequency assays using linear regression plot. GSCs (n = 3 
per subtype) were transfected with ASO control or circ2082. P values are indicated. 
(C and D) Kaplan-Meier curves of mice intracranially injected (n = 5 per group) with 
GSCs (red, mesenchymal; green, proneural) transfected with ASO control or circ2082. 
P values are indicated. (E and F) GeneVenn analysis (E) and heatmap with hierar-
chical clustering (F) for GSCs transfected with ASO control or circ2082 (n = 3 per 
subtype) based on the most variable mRNA transcripts in both subtypes (n = 377 of 
the total 31,555), fold difference (FD) 1.5 log2, and P < 0.05 are shown. GSC’s sub-
type identity: red, mesenchymal; green, proneural. (G) Heatmap of the most varied 
genes (n = 6) in GSC with circ2082 knockdown with color annotations according to 
profile similarity and prognostic index stratification cluster based on TCGA data-
base (left) and average relative expression based on qPCR analysis (n = 3) as a color 
bar (right). Molecule names are annotated with hazard ratios (HR) from Cox analy-
sis; **, hazard ratios (HRs) with P ≤ 0.05. (H) Kaplan-Meier curve survival analysis 
based on six gene signatures in the TCGA database stratified according to their 
cluster membership [see (G)].
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Clinical significance of circ2082 knockdown
As a proof of concept, we first aimed to identify genes correlated 
with the expression of microRNAs selected previously as deregu-
lated in glioblastoma and being circ2082-dependent (see descrip-

tion of Figs. 1 and 5). To show a correlation of expression between 
genes and microRNAs, we revisited the TCGA glioblastoma data-
set. It revealed a correlation signature of ~1700 genes that were 
either positively or negatively associated with microRNAs (Fig. 6A 

Fig. 6. The circ2082-dependent footprint is mediated via the rearrangements of the microRNAome. (A) Heatmap displaying the clustering of expression correlation 
of genes (n = 1697) and selected microRNAs using the TCGA database. The correlation value (blue, negative and red, positive) and annotations of profile similarity (bottom 
bar) are shown. (B) Kaplan-Meier curve survival analysis based on genes associated with six microRNA in the TCGA database and stratified according to their cluster mem-
bership [see (A)]. (C) Volcano plots of genes [n = 1697, see (A)] for M GSCs (n = 3, left), P GSCs (n = 3, middle), and all GSCs (n = 6, right) transfected with ASO control or 
circ2082 are shown. The selected deregulated targets are shown. Lines indicate a P value and fold difference cutoffs. (D and E) qPCR analysis for indicated mRNAs upon 
the treatment by ASO circ2082 or tumor-suppressive microRNAs (D) and ASO circ2082 or oncogenic anti-microRNAs (E) in GSCs (n = 3 per subtype). (F) Kaplan-Meier curve 
survival analysis using TCGA database and stratified according to their cluster membership (see fig. S6, D to F) after circ2082 knockdown in M GSCs (left), P GSCs (middle), 
and all GSCs (right).
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and table S3) and stratified the samples into two clusters: miR-128, 
miR-124, and miR-1 (red cluster) and miR-10b, miR-31, and miR-
21 (blue cluster) with the power of outcome prediction (Fig. 6B). 
However, we had already demonstrated that the subtype identity 
remained the dominant force in this clustering (Fig. 5, E and F). 
To circumvent this dominance in the analysis of microRNA- 
mediated circ2082-dependent effect, we thus supervised the analy-
sis of previously identified microRNA clusters’ mRNA targets. To 
this end, we separately scrutinized the expression of genes (from 
an initially selected set of ~1700) after circ2082 knockdown in 
M GSCs only, in P GSCs only, and in both subtypes. On the basis 
of these results, we selected one previously validated, significantly 
altered mRNA target for each of six proof-of-concept microRNAs 
in all three scenarios to experimentally evaluate the effect of 
circ2082 knockdown– dependent derepression of microRNAome 
(Fig. 6, C to E). These included the following: in M GSC circ2082 
knockdown cells, GLI2, a down-regulated target of miR-124 (29), 
and JARID2, an up-regulated target of miR-31 (30); in P GSC 
circ2082 knockdown cells, CCNG1, a down-regulated target of 
miR-128 (31), and SART3, an up-regulated target of miR-10b 
(32); and, in both GSC circ2082 knockdown cells, MET, a down- 
regulated target of miR-1 (21), and PDCD4, an up-regulated target 
of miR-21 (33). We compared their expression upon (i) circ2082 
knockdown, (ii) exogenous overexpression of depleted microRNAs, 
and (iii) antisense-mediated knockdown of highly expressed 
microRNAs. The apparent expression pattern revealed that the 
genes repressed after circ2082 knockdown were also suppressed 
in response to exogenous overexpression of their respective 
microRNAs in both GSC subtypes (Fig. 6D). On the contrary, 
genes maintained after circ2082 knockdown were derepressed in 
response to the inhibition of their “master” microRNAs only in 
the scenario when these microRNAs and mRNAs were expressed 
in control cells (Fig. 6E). These results suggested that the derepres-
sion of microRNAome by circ2082 knockdown had a strong cell 
type–independent effect, while the circ2082 knockdown–associated 
repression of oncogenic microRNAs was strictly cell type specific. 
Although the one-by-one analysis of microRNA/mRNA pairs pre-
sented above was useful as a proof of concept, it is unlikely that 
these few tandems are responsible for the observed far-reaching 
phenotype, as few of them are significantly outcome-predictive 
(fig. S6, A to C). Thus last, to delineate a circ2082-dependent 
microRNA-associated signature in the clinical context, we queried 
microRNA correlation genes with the TCGA glioblastoma patient 
dataset. Genes deregulated in P GSCs, M GSCs, and all GSCs together 
(fig. S6, D to F) were filtered to keep the most varied molecules 
among the list annotated with hazard ratios from Cox analysis. All 
three analyses had power to predict the outcome using Kaplan- 
Meier estimator survival analysis (Fig.  6F). These results thus 
identified and clarified the circ2082-dependent phenotype in GSCs 
in the context of circ2082-implemented microRNAome surveillance 
and deregulation.

