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Abstract

Background: Manual annotation of seizures and interictal-ictal-injury continuum (IIIC) patterns 

in continuous EEG (cEEG) recorded from critically ill patients is a time-intensive process for 

clinicians and researchers. In this study, we evaluated the accuracy and efficiency of an automated 

clustering method to accelerate expert annotation of cEEG.

New method: We learned a local dictionary from 97 ICU patients by applying k-medoids 

clustering to 592 features in the time and frequency domains. We utilized changepoint detection 

(CPD) to segment the cEEG recordings. We then computed a bag-of-words (BoW) representation 

for each segment. We further clustered the segments by affinity propagation. EEG experts scored 

the resulting clusters for each patient by labeling only the cluster medoids. We trained a random 

forest classifier to assess validity of the clusters.

Results: Mean pairwise agreement of 62.6% using this automated method was not significantly 

different from interrater agreements using manual labeling (63.8%), demonstrating the validity of 

the method. We also found that it takes experts using our method 5.31 ± 4.44 min to label the 

30.19 ± 3.84 h of cEEG data, more than 45 times faster than unaided manual review, 

demonstrating efficiency.
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Comparison with existing methods: Previous studies of EEG data labeling have generally 

yielded similar human expert interrater agreements, and lower agreements with automated 

methods.

Conclusions: Our results suggest that long EEG recordings can be rapidly annotated by experts 

many times faster than unaided manual review through the use of an advanced clustering method.
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1. Introduction

The electroencephalogram (EEG) is a cornerstone diagnostic modality employed clinically 

for epilepsy evaluation, sleep studies, and neurocritical care. In all of these settings, 

clinicians retain a high burden of manually annotating EEG into classes such as seizures, 

periodic discharges, or sleep stages. Detecting electrographic events like these by manual 

review of EEG remains a critical bottleneck. In both clinical and research settings, the ability 

to automatically annotate EEG with high accuracy would greatly improve the efficiency of 

multiple analyses as compared to present practices.

In the last decade, continuous EEG (cEEG) monitoring of high-risk patients in the intensive 

care unit (ICU) has become the standard of care (Hirsch, 2004; Friedman et al., 2009). 

Events of clinical interest in the ICU often presenting with correlates on cEEG include 

seizures, ischemia, hemorrhage, and elevated intracranial pressure (Friedman et al., 2009; 

Kennedy and Gerard, 2012). The volume of cEEG data recorded during a typical ICU stay 

for a single patient imposes a significant annotation burden on clinicians. Automated 

annotation of cEEG from the ICU specifically could significantly accelerate classification 

and diagnosis to support clinical decisions for critically ill patients.

Nonconvulsive seizures (NCS) constitute a clinically impactful class of events with 

prognostic significance (Claassen, 2009). Up to 48% of patients in the ICU may exhibit NCS 

(Friedman et al., 2009). NCS can cause or exacerbate neuronal injury, inducing worse 

outcomes including permanent neurologic dysfunction and mortality (Hirsch, 2004). While 

these events most often have no discernable behavioral or functional correlate, they are 

detectable on cEEG (Friedman et al., 2009; Shneker and Fountain, 2003).

Due to the clinical significance of these events, NCS is one of the labels used in this study of 

automated cEEG annotation. While seizure detection studies on convulsive seizures in 

patients with epilepsy syndromes have yielded performances with sensitivity and specificity 

over 95%, NCS detection on ICU patient cEEG data has performed considerably worse, and 

has not been evaluated on large datasets (Bose et al., 2017; Golmohammadi et al., 2017; 

Sackellares et al., 2011).

In addition to NCS, the IIIC includes several other rhythmic seizure-like patterns not 

considered to be definite seizures, but still associated with poor outcomes and increased 

seizure risk (Gaspard et al., 2014). Therefore, in this study, we explore not only automatic 
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labeling of NCS, but also additional IIIC patterns. In particular, lateralized (L) or 

generalized (G) periodic discharges (PD) and rhythmic delta activity (RDA), as defined by 

American Clinical Neurophysiology Society (ACNS) ICU EEG terminology, have been 

shown to correlate with poor neurologic outcomes (Claassen, 2009; Hirsch, 2011; Foreman 

et al., 2016; Halford et al., 2015). Efficient labeling of voluminous cEEG data will help 

enable development of better performing diagnostic and prognostic algorithms for clinical 

use, as well as more accurate models of the functional impact of IIIC events in research use.

