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Abstract

The biogeography of the mammalian intestine is remarkable in that a vast microbial consortium 

exists inside the organism, surrounded by intestinal epithelial cells. The microbiome and the 

intestinal epithelium have developed a complex network of interactions that maintain intestinal 

homeostasis. We now recognize that functions of the epithelium are compartmentalized in specific 

intestinal epithelial cell subtypes. Furthermore, we are beginning to understand the ways in which 

microbes and their metabolic products impact the specific epithelial subsets. Here, we survey the 

mechanisms utilized by the microbiome to regulate intestinal epithelial function, and inversely, 

how different epithelial cell subtypes cooperate in regulating the microbiome.

Introduction

The ability for the microbiome to alter and manipulate physiology and morphology of the 

host intestine has been appreciated for decades [1]. However, as we enter the age of single-

cell biology [2••], it is becoming apparent that treating the intestinal epithelium as a 

homogeneous layer of cells is grossly inappropriate. Furthermore, as the use of conditional 

Cre-lox systems continues to be developed, we gain a more nuanced appreciation of how 

individual cells regulate host–microbiome interactions that was never before possible. 

Indeed, the intestine is composed of a great variety of intestinal epithelial cell (IEC) sub-

types, each with their own specialized reciprocal relationship with the microbiome (Table 1). 

All IECs originate from the intestinal stem cell which divide into transit amplifying cells 

(TACs) that serve as intermediates between the stem cell and the terminally differentiated 

IEC [3]. TACs subsequently populate the intestine with the various IEC subtypes following 

commitment towards a secretory or absorptive lineage [4]. Paneth cells, goblet cells, tuft 

cells, and enteroendocrine cells, which release large amounts of antimicrobial peptides 

(AMPs), mucins, type 2 immune mediators, or hormones, respectively, are derived from the 

secretory lineage [4]. Meanwhile, enterocytes and colonocytes, which are major nutrient 

absorbers, and Microfold (M) cells, which act principally in microbial antigen uptake, are 

derived from the absorptive lineage [4].
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Herein, we lay the foundation for future research working to interrogate cell-specific host-

microbiome interactions, by reviewing seminal data that exemplifies prominent ways in 

which particular epithelial cell functions affect the microbiome and reciprocally, how the 

microbiome affects particular epithelial cell functions. Although our review is not an 

exhaustive list of all previously described interactions, we touch upon common themes and 

conceptual modules of cell-specific host-microbiome interactions.

Inside-out: cell type-specific regulation of the microbiome

The large intestine houses the highest number of bacteria in terms of quantity and diversity, 

so the existence of a reciprocal relationship between the microbiome and colonocytes 

becomes immediately apparent. Perhaps the best described interaction involves the microbial 

production of short-chain fatty acids (SCFAs), which colonocytes use as fuel [5]. SCFA 

metabolism by colonocytes promotes aerobic respiration, maintaining the hypoxic 

environment of the large intestine that most commensals require [6]. In the absence of 

SCFA, colonocytes undergo anaerobic respiration releasing oxygen and nitrates into the 

lumen that facilitate the expansion of pathogens such as Escherichia coli and Salmonella 
[7••]. In contrast to mature colonocytes, TACs exhibit low basal oxygen consumption [8], 

leading to increased availability of oxygen and nitrate, allowing for facultative anaerobic 

bacteria, such as E. coli, to expand in ulcerative colitis mouse models [9–11]. These 

phenotypes are also present in ulcerative colitis patients, and may contribute to disease 

pathology [12].

Along the same lines, host enterocytes can provide carbon sources utilized by host 

commensals. While mucus had long been conceptualized simply as a lubricant for fecal 

matter moving through the gastrointestinal tract, it is now clear that mucus acts as a medium 

for the colonization of commensal organisms to maintain immune homeostasis [13]. The 

highly glycosylated mucins that constitute a major architectural component of the mucosal 

layer are primary carbon sources for some commensals, like Akkermansia muciniphila [14], 

whose abundance is inversely correlated with severity of metabolic and inflammatory 

diseases [15–17]. Lipid modification, such as sialylation of mucin glycans, have also been 

recently described as metabolic resources for commensals like Ruminococcus gnavus [18•]. 

Indeed, mucin remains an important modality whereby goblet cells feed microbes, some 

requiring the fermentation products of their neighbors [19]. Fucosylation of small intestinal 

IEC also is utilized as fuel for the microbiome, including Bacteroides, in times of starvation 

[20]. Feeding commensals, which colonize the mucus layer and hoard potential resources 

that pathogens could use otherwise [21], may represent a colonization resistance strategy of 

the host, by which the function of the microbiome is used to prevent infection.