DISCUSSION
CSC-rich tumors such as glioblastoma are more aggressive than more 
differentiated ones, e.g., meningioma. Although differentiation lin-
eage programs exist in CSCs, groups of genes act as brakes to avoid 
setting these programs in motion. So, releasing those brakes should 
dampen their aggressiveness (34). This switch requires sweeping 

changes in gene expression, so microRNAs that simultaneously 
repress multiple factors from certain pathways/developmental 
programs are efficient regulators of cell fates. Thus, it can be argued 
that microRNA suppression that is common in cancer cells reflects 
their undifferentiated status (35). We showed previously that the 
widespread loss of microRNAs in GSCs enhanced their “stemness” 
(24) and that the restoration of premalignant microRNA landscape 
favors more differentiated and a less neoplastic milieu (23). So, the 
mechanism of the initial loss of microRNAs is in the research cross-
hairs now, with a focus on the disruption of microRNA maturation. 
However, the mechanisms of cancer cell type–specific alterations of 
microRNAome are unknown.

We have established that DICER, an enzyme responsible for 
microRNA maturation, predominantly localizes in the nucleus of 
CSCs, as it was suggested before for breast carcinoma (36), while 
in NPCs and other nonmalignant cells, it is localized in the cytosol 
(37). Thus, we asked what mechanism was responsible for this phe-
nomenon and whether this change in localization was accountable 
for the observed defect in microRNA processing. To this end, we 
immunoprecipitated nuclear DICER from CSCs for the analysis of 
both its protein and RNA interactomes. Among proteins bound to 
nuclear DICER, its canonical interaction partner TRBP2 (38) and 
RNA binding protein RBM3 came into view. The interaction with 
RBM3, which was associated with microRNA biogenesis at the 
DICER step (26), and with small RNAs of a size corresponding 
to precursor microRNAs, further supported the idea of impaired 
microRNA maturation in CSCs as an underlying reason of sup-
pressed microRNAome. Besides these, we also detected the pres-
ence of the circRNA, circ2082. It belongs to the relatively recently 
found ncRNA family of circRNAs implicated in multiple cellular 
processes (15, 39). Circ2082 originates from the well-established 
noncoding oncogenic lncRNA MALAT1 that promotes protum-
origenic traits in numerous solid tumors, including glioblastoma 
(28, 40). We have tools that allow us to distinguish between the ef-
fects of linear and circular forms of any given transcript. Circular-
ization brings together two sequences that are far apart in a linear 
molecule, thus creating a unique sequence not found in linear cod-
ification, allowing the design of ASO that targets exclusively circular 
form. Conversely, antisense targeting of linear transcripts removes 
both forms as linear structure serves as a template for circular one.