In order to divide cEEG data into discrete segments that can be annotated, we employ 

changepoint detection (CPD), a method that identifies sudden changes in sequential data 

(Adams and MacKay, 2007). In addition to EEG segmentation, variants of CPD methods 

have also been used effectively in process control, DNA segmentation, and epidemiology 

(Adams and MacKay, 2007; Reeves et al., 2007; Barlow et al., 1981; Kaplan and Shishkin, 

2000). We then apply a bag-of-words (BoW) model, which summarizes each cEEG segment 

into a histogram of its composite “words”, which is then used for clustering. This BoW 

approach is adapted from machine learning methods developed for text and image 

classification (Zhang et al., 2010).

In the presented analysis, we apply a method we introduced in an earlier pilot study (Jing et 

al., 2018), BoW-based clustering, to CPD-segmented cEEG data from critically ill patients 

in the ICU. Our method is designed to facilitate rapid and efficient labeling of cEEG 

recordings by experts, as compared to manual labeling. In this paper, we evaluate the 

performance of our method both in terms of the quality of its results, as measured in terms 

of interrater agreement of experts using the method, and in terms of the mean time required 

for expert annotation.

2. Materials and methods

2.1. EEG samples and feature extraction

We selected archival data from 97 ICU patients with a variety of IIIC patterns. The local 

institutional review board (IRB) waived the requirement for informed consent for this 

retrospective analysis of EEG data. We used the MATLAB R2017 (Natick, MA) Signal 

Processing Toolbox for signal processing. For each patient, we collected at least 24 h of 

EEG data. We converted this data to longitudinal bipolar montage and resampled it to 200 

Hz. Furthermore, we applied bandpass filtering between 0.5 Hz and 40 Hz to denoise the 

data. We did not apply additional artifact detection and removal before clustering, so that the 

clustering method would be robust to real-world clinical signal irregularities.

We then divided all cEEG recordings into 2 s segments, and extracted a number of features 

in the spectral and time domains. These features include classic measures such as line 

length, kurtosis, entropy, nonlinear energy operator activation, relative power, power ratios, 

and power kurtosis (see Table 1). The chosen features were for a large part based on prior 

work, e.g. on automated sleep staging (Sun et al., 2017). The spectral features were 

calculated with the use of spectrograms, which were estimated with a multitaper (MT) 

framework (Babadi and Brown, 2014). To include contextual information from the 

surrounding EEG, we also computed these features within windows of 6, 10 and 14 s 
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centered on each 2 s segment (see Fig. 1A). We divided the scalp into 4 different brain 

regions for feature construction (LL: Left Lateral, RL: Right Lateral, LP: Left Parasagittal, 

and RP: Right Parasagittal) in order to represent spatial information (see Fig. 1B).

The 37 different spectral and temporal features from all 4 temporal scales and all 4 spatial 

regions resulted in a total of 592 features, which collectively describe each 2 s segment of 

cEEG. This rich set of features is intended to suffice for differentiating patterns encountered 

in the cEEGs of ICU patients, including variations of NCS and patterns along the IIIC.

2.2. CPD-BoW based unsupervised clustering

The following steps were applied on each individual subject.

Changepoint detection (CPD) is a general method to find abrupt changes in time series 

(Guralnik and Srivastava, 1999; Lund et al., 2007). We applied CPD on the averaged 

spectrograms of each cEEG recording using a parametric global method, implemented in the 

MATLAB (Natick, MA) Signal Processing Toolbox. This method finds K changepoints in 

the signal x1, x2, …, xN by minimizing the following objective function for each recording:

J K = ∑
r = 0

K
∑

i = kr

kr + 1 − 1

(xi − x kr
kr + 1 − 1)

2
+ βK, (1)

Here, k1, …, kK are the indices of the changepoints, with k0 and kK+1 defined as the first and 

last sample in the signal respectively. x b
a = 1

a − b + 1 ∑i = b
a xi is the mean operator and βK 

represents the penalty term added to avoid overfitting (i.e. introducing too many 

changepoints). This penalty term had a default of 10 times the variance in power within the 

segment, but could be manually adjusted by the user in the GUI. For the minimization we 

applied a recursive optimization algorithm based on dynamic programming with early 

abandonment (Killick et al., 2012). This breaks each cEEG into variable length segments 

that are relatively homogeneous between changepoints. The changepoints were rounded up 

to the future to fit within the 2 s temporal scale. To preempt the possibility of hypo-

segmentation by automated CPD, we use a conservative threshold for CPD to attain uniform 

segments; this threshold is optimized based on iterative user testing and feedback.