Additionally, initiation of IEC inflammatory cascades can result in an antimicrobial 

response, modulating the bacterial composition. By virtue of their role as producers of 

AMPs [22], Paneth cells inherently have a strong influence over microbial composition in 

the small intestine. Both chemical and genetic depletion of Paneth cells in mice resulted in 

robust and long-lasting changes in the microbiome, including a significant reduction of 

Proteobacteria [23]. Furthermore, the most abundant antimicrobial peptides produced by 

humans, a-Defensin-5, is shown to have direct bactericidal activity towards several members 
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of the human microbiome, and can therefore alter bacterial communities in vivo [24]. More 

generally, Paneth cells maintain species-specific microbiome communities, as transgenic 

expression of human defensins in mice results in large shifts in detectable bacteria [25].

Goblet cells sense pathogen-associated molecular patterns (PAMPs) in the gut and maintain 

the mucosal barrier accordingly. TLR-dependent signaling and microbial metabolites trigger 

the NLRP6-dependent inflammasome in goblet cells to stimulate mucus production [26–28]. 

Furthermore, it was recently shown that neuronal-derived IL-18 is responsible for driving 

goblet cell production of antimicrobial peptides upon infection [29•]. These recent findings, 

together with the prior literature, demonstrate how crucial microbial responses of goblet 

cells are to reinforce barrier integrity.

Tuft cells also indirectly regulate the gut microbiome during type 2 immune responses. By 

triggering ILC2s to release IL-13, tuft cells can engage IL-13-responsive goblet cells to 

release mucus to brush away not only eukaryotic but also bacterial pathogens. Tuft cell 

derived IL-25 has also shown protection against cancer-associated dysbiosis [30]. How tuft 

cells communicate, and with whom they communicate with to maintain barrier integrity is 

certainly a growing field of interest with much to be explored.

As the major epithelial mediators of antigen uptake, M cells are especially critical for 

regulating the microbiome. Conditional deletion of RANKL using villin-Cre results in loss 

of M cells in mice [31]. Although these mice showed similar levels of microbial diversity in 

the intestine, the levels of IgA-coated bacteria increased [31]. IgA-coating has previously 

been shown to mark bacterial members of the microbiome with strong inflammatory 

capacity [32]. Transient depletion of M cells, however, has been shown to increase the levels 

of segmented filamentous bacteria (SFB), demonstrating that M cells regulate ileal SFB 

abundance [33••].

Situated at the bottom of intestinal crypts are the intestinal stem cells (ISCs). While 

undergoing continuous proliferation, new daughter cells migrate upwards along the crypt-

villus axis towards the gut lumen and differentiate into the many specialized cell types along 

the way in a controlled manner [34]. While the majority of gut microbes are situated in the 

mucosal layer above the villi, a subset of microbes called the crypt-specific core microbiota 

are maintained within the crypt in close proximity to the stem cell niche [35]. The 

abundances of various crypt-associated and mucosa-associated microbes have been 

correlated to colon cancer development [36].

In all, various IEC subtypes exert regulation over the microbiome. Nearly all described 

microbiome effects from IEC have been studied in the context of a single IEC subtype. 

However, it would be interesting to understand if and how IEC subtypes communicate with 

each other to coordinate responses towards the microbiome. Furthermore, given that most of 

the work only measures microbial abundances, it is likely that deeper levels of microbiome 

regulation by epithelial cell subsets escape our current knowledge, for example, at the level 

of commensal transcriptomes.
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Outside-in: cell type-specific regulation by the microbiome

The microbiome utilizes diverse mechanisms to influence the intestinal epithelium, which 

can be organized into a few discrete conceptual modules. A major form of communication is 

through pattern recognition receptor (PRR) signaling, for example, in Paneth cells. The fact 

that germ-free (GF) animals have lower levels of AMP production and decreased Paneth cell 

number is evidence of microbial regulation of Paneth cell differentiation and function 

[37,38]. One such mechanism involves activation of Paneth cell AMPs via MyD88 

signaling, a downstream adaptor of several PRRs [39•]. In fact, loss of MyD88 results in a 

number of defects in the intestinal epithelium, including decreased mucin production, 

suggesting PRR signaling in goblet cells also influences their behavior [40].