Circ2082 is one of the most highly expressed circRNAs regard-
less of the GSC subtype, but it is expressed at low levels in NPCs. In 
contrast, the full-length transcript (MALAT1) from which circ2082 
derives is only moderately elevated in GSCs versus NPCs, suggest-
ing distorted stoichiometry. circRNAs are reported to be more sta-
ble compared to their parental linear RNAs (17), and it is likely that 
while cicr2082 accumulates, MALAT1 gets rapidly degraded in cells, 
accounting for the observed differences. It is also plausible that cir-
cularization efficiency may play a role in this discrepancy, as circular 
transcripts emerge at the expense of linear ones. It allows us to spec-
ulate that the cancer cell can promote the circularization by yet- 
undetermined mechanisms, directing its transcriptional output 
toward increased circularization of specific transcripts or the overall 
enhancement of its circRNAome. It also lets us to hypothesize that 
at least part of the linear transcript’s footprint (either protein- 
coding or noncoding), both phenotypic and molecular, can be me-
diated through circRNA originating from such transcript.

The discovery of circRNA in the complex with DICER raises the 
obvious question: What does it do? Knockdown of strictly nuclear 
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circ2082 shifted the expression of the protein-coding transcriptome 
in a cell-dependent manner, i.e., knockdown cells remained relatively 
similar to parental ones. However, its effect on the microRNAome 
was much more pronounced as knockdown cells clustered together 
but not with their parental cells, indicating far-reaching rearrangements 
of their microRNAome. The deregulation of microRNAs was not 
random—the ones repressed in CSCs were derepressed (miR-128 
was among the most induced), while few abundant, oncogenic 
microRNAs (e.g., miR-21) were suppressed. It can be argued, although 
direct evidence is still lacking and will be the subject of follow-up 
studies, that derepression of a multitude of lowly expressed microRNAs 
puts a strain on the capacity of processing machinery, thus leading 
to relative suppression of previously highly expressed microRNAs.

On the basis of the published association between global down- 
regulation of microRNAs and cancer growth, we propose that the 
loss of the microRNAome by circ2082-dependent nuclear retention 
of DICER determines the CSCs’ molecular identity and their tumor-
igenic potential. Thus, the targeting of circ2082 reverses the cell fate of 
CSCs via facilitating the restoration of a premalignant microRNAome, 
and cytosolic release of the DICER complex seems to play a vital role 
in this phenomenon. Additional studies will elucidate whether all 
substantially enriched/depleted microRNAs are necessary to affect 
cellular fate or whether all these changes are directly circ2082 depen-
dent. We hypothesize that an excellent candidate for a future study 
could be miR-451, known to be transcriptionally regulated and DICER 
independent while being relevant to glioblastoma phenotypes in re-
sponse to microenvironmental cues (4, 41–43).

So, on the basis of our past discoveries on the association between 
global microRNAs down-regulation and cancer growth, we propose 
that loss of microRNAome by circ2082-dependent DICER nuclear reten-
tion determines CSC molecular identity and their tumorigenic potential. 
Thus, the targeting of circ2082 reverses cell fate in CSCs by cytoplasmic 
relocalization of DICER that mediates microRNAome correction.

Each mature cell that is poised to perform specialized tasks within 
the human body starts as a primordial cell. So, its journey to cellular 
adulthood is determined by binary decisions until it reaches its final 
destination. However, when these steps go awry, the stem cell may take 
a turn down the oncogenic path. To retract the wrong decision made 
by these primitive cells as they differentiate, it requires unblocking 
their differentiation potential. So, the modulation of microRNA biogenesis 
at posttranscriptional steps by ncRNA and RNA binding proteins is the 
pivotal point of regulatory control over the expression of microRNAs 
and the cellular processes they affect. However, the extent and con-
ditions under which the microRNA pathway is amenable to regulation 
at posttranscriptional steps are poorly understood in cancer.

As widespread underexpression of mature microRNAs is often 
observed in solid tumors occurring in organs other than brain, the 
restoration of premalignant microRNA landscape can be thus highly 
beneficial in cancer cells regardless of the cell origin. circRNA, charac-
terized by a unique circularization site, can be highly accurately tar-
geted using ASO, even in the presence of its linear counterparts, 
which open possibility for smooth delivery [even systemic, as we 
showed previously (32)] into the brain.