Subsequently, we applied a bag-of-words (BoW) model (also known as a “term-frequency 

counter”) (Zhang et al., 2010). This model is commonly applied in document classification 

by recording the frequency of occurrence of each word. In this study, we consider each 

cEEG recording as a special kind of “text,” with the variable length segments between the 

changepoints as “sentences,” and the consecutive 2 s segments as the elementary 

“words.”For each patient, feature dimensionality was reduced using principal component 

analysis (PCA), with 95% variance retained. We learned a dictionary of words by clustering 

these dimensionality-reduced feature arrays using k-medoids clustering with k = 100 

(chosen empirically). Here, each cluster represents one type of word, so that each sentence is 

represented as a collection of words. We then calculated the normalized histogram of words 

in each sentence, which is known as the BoW. Finally, we clustered the sentences based on 

the corresponding BoW by applying χ2-based affinity propagation (AP) (see Fig. 2) (Dueck 
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and Frey, 2007). The APCLUSTER toolbox in MATLAB was applied for this purpose. AP 

is a clustering algorithm that starts by considering all data points as potential “exemplars” 

and then updates the availability of each point by recursively transmitting real-valued 

messages along the edges of the network until the optimal exemplars with corresponding 

clusters remain. The advantage of this method is that it does not require a pre-defined 

number of clusters.

2.3. NCS and IIIC annotation

Three EEG experts (MT, MN, AH), i.e. fellowship trained epileptologists, independently 

performed manual scoring of the center of each exemplar sentence, defined as the medoid of 

each cluster identified by AP. A MATLAB-based graphical user interface (GUI) was 

developed for this purpose, as shown in Fig. 3. For each 2-second segment, the raw EEG and 

spectrograms were displayed within a wider temporal context of 14 s (EEG) and 10–60 min 

(spectrograms). An embedding map showing the clusters in a two-dimensional space 

(computed via t-SNE) was also displayed. The initial reduced dimensionality and the 

perplexity of the Gaussian kernel of the t-SNE were both set to 30 and it was implemented 

in the MATLAB Toolbox for Dimensionality Reduction (v0.8.1b). The GUI presented the 

medoids sequentially to the experts, and experts annotated each pattern by clicking one of 

six label buttons.

The different EEG patterns that we aimed to distinguish were “Seizure”, and the most 

common IIIC patterns: “LPD”, “GPD”, “LRDA” and “GRDA”, as defined by the ACNS 

(Hirsch et al., 2013). An “Other” class was added as well to cover any other patterns, 

including baseline/background EEG, and major artifacts. We hypothesized that our CPD-

BoW based clustering would render the data into relatively uniform groups of EEG patterns 

that can be accurately labeled as a group, by only inspecting the medoid exemplar of each 

cluster.

To reduce label ‘noise’ (as distinct from true inter-rater disagreement), we applied a simple 

label de-noising rule, based on domain knowledge. For each of the following pairs of labels, 

if two experts agreed on one label and the third expert disagreed, the third expert’s label was 

changed to agree with the other two: (Seizure, LPD), (Seizure, GPD), (Seizure, LRDA). The 

justification for this label-denoising rule is as follows: because IIIC patterns lie along a 

continuum, the classification of some EEG patterns are ambiguous, i.e. there can be more 

than one ‘correct’ classification. This is particularly true for distinguishing between seizure, 

LPD, and GPD patterns. In such cases, labels from the three experts such as (seizure, LPD, 

LPD) do not represent true disagreement. We validated this rule by all three experts 

reviewing approximately 100 of these cases, confirming that indeed in nearly every case, the 

third expert conceded no difference in choosing between the label they originally gave 

versus the label given by their peers. The denoised labels were used throughout the 

remainder of the analysis.

2.4. Validity of clusters

To assess the validity of the BoW-based clustering, we trained a random forest classifier 

(RF) using a combination of labeled and pseudolabeled data. The labeled data were the 
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cluster medoids (2 s segments) that were directly annotated by our experts. The 

pseudolabeled data consisted of all non-medoid 2 s segments. Each of these segments 

received the label corresponding to that of the medoid of the cluster it belonged to. We 

reasoned that if this classifier is able to learn from the pseudolabeled data, this would 

indicate that clusters indeed are suitably uniform in terms of the EEG patterns they 

encompass. For example, if a medoid of a cluster is labeled as pattern A, but the majority of 

data points in this cluster have true label pattern B, the classifier would falsely learn to 

classify a similar data point as pattern A, as all data points received the label of the medoid. 