Beyond PRRs, several IEC subtypes also express receptors that can respond to microbial 

metabolites, circumventing the need to sense bacteria directly, by instead monitoring a 

metabolite proxy for the state of intestinal microbial colonization. In addition to the impact 

of SCFAs on enterocyte metabolism as discussed above, a recent report [41] identified 

microbial metabolites regulating epithelial lipid metabolism. L-lactate from Lactobacillus 
paracasei enhances lipid storage by inhibiting beta-oxidation, while Escherichia coli-derived 

acetate promotes beta-oxidation. Paneth cells can also be affected by similar microbial 

metabolites. Microbial-derived lactic acid is capable of signaling through GPR81 on Paneth 

cells to increase Paneth cell number [42••].

Tuft cells are also known to respond to the microbiome, as antibiotic-induced dysbiosis 

resulted in tuft cell hyperplasia [30]. Using single-cell transcriptomics, intestinal tuft cells 

were recently shown to specifically express Sucnr1 and Ffar3, receptors for the microbially 

derived metabolites succinate and SCFAs, respectively [43•]. Parasite-derived succinate has 

been shown to activate type 2 immune responses by tuft cells [44]; however, recent evidence 

extends this finding to commensal bacteria-derived succinate [34]. Interestingly, one group 

identified a tuft cell hyperplasia phenotype in germ-free mice colonized with helminth-free 

microbiota, while goblet cell hyperplasia was not simultaneously observed [45]. Altogether, 

these studies implicate tuft cells in responding to bacterial presence in the intestinal mucosa, 

broadening their roles described in anti-parasitic responses, which have been the major focus 

of tuft cell research (Figure 1).

Enteroendocrine cells (EECs), the largest endocrine system in the body [46], express 

receptors that are sensitive to microbial products such as SCFAs [47•], indole [48], 

secondary bile acids [49], and structural components of the microbial membrane [50], 

allowing the microbiome to exert control over host metabolism. Moreover, butyrate released 

by spore-forming bacteria upregulates serotonin (5-HT) synthesis by EECs [51]. Germ-free 

mice consequently have lower levels of 5-HT [52], leading to abnormal colonic motility. 

Indeed Clostridia-derived cellular components can also induce 5-HT secretion [53]. Besides 

5-HT, EECs also secrete anorectic gut hormones such as Peptide YY (PYY) and glucagon-

like peptide (GLP-1) [46]. PYY is a satiety factor that inhibits food intake and 

gastrointestinal motility, while GLP-1 is an incretin hormone [54]. In primary colonic cell 

cultures and enteroendocrine model cell lines, PYY production has been found to be 

strongly stimulated by butyrate and propionate [47•]. However, a separate report finds that 
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GF mice had upregulated functional capacity in their EECs, increasing PYY production and 

secretion [55], suggesting GLP-1 resistance. This discrepancy could be due to differences in 

model systems, but could also be attributed to differences in protease activity. For example, a 

recent study found that genera such as Prevotella or Lactobacillus express enzymes similar 

to dipeptidyl peptidase IV (DPP-4), the enzyme responsible for GLP-1 and PYY breakdown 

[54]. This can then serve as a feedback loop, as decreasing DPP-4 leads to altered 

microbiota composition and microbial metabolite abundance [54].

Models of bacterial infection have uncovered several mechanisms implicating microbial 

metabolites, reactive oxygen species, and PAMPs as stimuli driving ISC proliferation 

[56,57]. Interestingly, while microbial-derived butyrate was found to suppress ISC 

proliferation, lactate stimulated ISC differentiation [42••]. Furthermore, Lactobacillus-

derived indole metabolites, which signal through aryl hydrocarbon receptor (AhR) on 

epithelial cells, can also induce ISC proliferation [58]. Peptostreptococcus-derived 

tryptophan metabolites, which also can signal through AhR, similarly induce goblet cell 

proliferation [59]. Additionally, the microbiome can have profound effects on the cellular 

composition of the intestinal epithelial layer by polarizing the differentiation of TACs [60].

Furthermore, bacteria and bacterial antigen can directly interact with IECs. M cells have 

long been known to endocytose microbial antigen, and it has been demonstrated that 

commensals utilize M cells to maintain tolerance [61]. Despite the critical role of M cells in 

regulating bacterial antigen in the intestine, GF mice have no loss in M cells [62]. This is 

particularly interesting, as it is known that Peyer’s patches, where M cells typically reside, 

are underdeveloped in GF animals [63]. Although commensals have no apparent role in M 

cell development [62], pathogens appear to influence their cellularity, as M cell numbers 

increase following Salmonella infection [64]. These data would imply that the intestine 

maintains a pool of M cells poised to respond to antigen, and upon pathogenic challenge, the 

host responds by increasing the sites of antigenic uptake.