CircRNAs are recognized as relatively new and promising candi-
dates for biomarkers of pathologies because of their high stability 
and specificity of detection via junction site. However, as protein- 
coding transcriptome of glioblastoma is well characterized at both 
bulk and single-cell level, there are no data on the expression of 
circRNAs in a large cohort of TCGA database. Thus, we performed 

a transcriptome array in CSCs to assess circ2082-dependent footprint. 
Our data showed that genes differentially deregulated in circ2082 
knockdown cells are potent effectors of glioblastoma progression, 
as reflected by the survival analysis. As this did not provide unques-
tionable proof of whether the unblocking of the microRNAome is 
functionally involved in the survival benefits, we performed the 
analysis of direct, validated targets of selected microRNAs that 
offered sufficient evidence for the circ2082-dependent microRNA 
engagement in this process.

We have achieved considerable progress in deconstructing ncRNA- 
driven cellular phenotypes and their molecular mechanism of action. 
However, our current knowledge has a considerable gap in under-
standing what are the mechanisms of microRNAome suppression 
during tumorigenesis and how vital is microRNA homeostasis in 
tipping the balance between differentiation and stemness. Our re-
sults strongly suggest the engagement of a member of the recently 
found class of circRNA (circ2082) in these processes. We argue that 
these interactions interfere with microRNA processing machinery. 
Thus, a fascinating picture of ncRNA networks in the very core of 
human brain physiology and pathology begins to emerge, bringing 
new opportunities for the expansion of our knowledge and future 
translational applications.

MATERIALS AND METHODS
Cell culture
GSCs and NPC were cultured as neurospheres under stem cell– 
enriching conditions using Neurobasal medium supplemented with 
1% glutamine, 2% B27, and EGF and FGF (20 ng/ml) (epidermal 
growth factor and fibroblast growth factor, respectively) using 
ultralow attachment plates/flasks. The unique identity of cultured 
patient-derived cells was confirmed by short tandem repeat analysis. 
All GSCs used in this study are isocitrate dehydrogenase wild type 
(9). Mycoplasma testing was routinely performed by PCR. Mesen-
chymal and proneural subclass classification by gene expression profiling 
was described previously (13). Nonmalignant brain cells (n = 6) in-
cluded neurons, two NPCs, two astrocytes, and brain microvasculature 
endothelial cells; other cancer cell lines (n = 9) included two thyroid 
carcinomas, leukemia, three breast carcinomas, melanoma, and two 
lung carcinomas.

Cell transfection
Lipofectamine 2000 was used for all transfections. For transfection, 
1 g of plasmid or 10 pg of oligo was added in 500 l of a medium, 
followed by addition of 6 l of Lipofectamine 2000 in 500 l of me-
dium and incubated for 5 min. The two mixtures were pooled and 
incubated further for 10 min at room temperature. The respective 
transfection mixture was then added to the six-well ultralow attach-
ment plate with 0.5 × 106 cells. Cells were incubated at 37°C for 
18 hours in a 5% CO2 by 72 hours and then harvested by centrifugation 
(5 min/1000 rpm at 4°C).

Plasmids
cDNA of human RBM3 was cloned into Eco RI and Xho I sites of the 
pCDH-EF1-copGFP vector.

Cell cytoplasmic/nuclear fractionation
Cytoplasmic and nuclear fractions were isolated via mild lysis 
and centrifugation using the Nuclear/Cytosol Fractionation Kit 
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(Biovision, Milpitas, CA). Briefly, 2 × 106 cells were treated with 
trypsin-EDTA (Gibco) and resuspended with cytosol extraction 
buffer A. Cytosol extraction buffer B was added to the suspension 
followed by centrifugation to obtain cytosolic protein/RNA con-
taining supernatant, whereas the pellet was further processed for 
nuclear proteins/RNAs.

Protein purification
Total cell protein content was isolated via extraction for 30 min in 
ice-cold lysis buffer containing 50 mM tris-Cl (pH 7.5), 100 mM 
NaCl, 1% Triton X-100, 1 mM dithiothreitol (DTT), 1 mM EDTA, 
1 mM EGTA, 2 mM Na3VO4, 50 mM glycerophosphate, and a pro-
tease inhibitor cocktail (GE Healthcare, Piscataway, NJ), followed 
by centrifugation (15 min/13,000 rpm at 4°C).