On the other hand, if the large majority of points have true labels that match that of the 

medoid, the classifier should be able to learn to classify correctly.

First, each cluster was labeled according to the majority vote of the medoid of that cluster. If 

all three experts disagreed on the label of a medoid, its cluster was ignored for training. 

Thereafter, we pooled all patient data, i.e. the original 592 features of the 2 s segments, and 

randomly selected 100 samples from 80% of all clusters, excluding the medoid, which was 

the sample shown to experts for scoring. If a cluster consisted of less than 100 data points, 

all data points were selected. We applied PCA with 95% variance retained to the selected 

data and used this as training data for the RF. The center 2 s segments of the medoids of the 

remaining 20% of clusters, which were all visually scored by the experts, were used as 

testing data. This way, we made sure that no clusters involved in testing the classifier was 

also involved in training.

We used the dimensionality-reduced feature arrays as input for a RF containing 1000 trees. 

We applied balanced class-weights for training the RF. We performed a non-stratified 5-fold 

cross-validation to assess the performance of this training and testing procedure.

For each fold of cross-validation, we calculated the percentage agreement between the RF 

and the majority vote, as well as between the RF and each individual expert, and compared 

this to the agreement between the experts. We hypothesized that the agreement between the 

model and the experts would be statistically equivalent to the agreement within the experts. 

This was tested with a two one-sided test for equivalence (TOST) with the limits set to ±SD 

of the agreement within the experts (TOST toolblox version 1.0.0.0 in MATLAB) (Rogers et 

al., 1993). A significant equivalence test would constitute evidence that ‘pseudolabeled’ 

samples inherited from a single manually-annotated cluster center are of sufficiently high 

quality to justify forgoing the labor-intensive process of manually annotating all individual 

EEG samples within a cluster.

To assess the added value of the CPD-BoW based clustering over a more straightforward 

method, we applied the same RF classification method to the k-medoids clusters upon which 

the BoW model was based. Hereafter, we compared the percentage agreement between this 

benchmark model and the majority vote of the experts with the percentage agreement 

between our more advanced model and the majority vote.
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3. Results

The cEEG recordings had a mean length of 30.19 h (SD: 3.84), and the BoW-based 

clustering of each recording resulted in a mean number of clusters of 27 (SD: 11, range: 5–

50). Table 2 shows the time per patient taken by the experts to label all cluster medoids of 

that patient.

As can be seen, the median time taken by the 3 experts to label 24+ h of EEG data is around 

4 min. In comparison, conventional review consists of serially reviewing 10–15 s EEG 

intervals of the 24 h of EEG, which requires visual inspection of between 5760–8640 

individual intervals. Annotating 24 h of EEG at a temporal resolution of one label per 2 s, 

which is the resolution obtained by the proposed annotation scheme, requires applying 

43,200 labels per EEG. In practice, some time saving is often possible by “drawing boxes” 

around events of interest and labeling the entire events at once. Nevertheless, even done this 

way, manual annotation generally takes 2–4 h per 24 h of EEG (unpublished observations of 

author MBW), and is thus not scalable. Using 3 h as a conservative lower bound for unaided 

manual annotation, we estimate that our method provides a speedup of at least 45 times.

Pooling all clusters for training the RF resulted in a total of 2623 clusters (mean of 27 per 

subject). So in each fold, the test set consisted of 524 or 525 data points (20% of all 

clusters). 19.75% of the clusters had less than 100 data points. The training sets ranged from 

187,320 to 188,799 data points. 61% of the clusters was labeled as ‘other’ based on the 

majority vote. For ‘Seizure’, ‘LPD’, ‘GPD’, ‘LRDA’ and ‘GRDA’ this was 5%, 14%, 8%, 

4% and 8%, respectively. 162 principal components remained after application of PCA with 

95% variance retained.

Fig. 4 shows box plots of the pairwise percentage agreements between the model and the 

experts and within the experts. It also shows the percentage agreements with the majority 

vote of the experts. In the majority vote, the medoids on which all three experts disagreed 

were left out in testing, as we could not set a ‘true’ label for these segments. The mean 

pairwise agreement between the model and the experts was 62.6% (SD: 3.8) and within the 

experts 63.8% (SD: 4.2). The TOST rendered two significant one-sided t-tests with p < 
0.001 and p = 0.0255 (df = 14).