In addition to M cells, enterocytes also seem to endocytose microbial antigens. Recently, it 

has been shown that SFB antigens are taken up by IECs in a clathrin-dependent manner, 

which is required for the induction of antigen-specific TH17 cells [65]. Furthermore, in 

colonocytes, tumorigenesis can be mediated by direct interactions with microbes. Several 

groups have shown reduced tumor formation in several mouse models of colorectal cancer 

(CRC) inGFmice[66]. The abundancesofseveral members of the microbiome have been 

shown to correlate with CRC in humans, the most prevalent being Fusobacterium species 

[67]. Although mechanistic understanding is incomplete, recent reports demonstrate that 

Fusobacterium produce a virulence factor, FadA, capable of binding E-cadherin on 

colonocytes to induce cell proliferation via Wnt/β-catenin signaling [68,69].

These direct bacterial-epithelial interactions also occur in other IEC subtypes. Goblet cells 

are capable of delivering soluble antigens from the gut lumen via goblet cell-associated 

antigen passages (GAPs) to tolerogenic CD103+ dendritic cells [70]. The enteric pathogen 

Salmonella Typhimurium was shown to inhibit GAPs during infection [71]. Interestingly, 

while goblet cell hyperplasia has been associated with parasitic infections [72], bacterial 
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infections, including Citrobacter rodentium, have been associated with the depletion of 

goblet cells [73], suggesting their significant role in maintaining barrier integrity.

Overall, IECs can sense their microbial environment to regulate diverse processes. These 

interactions typically occur via PRR recognition of bacterial ligands, or sensing of microbe-

specific metabolites, such as SCFA. In general, the level of IEC response correlates to the 

severity of signal. For example, PRR signaling indicative of pathogenic crypt invasion 

results in enhanced AMP expression and mucin production. Metabolite sensing, on the other 

hand, can communicate to IECs without pathogenic invasion of the microbe, resulting in a 

wider range of both pro-inflammatory and anti-inflammatory responses. Given the large 

abundance of potential metabolite sensors in humans [74,75], it is possible we are only 

scratching the surface of microbiome-mediated IEC regulation.

Conclusions and perspectives

The regulatory nature of the microbiome and specific cell types in the intestine is inherently 

reciprocal. Direct recognition of bacterial molecules, for example through PRRs, can result 

in proliferation of epithelial cells, and production of antibacterial proteins. Metabolic 

byproducts from bacteria can alter epithelial activation states, and metabolic byproducts of 

the epithelia can alter bacterial composition.

Recent studies have uncovered a profound impact of the microbiome on fundamental cell 

biological processes of IECs, including protein turnover [76] and circadian rhythms [77–80], 

suggesting that several additional features of host–microbiome interactions remain to be 

uncovered.

As research in host-microbiome interactions progresses, more emphasis should be placed on 

cell-type specific responses. Although the use of germline-transgenic and pan-epithelial Cre-

lines has unmistakably enhanced our understanding of host-microbe interactions, utilization 

of cell-specific Cre-lines that allows for the dissection of exact cellular mechanisms will 

provide clarity. Such models have been enabled by recent large-scale single cell 

transcriptome, mass cytometry, and spatial profiling studies that identified more 

comprehensive lists of cell type-specific genes, and have also revealed novel IEC cell states 

and subpopulations [81,82]. It is also clear that significant differences in microbiome 

diversity exist between laboratory-maintained and wild mice [83]. Experimental designs that 

account for this may help to address concerns of reproducibility in studies of host-

microbiome interactions. Taking advantage of all such resources will allow us to refine our 

understanding of bidirectional host-microbiome interactions and their impacts on human 

health. This information can be useful in the treatment of several etiologies with underlying 

epithelial dysfunction, such as inflammatory bowel disease and cancer.
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Figure 1. The reciprocal interactions of microbiome and IEC.
A number of different modules define the relationships between host cell and microbe. 

Metabolites, for example, can initiate and enhance physiological functions of immune cells, 

such as EECs, tuft cells, colonocytes, and Paneth cells. Reciprocally, host effector 

molecules, such as AMPs from Paneth cells, or mucins from Goblet cells, can alter 

microbiome composition.