Quantitative PCR
Total RNA was extracted using a standard TRIzol protocol (Invitrogen). 
The RNA quantity and quality were measured using a NanoDrop 
2000 (Thermo Fisher Scientific) and analyzed using a Bioanalyzer 
2100. Gel images are provided for visualization of fragment sizing 
and distribution, as well as for a visual representation of the RNA 
ladder. For RNase R treatment, 1 g of total RNA was incubated for 
30 min at 37°C with or without 2.5 U of RNase R (Epicentre Tech-
nologies, Madison, WI). For mRNA analysis, 3 g of total RNA was 
treated with deoxyribonuclease (Promega) for 2 hours to remove 
genomic DNA. For microRNA analysis, 10 ng of total RNA was used. 
Reverse transcription was performed using random hexamers and 
iScript (Bio-Rad), and qPCR was performed using TaqMan or SYBR 
Green master mix (Applied Biosystems).

Amplification was performed using the StepOnePlus Real-Time 
PCR System (Applied Biosystems, Foster City, CA), and the software 
determined Ct  thresholds. Expression was quantified using the Ct 
method using 18S ribosomal RNA (for mRNA/circRNA) or U6 small 
nuclear RNA (for microRNA or nuclear RNA fraction) as reference 
genes. PCR products were cloned into pGEM-T Easy, and different 
clones were picked for Sanger sequencing. Probes and primers are 
listed in table S4.

Immunoprecipitation
Cleared whole cell or cell fraction protein lysates were incubated at 
4°C for 3 hours with the appropriate antibody precoupled to protein 
A/G plus agarose beads (sc-2003, Santa Cruz Biotechnology). The 
beads were washed twice with extraction buffer, twice with extraction 
buffer containing 0.5 M LiCl, and twice with assay buffer [40 mM 
tris-Cl (pH 7.5), 0.1 mM EDTA, 5 mM MgCl2, and 2 mM DTT].

RNA IP
Cells (control) or transfected with pCDH-EF1-copGFP/pCDH-EF1- 
copGFP-RBM3 vectors were ultraviolet (UV) cross-linked at 400 mJ/cm2. 
Cells or nuclei were collected with RNA immunoprecipitation (RIP) 
buffer [100 mM NaCl, 20 mM tris-Cl (pH 8.0), 0.5 mM EDTA, 0.5% 
NP-40, 0.1% Na-deoxycholate, 0.5 mM DTT, RNasin (100 U/ml), 
protease, and phosphatase inhibitors]. One-tenth of each cell or 
fraction lysate was used for RNA extraction using TRIzol reagent 
(Invitrogen), and the rest was incubated with anti-DICER or immuno-
globulin G (IgG) or GFP antibodies coupled with protein A/G plus 
agarose beads (sc-2003, Santa Cruz Biotechnology) overnight at 4°C. 
Protein/RNA complexes were washed three times with RIP buffer 
and three times with high-salt buffer (1 M NaCl modified RIP 

buffer). Samples were then treated with proteinase K (Invitrogen), 
and RNA was extracted using TRIzol. The qPCR was performed as 
described above.

RNA antisense purification
GSC (2 × 106) (control or with siRNA-mediated knockdown of DICER 
or RBM3) were UV cross-linked at 400 mJ/cm2, and cell lysates (500 g) 
were subjected to pull-down using 3 g of biotin-labeled circ2082 
probe (see table S4) and streptavidin beads at room temperature for 
2 hours. The reaction was washed three times with RIP buffer and 
three times with high-salt buffer (1 M NaCl modified RIP buffer). 
RNA was then digested using RNase A, and bound proteins were 
analyzed by immunoblotting.

Western blotting
Proteins were separated by SDS–polyacrylamide gel electrophoresis, 
transferred to a polyvinylidene fluoride membrane (Immobilon-P, 
EMD Millipore) by liquid transfer, and the Western blots were 
probed using the appropriate primary antibodies (1:1000) followed 
by alkaline phosphatase secondary antibodies (1:5000). The signals 
were detected using a chemiluminescence system (Thermo Fisher 
Scientific), followed by Gel Dock system (Bio-Rad) imaging.