The mean agreement between the model and the majority vote of the experts was 72.5% 

(SD: 1.2). Our benchmark model, which was based upon the k-medoids clusters, had a mean 

agreement of 57.5% (SD: 2.4) with the majority vote. A two-sided t-test shows these results 

significantly differ (p < 0.001, df = 14).

4. Discussion

We have validated a method to aggregate cEEG data into a small number of clusters, which 

can rapidly be annotated by EEG experts with an easy-to-use GUI. We did this by applying 

BoW-based clustering to cEEG, a method we have introduced elsewhere (Jing et al., 2018). 

Our method allows experts to quickly identify and tag seizures and IIIC patterns in critically 

ill patients.
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4.1. Findings

The validity of the clustering results was assessed by training a RF classifier using randomly 

selected points within a cluster and assigning them the same label as the center of the 

cluster, and then comparing the predictions of this model with labels assigned by experts. If 

the clusters are ‘pure,’ i.e. if the whole cluster indeed belongs to a specific pattern type, the 

model predictions should agree well with annotations assigned by experts, whereas if there 

exist a large variety of pattern types within a cluster, agreement should be low. As shown in 

Fig. 4, agreement between experts and the automatic clustering is comparable with the 

interrater agreement of the three experts. The lack of significant difference supports the 

validity of this method: interrater agreements between the automated method and the human 

experts and those calculated among human experts are comparable in performance. In other 

words, the samples ‘pseudolabeled’ by inheriting the label of their cluster center were 

informative; the model trained with these pseudolabels was able to predict the score of an 

expert as well as the judgment of another expert would. This provides evidence that our 

methodology creates clusters in such a way that they meaningfully distinguish different 

pattern types.

Our comparison with a less advanced methodology shows that the CPD-BoW based 

unsupervised clustering significantly improves the results. Moreover, it shows that it is rather 

difficult for an algorithm to achieve a level of agreement similar to the interrater agreement, 

even with the ‘tricky’ samples, where all experts had disagreed, left out.

Previous studies of EEG data labeling have generally yielded similar human expert interrater 

agreements, and lower agreements with automated methods. The majority of studies 

conducted using experts labeling EEG data from the ICU or EMU including both seizure 

and multiple IIIC labels have resulted in kappas in the range of 0.50–0.66 (Hermans et al., 

2016; Wusthoff et al., 2017; Halford et al., 2011, 2015; Shellhaas et al., 2008; Foreman et 

al., 2016; Mani et al., 2012). While Gaspard and colleagues report high agreement for 

seizures and IIIC patterns (κ> 90 %), their study used carefully curated examples, whereas 

our study included a wide variety of patterns which were not filtered in any way to fit any 

given pattern category (Gaspard et al., 2014).

Labeling the cEEG data with our method took the experts at least 45 times less time than 

manual labeling: the median time per patient was less than 4 min. This time saving effect is 

comparable to the order of magnitude time reduction we found in our earlier pilot study of 

this methodology (Jing et al., 2018). This result suggests that the method is fast and easy to 

use, enabling rapid generation of a large labeled EEG dataset. This dataset can in turn be 

reliably used for relating the different pattern types to patient outcomes in a supervised 

manner. Once applied to such large dataset, our interpretable method will enable analysis of 

which features most strongly define cEEG labels, which will be discussed in a future study.

4.2. Limitations

While this study suggests a valid novel approach for rapidly annotating cEEG data, there are 

several limitations and caveats. Firstly, the interrater agreement remains relatively low, 

despite being comparable to the interrater agreement of human experts, which may be due to 
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intrinsic overlap in EEG labeling criteria and resultant indeterminate labels (Hermans et al., 

2016; Wusthoff et al., 2017; Halford et al., 2011, 2015; Shellhaas et al., 2008; Foreman et 

al., 2016; Mani et al., 2012). Secondly, the data ended up having a relative 

overrepresentation of ‘Other’ labeled cEEG (61%), which was mitigated by using balanced 

class weights in training the RF. Finally, not every segment of the training data was 

manually annotated so there could be ‘false’ labels relative to the ground truth labels of 

human experts. The RF classifier demonstrates scalable performance on the held-out data 

incorporating pseudolabels, with the caveat that this procedure does not specifically test the 

equivalence of the pseudolabels to the ground truth labels.