Solis et al. Page 12

Curr Opin Microbiol. Author manuscript; available in PMC 2020 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Solis et al. Page 13

Ta
b

le
 1

Su
m

m
ar

y 
of

 I
E

C
 s

ub
ty

pe
 f

un
ct

io
n 

an
d 

lo
ca

liz
at

io
n

C
el

l t
yp

e
P

ri
m

ar
y 

ca
no

ni
ca

l f
un

ct
io

ns
L

oc
at

io
n

In
te

ra
ct

io
ns

 w
it

h 
m

ic
ro

bi
om

e

In
te

st
in

al
 s

te
m

 c
el

ls
R

ep
le

ni
sh

 th
e 

ep
ith

el
ia

l c
el

l l
ay

er
 e

ve
ry

 ~
4–

5 
da

ys
Sm

al
l i

nt
es

tin
e 

C
ol

on
M

ic
ro

bi
om

e-
de

ri
ve

d 
la

ct
at

e 
st

im
ul

at
es

 I
SC

 p
ro

lif
er

at
io

n

G
ob

le
t c

el
ls

Se
cr

et
e 

m
uc

in
s 

an
d 

ot
he

r 
fa

ct
or

s 
in

to
 th

e 
gu

t l
um

en
; g

ob
le

t c
el

l-
as

so
ci

at
ed

 
an

tig
en

 p
as

sa
ge

s
Sm

al
l i

nt
es

tin
e 

C
ol

on
Pr

ov
id

e 
a 

ca
rb

on
 s

ou
rc

e 
to

 b
ac

te
ri

a 
in

 th
e 

fo
rm

 o
f 

m
uc

us

Pa
ne

th
 c

el
ls

Se
cr

et
e 

an
tim

ic
ro

bi
al

 p
ep

tid
es

 in
to

 th
e 

m
uc

os
a;

 s
up

po
rt

 th
e 

st
em

 c
el

l n
ic

he
 

of
 th

e 
cr

yp
t

Sm
al

l i
nt

es
tin

e 
on

ly
A

lte
ra

tio
n 

of
 m

ic
ro

bi
al

 c
ol

on
iz

at
io

n 
ni

ch
e 

th
ro

ug
h 

an
tim

ic
ro

bi
al

 
pe

pt
id

es
,

T
uf

t c
el

ls
T

ri
gg

er
 ty

pe
 2

 im
m

un
e 

re
sp

on
se

s 
ag

ai
ns

t p
ar

as
ite

s
Sm

al
l i

nt
es

tin
e 

C
ol

on
St

im
ul

at
io

n 
by

 m
ic

ro
bi

om
e-

de
ri

ve
d 

su
cc

in
at

e

E
nt

er
oe

nd
oc

ri
ne

 c
el

ls
R

el
ea

se
 h

or
m

on
es

 in
 r

es
po

ns
e 

to
 a

 v
ar

ie
ty

 o
f 

st
im

ul
i

Sm
al

l i
nt

es
tin

e 
C

ol
on

5-
H

T
 p

ro
du

ct
io

n 
in

 r
es

po
ns

e 
to

 S
C

FA
 s

tim
ul

at
io

n

M
 c

el
ls

U
pt

ak
e 

of
 lu

m
in

al
 a

nt
ig

en
s 

an
d 

de
liv

er
y 

to
 th

e 
Pe

ye
r’

s 
pa

tc
he

s
Sm

al
l i

nt
es

tin
e 

on
ly

U
pt

ak
e 

of
 m

ic
ro

bi
al

 a
nt

ig
en

, r
eg

ul
at

io
n 

of
 S

FB
 le

ve
ls

E
nt

er
oc

yt
es

Ph
ys

ic
al

 b
ar

ri
er

; n
ut

ri
en

t a
bs

or
pt

io
n;

 e
pi

th
el

ia
l c

el
l s

he
dd

in
g

Sm
al

l i
nt

es
tin

e 
on

ly
E

nd
oc

yt
os

is
 o

f 
m

ic
ro

bi
al

 a
nt

ig
en

. M
ic

ro
bi

om
e-

de
ri

ve
d 

la
ct

at
e 

an
d 

ac
et

at
e 

re
gu

la
te

 c
hy

lo
m

ic
ro

n 
re

le
as

e

C
ol

on
oc

yt
es

Ph
ys

ic
al

 b
ar

ri
er

; n
ut

ri
en

t a
bs

or
pt

io
n;

 e
pi

th
el

ia
l c

el
l s

he
dd

in
g

C
ol

on
 o

nl
y

M
et

ab
ol

is
m

 o
f 

m
ic

ro
bi

om
e-

de
ri

ve
d 

SC
FA

s,
 p

ro
vi

de
 g

ly
ca

ns
 a

s 
a 

ca
rb

on
 

so
ur

ce
 to

 b
ac

te
ri

a

Curr Opin Microbiol. Author manuscript; available in PMC 2020 December 17.


	Abstract
	Introduction
	Inside-out: cell type-specific regulation of the microbiome
	Outside-in: cell type-specific regulation by the microbiome
	Conclusions and perspectives
	References
	Figure 1
	Table 1