Single-molecule fluorescence in situ hybridization
Single-molecule fluorescence in situ hybridization (FISH) was 
performed on GSCs grown on glass coverslips according to the fol-
lowing protocol. Cells were washed twice in phosphate-buffered 
saline (PBS), fixed in 4% paraformaldehyde (Electron Microscopy 
Sciences) in PBS for 10 min, then washed in PBS, and stored in 70% 
ethanol for ≥2 hours at 4°C. Coverslips were equilibrated for 
≥2 min in washing buffer (10% formamide, 2× SSC) and probing 
using custom probes (44) labeled with Alexa Fluor (see table S4) 
diluted to 25 nM in hybridization solution [10% formamide, 2× 
SSC, and dextran sulfate (100 mg/ml)] in a humidifying chamber 
at 37°C overnight. The excess probe was washed for 30  min in 
washing buffer containing DAPI (4′,6-diamidino-2-phenylindole; 
100 ng/ml) and 5 min in washing buffer to remove the excess of 
DAPI. Nikon Eclipse Ti microscope was used for signal localiza-
tion and imaging.

Immunofluorescence
Paraformaldehyde-fixed, paraffin-embedded specimens were cut 
into 5- to 10-m-thick sections and mounted on chromogelatin- 
precoated slides. After paraffin removal in xylene for 30 min, tissue 
was hydrated in decreasing grades (98 to 50%) of ethyl alcohol. 
Antigen retrieval was achieved by incubation in a sodium citrate buffer 
(pH 6) and boiled for 20 min. Nonspecific antigens were blocked 
using 10% normal rabbit serum (NRS) (Jackson ImmunoResearch 
Laboratories, Inc., West Grove, PA, USA). Incubation with primary 
antibodies and monoclonal mouse anti-DICER1 (1:150; Thermo 
Fisher Scientific) was performed overnight at 4°C. Afterward, slides 
were washed in tris-buffered saline buffer [50 mM tris-HCl (pH 7.4) 
and 150 mM NaCl] and incubated for 1 hour with secondary anti-
bodies rabbit and anti-mouse conjugated with Alexa Fluor 594 
(1:5000; Thermo Fisher Scientific). Negative control sections 
were stained with primary antibodies replaced with either 10% NRS 
(Abcam) or mouse IgG1 (1:150; Abcam). Last, sections were mounted 
in UltraCruz Mounting Medium (Santa Cruz Biotechnology) con-
taining DAPI.



Bronisz et al., Sci. Adv. 2020; 6 : eabc0221     16 December 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

13 of 16

In vitro cell assay
For spheroid formation, GSCs were dissociated to single cells and 
plated at 500 cells per well in a 96-well plate in 100 l of supple-
mented Neurobasal medium. Size and number of spheroids were 
quantified after 96 hours using ImageJ, and spheroid volume was 
calculated. For limited dilution spheroid assay, single-cell suspen-
sions were plated in ultralow attachment 96-well plates at different 
concentrations (from 1 to 500 cells per well) in 0.1 ml of supple-
mented Neurobasal medium. Cultures were left undisturbed for 
7 days. After incubation, spheres were imaged using a Nikon Eclipse 
Ti microscope, and the percentage of wells not containing spheres 
for each cell concentration was calculated and plotted against the 
number of cells per well.

Human tissue processing
The collection of the human operative specimens was performed in 
accordance with the Brigham and Women’s Hospital/Dana Farber 
Cancer Institute Institutional Review Board protocol (no. 10-417) 
and after obtaining informed consent. Frozen surgical specimens 
with histopathology-confirmed glioblastoma or normal brains were 
obtained through the Department of Neuropathology at the Dana 
Farber Cancer Institute.

Animal studies
Animal experiments were performed using 6- to 8-week-old immuno-
deficient athymic mice (FoxN1 nu/nu, Envigo, South Easton, MA), 
in compliance with all relevant ethical regulations applied to the use of 
small rodents, and with approval by the Institutional Animal Care and 
Use Committees at the Brigham and Women’s Hospital and Harvard 
Medical School (HMS) (no. 2016N000384). For intracranial tumor 
implantation, a stereotactic frame (Kopf) was used to inoculate each 
animal in the right striatum with M GSC (5000 cells per point, 
n = 3) or GSC admixed with ASO control or circ2082. Mice were 
euthanized and perfused 6 days after surgery (for tumor immunohisto-
chemistry and tumor volume analysis) or when they reached their 
predetermined end points (for survival analysis).