4.3. Future directions

We anticipate three key use cases for our method: (1) categorization and labeling of large 

EEG datasets for population-level research; (2) creation and curation of labeled EEG 

databases to train machine learning models; and (3) rapid annotation of a specific EEG 

recording for patient care in the ICU or epilepsy monitoring unit (e.g. to estimate patient 

seizure burden for clinical management).

Our work builds on previous work that has demonstrated the clinical utility of an EEG 

clustering approach (Hassan et al., 2015). We anticipate that this study and future related 

studies can significantly improve clinical workflows for clinical neurophysiologists, who 

currently work to manually label large quantities of data. Our clustering method performs 

robustly enough that clinicians labeling data will only have to label a representative subset of 

a patient’s data, and can rely on the algorithm to effectively apply the labels across the 

dataset. In addition to saving clinician time, our approach preserves accuracy by eliminating 

long labeling sessions, and allowing experts to evaluate exemplary EEG segments in more 

detail.

5. Conclusion

This work supports the hypothesis that cEEG data can be validly clustered into a small 

number of distinct patterns. Our results suggest that long EEG recordings can be rapidly 

annotated by experts many times faster than unaided manual review. Using our system, we 

are currently in the process of labeling >30TB of EEG data from 2000 ICU subjects. The 

resulting EEG data will provide sufficient data to train deep neural network models to 

automatically detect NCS and IIIC patterns. This rich data will also allow us to gain a deeper 

understanding of the clinical consequences of NCS and IIIC events, and how the 

consequences depend on the attributes of different NCS and IIIC patterns.
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Fig. 1. 
Featurization of cEEG data. Features were computed from windows of 2, 6, 10 and 14 s, 

centered on each 2 s segment (A), and from 4 different brain regions (B), to include 

contextual and spatial information in the feature representation of the EEG.
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Fig. 2. 
Affinity propagation based clustering of CPD-BoW represented EEG. (A) A step-by-step 

representation of the proposed method. Filtered EEG (B) and corresponding spectrograms 

(C) were segmented via changepoint detection (CPD), demarcated with magenta lines. (D) 

Each segment was then represented as a bag-of-words (BoW) histogram. (E) Chi-squared 

affinity propagation (AP) clustering then assigned the sample segment, encircled in magenta, 

to one of several clusters. This figure, intended to illustrate our methodology, is based on 

synthetic data. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.)
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Fig. 3. 
The graphical user interface for rapid annotation. 14 s of EEG are shown on the right. The 

regional average spectrograms are shown on the left with the changepoint detection results 

below. The unsupervised clustering membership assignment is illustrated by the horizontal 

color bar at the bottom, as determined by the CPD-BoW-AP steps. The colors are assigned 

based on the average total power from all members in that cluster. The higher the power 

values usually correlate with severity of the EEG patterns (darker colors are more likely to 

be seizures or IIIC patterns). Above the spectrograms is a 2D embedding map computed 

using t-SNE (Maaten and Hinton, 2008) for data visualization and exploration. Each 

scattered point in this map corresponds to a 592-dimensional feature vector extracted from a 

2 s EEG interval. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.)
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Fig. 4. 
Percentage agreements of all 5 folds between the RF classifier (C) and the experts (E1 to E3) 

and within the experts. Emaj is the majority vote of the experts, with the samples on which 

all experts disagreed left out.
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Table 1

EEG features.

Temporal features Feature calculation Measurement

Line length Total variation

Kurtosis Extreme values

Shannon entropy Absolute value Signal irregularity

Nonlinear energy operator Mean and SD Changes of stationarity

Spectral features

Absolute δ, θ, α, and β power Kurtosis

Relative δ, θ, α, and β power Mean, min, SD, 95th percentile

δ/θ, δ/α, and θ/α power ratios Mean, min, SD, 95th percentile

δ = 1–4 Hz, θ = 4–8 Hz, α = 8–12 Hz, β = 12–18 Hz.
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Table 2

Annotation time cost per-patient (in minutes).

Mean ± SD Median IQR

Expert 1 5.61 ± 7.66 3.73 2.23–5.64

Expert 2 2.08 ± 1.38 1.55 1.12–2.94

Expert 3 8.86 ± 3.33 8.40 6.74–11.34

Overall 5.52 ± 5.60 3.97 1.68–7.70

IQR: inter quartile range.
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