RNA cloning and sequencing
For the analysis of DICER-bound RNAs, we performed RIP procedure 
as described above, using anti-DICER and anti-IgG antibodies. Iso-
lated RNA was treated with RNase T1 at a final concentration of 
1 U/l and incubated at 22°C for 15 min. Reverse transcriptase iScript 
(Bio-Rad) reactions with random hexamers were followed by TOPO 
cloning (Invitrogen) and sequencing of clones.

Gene microarray
Transcriptome expression analysis was performed on total RNA ex-
tracted from GSCs (n = 10) transfected with ASO control or circ2082. 
Array Star Inc. performed RNA labeling and array hybridization. 
Briefly, total RNA from each sample was linearly amplified and labeled 
with Cy3-UTP (uridine 5′-triphosphate). The labeled antisense RNAs 
(cRNAs) were purified using an RNAeasy mini kit (Qiagen). The 
concentration and specific activity of the labeled cRNAs (picomol 
of Cy3 per microgram of cRNA) were measured by a NanoDrop 
ND-1000. The labeled cRNA (1 g each) was fragmented by adding 
11 l of 10× blocking agent and 2.2 l of 25× fragmentation buffer, 
then heated at 60°C for 30 min, and lastly, 55 l of 2× GE Hybrid-
ization Buffer was added to dilute the labeled cRNA. Hybridization 
solution (100 l) was dispensed into the gasket slide and assembled 

to the gene expression microarray slide. The slides were incubated 
for 17 hours at 65°C in an Agilent hybridization oven. Agilent Feature 
Extraction software (version 11.0.1.1) was used to analyze acquired 
array images. Quantile normalization and subsequent data processing 
were performed using the GeneSpring GX v12.1 software (Agilent 
Technologies).

circRNA microarray
CircRNA expression analysis was performed on total RNA extracted 
from GSCs (n = 10) and NPCs (n = 4). Array Star Inc. performed 
RNA labeling and array hybridization. Briefly, total RNA was digested 
with RNase R (Epicentre, Madison, WI, USA) to remove linear RNA 
and to enrich circRNAs. The remaining RNAs were amplified and 
transcribed into fluorescent cRNA using a random priming method 
(Arraystar Super RNA Labeling Kit; Arraystar) and hybridized onto 
the Arraystar circRNA Array (8 × 15 K, Arraystar) (Rockville, MD, 
USA). After washing, the arrays were scanned by the Agilent Scanner 
G2505C. Agilent Feature Extraction software (version 11.0.1.1) was 
used to analyze acquired array images.

Array data analysis
After quantile normalization of the raw data, genes that had flags in 
at least 3 of 12 samples as detected (“all targets value”) were chosen 
for further data analysis. The raw expression intensities were log2- 
transformed and normalized by quantile normalization. Differential 
analysis between groups was performed by t test. The cutoffs were 
P ≤ 0.05 and fold change was ≥2.0. Normality was assumed for 
log2-transformed normalized intensity values across samples per gene. 
Genes (>90%) in our dataset passed the Shapiro-Wilk normality 
test. Differentially expressed transcripts with statistical significance were 
identified through volcano plot filtering (GraphPad Prism). Hierarchical 
clustering was performed using the R software (version 2.15).

nCounter assay
nCounter in-solution hybridization method (NanoString) technology 
and service were used to analyze mature and precursor microRNAs 
in cells (GSC, n = 10 and NPC, n = 5), glioblastoma tissue specimens 
(n = 10 from five donors), and GSC transfected with control or anti- 
circ2082 antisense oligo. Sample preparation and procedure were 
performed according to the manufacturer’s instructions. Briefly, 
100 ng of RNA for solution-phase hybridization between the target 
(mature or precursor) microRNA and reporter-capture probe pairs 
and excess probes were removed, and the probe/target complexes 
were aligned and immobilized in the nCounter cartridge (24 samples × 
800 probes), which was then placed in a digital analyzer for image 
acquisition and data processing. For data analysis, positive and neg-
ative corrections, as well as a sample content normalization to the 
raw data, were applied as per the manufacturer’s guidelines.

Mass spectrometry–based proteomics
Proteomics analysis was performed on immunoprecipitated nuclear 
and cytoplasmic lysates from GSCs (n = 4) with DICER antibodies. 
The Taplin Mass Spectrometry facility performed mass spectrometry 
at HMS. Briefly, protein bands were excised from colloidal blue–
stained gels (Thermo Fisher Scientific), treated with DTT and iodo-
acetamide to alkylate the cysteines before in-gel digestion using 
modified trypsin (Promega; sequencing grade). The resulting 
peptides from the whole line were analyzed by nano–liquid chro-
matography tandem mass spectrometry (UltiMate 3000 coupled to 
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LTQ-Orbitrap Velos, Thermo Fisher Scientific) using a 25-min gra-
dient. Peptides and proteins were identified using Mascot (Matrix 
Science) and filtered using IRMa software.

TCGA data analysis
The collection of the data from TCGA (TCGA Research, 2008) was 
compliant with all applicable laws, regulations, and policies for the 
protection of human subjects, and necessary ethical approvals were 
obtained. Experimental and clinical data were downloaded (https://
tcga-data.nci.nih.gov/), as described in TCGA Research Network. 
For analysis of mature microRNA, precursor microRNA, and gene 
expression in glioblastoma, we used normalization of data and ag-
gregation at the feature level as designated by the TCGA glioblastoma 
the “Level3.” Transcript expression data have been generated from 
experiments on three different platforms: Affymetrix HT HG U133A 
(10 + 488 patient samples × 12,042 features). Data were analyzed 
using free available portals (GlioVis; GBM-BioDP; Betastasis) as a 
resource for accessing and displaying interactive views of TCGA 
data associated with glioblastoma.
Displaying a summary of experimental data associated with 
selected genes
The samples (columns on the heatmap) are annotated in two ways: 
First, according to cluster membership (the optimal number of 
clusters was determined using NbClust); second, by inspecting the 
status of a prognostic index (which was computed by weight- 
averaging the gene expressions with the regression coefficients of a 
multigene Cox proportional hazards model). The gene names are 
annotated with their respective hazard ratios in a multigene Cox 
proportional hazards model. When search results involve more than 
50 genes, we filter them by keeping the 50 genes whose expression is 
the most varied among the samples.
Performing gene survival analysis
The Kaplan-Meier survival curve compare samples stratified accord-
ing to gene expression levels. The default options stratified samples 
into two groups: those with expression levels smaller than the median 
over the subgroup and those with expression levels higher than the 
median. For gene searches that result in multiple hits, we analyzed 
how the expression profiles affect survival. We performed two types 
of survival analyses: First, the optimum clusters were selected by the 
stratification of the samples according to the heatmap cluster mem-
bership (see the first annotation bar), where the optimal number of 
clusters is picked out algorithmically using silhouette width index. 
Next, we used a Kaplan-Meier model to analyze the differences in 
survival between groups using a log-rank statistic. These analyses 
were performed using the “NbClust” package in R.
Displaying heatmap clustering of gene and microRNA  
expression data correlation
For selected multiple hits of microRNAs, we present a heatmap of 
the correlation between the expression of genes and microRNAs. 
Each cell of the heatmap represents how the expression of the gene 
in the row and the microRNA in that column are correlated, and it 
is annotated with the correlation value. A pairwise Pearson correla-
tion analysis was performed for the selected six microRNAs. The 
results were displayed as a heatmap using hierarchical clustering 
analysis using the average linkage distance metric.

Quantification and statistical analysis
Graphs (scatterplots, box plots, PCA) were generated, and statistical 
analyses were performed using GraphPad Prism 7. Statistical parameters, 

including the value of n, statistical test, and statistical significance 
(P value), are reported in the figures and their legends. For studies 
involving mouse tissues, replicates refer to samples derived from 
different mice. For studies involving cell culture, replicates refer to 
technical (transfection) or biological (cells/tissues obtained from a 
different patient) replicates. No statistical methods were used to 
predetermine the sample size. Statistical tests were selected on the 
basis of the desired comparison. Unpaired two-tailed t tests were 
used to assess significance when comparing data between two variances. 
One-way analysis of variance (ANOVA) was used to determine sig-
nificance when comparing data between ≥3 variances; significant 
ANOVA results were followed by post hoc testing either comparing 
every mean with every other mean (Tukey’s multiple-comparison 
test) or comparing every mean to the wild-type mean (Dunnett’s 
multiple-comparison test). For the differential expression of global 
measurements (platforms), the DESeq2 software generated adjusted 
P values using the Wald test with the Benjamini-Hochberg procedure 
to correct for multiple hypothesis testing. The Mann-Whitney test 
was used to compare cumulative distributions of gene fold changes 
between two gene sets.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/51/eabc0221/DC1

View/request a protocol for this paper from Bio-protocol.
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